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Design an optical system that images microscopic samples and directly 1) Hybrid experiment
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fluorescent labels. We use multicolor PSF engineering, and design a neural 0 N -
network to jointly learn both the encoding — the optimal phase mask for the ; g :
task, and the decoding — neural network that computes the absolute distance £ 1.5\| '
given the modified images. = .
Encoding Decoding Q 1
-' (L
_ \ / \ 1 % ® Net output % 401
Imaging Model — ) :
CNN 805 / _
Distance S /
— — ’ — [um] S 5 g g 0066468 ; 0
-2 -1.5 -1 -0.5 0 0.5 1 1.9 2
0 Voltage [AU] 240 0 Phase [rad] 2r A Defocus [pm]
e OPHITIZEL OD Defocus=tum 05 um o
> 11(*)] < -
0.05
1 | .
» [£() . . .o . -1_5\]‘
Optimization : \
. g 5 ptimiza |0n‘:' -
- = O L -
-.E-.%-.;-. 64x1 1x1 - - *’
7 % N -
PSF; Physical layer Denoiser Unet 1 0 0 1 ’
Ayml 4 L )
Differentiable physical layer for image generation, implementation and
optimization of the voltage mask. 2) Multicolored bead-pairs experiment
Reconstruction module based on U-net [2] architecture for denoising and 2D di
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multiscale feature extraction, estimating scalar 3D distance. ' ' '
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Training and validation sets consists of randomly sampled 3D coordinates
of the two emitters, and random photon count for each emitter. Training - 60
set: 60000 samples, validation set: 5000 samples, test set: 1000 samples. c
Two steps training in each epoch: first only the denoiser was optimized, ﬁ1'57/ E“O
while the PSF is unchanged, with the denoiser loss only- MSE between 5 : ///%é
the intermediate image (the first U-net output) and the simulated image %05 _/ . srrrsssss
of the PSFs before the added noise. Then the voltage mask was trained B // " petoutput - : =
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between the output and the true distance. Defocus [Lm]
The network was implemented in Pytorch and trained on a single Titan 3) Yeast cells experiment Input image Denoised

RTX GPU for ~8 hours.
Ground truth distance was estimated by

imaging each of the colors separately by a
z-stack, without the mask, to find their
precise 3D location using a 2D gaussian fit.
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