DVN WORKSHOP Assisting Nighttime Driving with Driver & Occupant Monitoring Systems

09/21/2021

Benjamin Chevallier – Innovation Manager Enrique Jimenez – EE Business development

ANTOLIN

2 Classified as

Classified as Public

Drivers receive more than 90% of the information from the road through the eyes

United States National Highway Safety Bureau, Traffic safety, 1969

About 46% of deathly incidents occur during nighttime, despite of having 60% less traffic

NHTSA, Traffic safety facts, 2020

Drivers **average age increases day by day**, and so their visual problems The 65+ age group has the largest crash fatalities compared to other age groups

NHTSA, Traffic safety facts, 2020

More than 10% of road kills are caused by driver distraction

NHTSA, Distracted driving, 2020

classified as Public

Safety assistance features for driving experience enhancement

For most of the causality factors, there are technological solutions

Classified as Public

Safety assistance features for driving experience enhancement

WHY MONITORING THE DRIVER? How to Save Lives in Nighttime Driving

Strategic partnership with CIPIA in 2019

to offer complete solutions integrating Driving & Occupant monitoring systems.

- A sophisticated algorithm allows to monitor physiological and cognitive states of the driver via a camera system.
- The DMS is based on a camera system which allows:
 - The detection of the physical driver conditions (Anxiety, drowsiness...)
 - Recognition, even with partial occlusions (Mask, sunglasses...)
 - Perform in any driving conditions (Day or Nighttime)
- Camera positioning & system integration

Grupo Antolin, as a global supplier of solutions for the interior of the car, is the **ideal partner for monitoring solutions**

DVN WO

DVN WORKSHOP: Assisting Nighttime Driving with DMS & OMS

Safety assistance features for driving experience enhancement

WHY MONITORING THE DRIVER How to Save Lives in Nighttime Driving

- Works constantly during the driving experience.
- Monitoring system performing by nighttime condition thanks to infrared lighting
- Driver monitoring technology offers different use cases and benefits:

Safety control: detection of the physical driver conditions
Onboard comfort management via ID face recognition and AOI
Sensor substitution possibilities (occupancy, hands on wheel, seat belt)

• The EU Safety Regulation is a strategic trigger for the implementation of the DMS

EuroNCAP: Adoption of monitoring camera or radar system to comply with the highest safety rating for the EuroNCAP.

European parliament:

Driver Availability Monitoring mandatory from 2024 onwards in Europe

With proper camera selection and algorithms, the DMS can become an all-condition pupil monitoring system

Current portfolio includes lighting systems to control infrared LEDs for automotive camera systems and proper cabin illumination

Numerous Years of experience in lighting simulations

ANDIVS - Adaptive Night Driving Improved Vision System

Proactively actuating on visual condition: driver monitoring & ANDIVS

Driver monitoring camera + control unit + algorithms for interior light control ANDIVS is able to improve drivers' night vision by tackling the **main challenges** of night driving lighting conditions.

Loss of visual acuity

Traffic signs misinterpretation

Lack of perception of shapes

Increased response times

Visual aberrations

ANDIVS - Adaptive Night Driving Improved Vision System

ANDIVS TECHNOLOGY DESCRIPTION

Enhance vision in scotopic / mesopic conditions through the promotion of an adequate pupil response to each driving scenario and driver profile, in real time.

- Diffuse light source (Wavelength / Wave form / Light intensity)
- Pupil monitoring system (through DMS camera)
- Proprietary algorithm-based control system

lassified as Publi

DVN WORKSHOP: Assisting Nighttime Driving with DMS & OMS

ANDIVS - Adaptive Night Driving Improved Vision System

ANDIVS PROGRAM KEYPOINTS

Developed with the Institute of Applied Ophthalmo-biologics at Valladolid University (Spain)

- Large statistical population covering main groups of interest (age, gender, laser surgery, intraocular lenses...)
- Physical simulator design and construction
- Real visual scenarios selection and reproduction
- Objective / subjective proprietary tests
- Proprietary measurement and control algorithms
- Real time adaptation through continuous pupil monitoring

ANDIVS - Adaptive Night Driving Improved Vision System

ANDIVS PROGRAM CONCLUSIONS

- Overall average improvement in every group of interest
- Significant decrease in **pupil diameter** sustained over time achieved
- Distortions: very significant improvement in 47% of the population
- Shape appreciation: very significant improvement in 32% of the population
- Confirmation of conclusions in **real environment** on going
- Additional research program: Non Visual light effect

Contrast sensitivity

Significant improvements obtained in every group of interest.

in f y 🖻

- www.grupoantolin.com
- ⊠ benjamin.chevallier@grupoantolin.com

