DVN Workshop 21-22 September 2021

Precision Molded Glass Lenses with Application to Automotive HD-Pixel Light Systems

by Hagen Schweitzer

AGENDA

- 1 Introduction into Classic Head Lighting Systems and LED Matrix Light
- 2 Pixel Light System
- 3 Precision Ready Molded Glass Lenses DOCµTEC[®]
- 4 Future HD Pixel Light Systems Hybrid Aspheres
- 5 Summary

INTRODUCTION Classic Headlights

- Classic headlights generate static light distributions
- Optical systems/ illumination unit for specific scene illumination:
 - Low beam
 - high beam
 - Fog light
- Additional function, as for example, sign illumination can be included in lenses

Source: Docter Optics SE

INTRODUCTION Classic Headlights

- Illumination unit uses single aspherical glass or polymer lenses
- Typically, shapes are round, rectangular or customized
- Typically, accuracy is low for the optical surface requirement
 - → deviation of surface form: 200µm Peak to Valley (±100µm)

INTRODUCTION LED Matrix Light

Dynamical switching between different light sheets

- LED Matrix Light
- Multi channel lenses made of polymer or glass
- One pcs lens generates multiple light sheets (patterns)
- Single LED per light channel
- Dynamic switching of light sheets by switching LEDs on and off

INTRODUCTION Injection molding

- Manufacturing of aspherical lenses and multichannel lenses at Docter Optics
- Manufacturing includes
 - Polymer injection molding (see figure)
 - Ready molded aspherical glass lenses
- Ready molded aspherical glass lenses enables high volume at reasonable costs
 - No grinding required
 - No polishing required

Source: Docter Optics SE

DOCTER®OPTICS

INTRODUCTION In-House Glass Production

DOCTAN®

PIXEL LIGHT SYSTEM

- Dynamic scene illumination
- Used for low and high beam
- Dynamic line and pattern projection
 - → requires pixel light with several 1000 -10000 of individual pixels
- Pixel sources as for example as LED pixel matrix, DMD

Source: Mercedes Benz

PIXEL LIGHT SYSTEM

Optical design of headlights with spherical lenses

- HD Pixel light requires objective lenses with high efficiency (low F#)
- Standard for automotive lens systems (camera, LIDAR) are objectives with spherical lenses
- Requires up to 7 spherical lenses depending on optical performances and resolution
- Optical systems with only spherical lenses are quite bulky
- Not appropriate for headlights

PIXEL LIGHT SYSTEM

- Aspherical polymer and glass lenses allow reduction of number of lenses (7 to 4 lenses depending on required optical resolution and performance)
- Molded aspherical glass and polymer lenses enable customized geometries of front lenses
- This presentation focuses on molded aspherical glass lenses
- Optical surface accuracy of aspherical lenses must be increased by factor 10 compared to classic headlighting systems
 - → therefore, surface form deviations must be reduced from 200µm to 20µm peak to valley

Asphere

PIXEL LIGHT SYSTEM Simulated Test Image with 20 μm PV (±10 μm)

Simulated test image of pixel light with 160 x 80 pixels

Smallest test structures partially resolved

BRECISION READY MOLDED GLASS LENSES DOCμTEC[®]

PRECISION READY MOLDED GLASS LENSES

Peak to Valley.

 Optical lens surfaces must be accurate to have a good optical performance and resolution

- Precision ready molded aspherical lenses means
 - Optical surface accuracy must be increased by factor 10
 - Surface form deviations must be reduced from 200μm to 20μm (±100μm to ±10μm)
 - customized mechanical shapes to the front lens
 - without any further rework as grinding or polishing
 - high volume products at reasonable costs
 - Improvement of patented molding process
 - Good temperature stability

PRECISION READY MOLDED GLASS LENSES Production Process

PRECISION READY MOLDED GLASS LENSES Production results

- Colors indicates surface form deviations
- Measured surface form deviation of molded lens PV < 20µm (±10µm)
 - → Pixel Light Ready Component by Doctor Optics

FUTURE HD PIXEL LIGHT SYSTEM

- requires a further significant increase in optical performance in:
 - Resolution
 - MTF (Modulation Transfer Function)
- Several 10.000 individual pixels required
- Increase of optical performance requires an increase of surface accuracy by around factor 100
 - → Surface form deviation must be reduced from 200µm to 3 µm Peak to Valley
- Further reduction of number of optical and mechanical components desired

Source: Mercedes Benz

FUTURE HD PIXEL LIGHT SYSTEM Hybrid aspheres

DOCTER®OPTICS

- Aspherical molded lens with polymer layers \rightarrow currently under development
- Polymer layer used for compensation of surface deviations for example caused by shrinking after cooling:
 - further increase of precision regarding surface form deviation in high volume processes
 - Reduction of time to market
- Polymer layer enables integration of additional optical functions, as for example:
 - diffractive lenses for reduction of color shift
 - micro structured diffusers
 - anti-reflection nano-structures
- Additional optical functions allow reduction of optical components in system

FUTURE HD PIXEL LIGHT SYSTEM

Lens System with increased performance and micro structured surface

- Optical system with doubled resolution (320 x 80 pixels) and reduced number of lenses, enabled by
 - Optical design with 3 molded Hybrid aspheres with polymer layers.
 - Two surfaces contain diffractive lens microstructures for color shift corrections
- Increase of optical surface accuracy by factor 100
 - → This means surface form deviations have to be reduced compared to classic headlights from 200µm to 3µm

Aspheres with diffractive surface

FUTURE HD PIXEL LIGHT SYSTEM Simulated Test Image with 3 µm PV (±1.5µm)

Simulated test image of pixel light with 320 x 80 pixels

Smallest test structures fully resolved

FUTURE HD PIXEL LIGHT SYSTEM Production results

Surface form deviation of ready molded aspherical lens Surface Deviation 200 µm 3 µm 0 µm

Surface form deviation of ready molded aspherical lens with polymer layer

- Molded aspherical lens with OrmoComp polymer layer for shrinking compensation
- Reduction of surface form deviation from 180μm to 3 μm
- Left figure: Measured surface form deviation of polymer surface

Left figure: Mea form deviation

SUMMARY

- HD Pixel headlighting can more than 10.000 individual pixels
- Optical systems for the projection of the pixel matrix require precision aspheres for
 - Reducing number of optical components in system
 - Getting compact optical systems non-bulky
 - Very good optical performance and very good temperature stability
- Precision ready molded aspheres enable high volume production at reasonable cost
- Hybrid aspherical lenses with polymer layers enable an increase of surface accuracy and allow often a reduction of optical components.

Optical and Mechanical Design

Ready Molded of Polymerand Glass Lenses

Systems

Hagen Schweitzer E-Mail: <u>hagen.schweitzer@docteroptics.com</u> Phone: +49 36481-27-173

Assembly of Optical