## **Optoelectronic Chromatic Dispersion** in Germanium PN Photodiodes Egor Liokumovitch, Ziv Glasser and Shmuel Sternklar



Department of Electrical and Electronic Engineering, Ariel University, Ariel 40700, Israel.

#### Introduction

The dependence of photodiode efficiency and RF bandwidth on the wavelength is well known. However, this wavelength dependency leads to a prominent feature of photodiodes that has been largely overlooked. The wavelength-dependent pathlength of the migrating charge-carriers is the source of an extremely large effective chromatic dispersion. Based on this inherent feature, we regard this device as a source of optoelectronic chromatic dispersion (OED). In this work we demonstrate the potential applications for a sensor based on photodiode OED.

#### OED Theory



Sinusoidal-modulated light with wavelengths  $\lambda_1$ ,  $\lambda_2$  and power  $P_0 e^{i(\Omega t)}$ illuminats a PN photodiode. Absorption, charge-pair formation, and subsequent diffusion leads to a measurable modulated current. Current contribution in each region leads to a total current

spectrum  $\alpha(\omega)$  and a dependence on the modulation frequency  $\Omega = 2\pi f$ Referring to fig. 1, if wavelength  $\lambda_2$  increases to  $\lambda_2 = \lambda_2 + \delta \lambda$ , the penetration depth recedes from the junction, the average diffusion time of the charge carriers increases, and so does the modulation phase-shift delay. The opposite

at frequency  $\Omega$  that is proportional to the sum of these terms:  $F_{tot} = \left| F_{E} \right| e^{-i\theta_{E}} + \left| F_{S} \right| e^{-i\theta_{S}} = \left| F_{tot} \right| e^{-i\theta_{tot}}$ 

where *E*, *S* refer to entrance and substrate, respectively. The amplitudes and phases of these terms are dependent upon several parameters, but, crucially, there is a wavelength dependence through the absorption

will happen if wavelength  $\lambda_1$  increases, the average diffusion time will decrease and so will the modulation phase-shift delay.

The sensitivity of such a sensor can be defined as change of phase relative to change in wavelength

 $S_{OED} \equiv d\theta_{tot} / d\lambda$ 



#### Experimental Setup and OED Characterization



The system is shown in fig. 2 and consists of a tunable laser source in the C-band, a Mach-Zehnder modulator and two photodiode circuits - one with a PN-type Ge photodiode which exhibits OED, the other with a PIN-type InGaAs photodiode, which does not.

The photodiodes are operated in the reverse bias regime, and the voltage resulting from the photodiode's current is measured on a  $50\Omega$ load resistor. The PIN-type InGaAs photodiode, served as a reference signal. In general, PIN-type photodiodes have a large intrinsic layer,

which is usually dominant compared to the relatively small entrance and substrate regions, which leads to a negligible OED in the C-band. The tunable laser was set to a starting wavelength of 1550nm and was swept up to 1568nm with a step of 2 nm. At each wavelength, the modulation frequency was scanned in the range between 1 kHz and 12 MHz.

nm)

(deg/





### Application in FBG Interrogation



ıde (dB)

The OED effect was integrated into an FBG interrogator system which utilizes the RF phase-shift method and OED to monitor wavelength shifts.

Fig. 4 depicts the interrogation setup. A directly modulated superluminescent diode (SLED) in the C-band provides a broadband (30 nm spectral-width) sinusoidal-modulated optical signal, which is then sent through a series of FBG sensors. This technique allows simultaneous interrogation of all the sensors. The reflected light of each sensor is diverted onto a Ge photodiode.

Then A constant sinusoidal vibration at a frequency of 17.9 kHz was applied on

Fig. 3. Phase  $\theta$ tot as a function of signal modulation frequency and wavelength

Fig. 4. *S*<sub>OED</sub> as a function of modulation frequency for five pairs of wavelengths.

Fig. 3 displays the predicted and measured phase dependence on frequency for several wavelengths. The phase initially increases linearly with frequency, and then plateaus at higher frequencies. By subtracting two phase curves, a sensitivity as a function of modulating frequency and light wavelength can be extracted (fig. 4)



Application in Wavelength Monitoring

The sensitivity of OED was enhanced by utilizing a technique called phase-shift amplification by RF interferometry (PARFI). This allows for amplification of the RF phase-shift produced by OED to enhance the resolution.

The phase-amplified OED system is shown in fig. 6. Light from a tunable laser is intensity modulated and detected by a reverse-biased Germanium PN photodiode. The OED signal is then combined with a reference signal in an RF coupler in order to form PARFI. The OED sensitivity for 1 pm steps of the laser is only 670 µdeg/pm, which is challenging to measure. The experimental results of PARFI amplified OED are presented in fig. 8, where two amplification factors





# Application in Spectral Sensing



are shown -  $G = 4 \cdot 10^4$  and  $G = 1.8 \cdot 10^3$ . After amplification by PARFI, we achieve lized wavelength sensitivity of  $\Delta \lambda_{min} = 1$  fm After amplification by PARFI, we achieved a norma-

For further reading on PARFI and PAI:



