

Innovate. Explore. Discover

Techshot, Inc.

Success in Space

Over the past 30 years, Techshot equipment has flown aboard parabolic-flight aircraft, suborbital rockets, space shuttles, Northrop Grumman Cygnus cargo vehicles, SpaceX Dragon capsules and the International Space Station.

Research and Manufacturing

- Materials Research
- Bone Densitometry
- Rodent Research
- Squid Research
- Cell Research (including stem cells)
- Protein Crystal Development
- C. elegans Research
- Drosophila Research
- Colloids Research
- •3D tissue/regenerative medicine
- Plant Research
- In-space 3D metal and electronics manufacturing
- In-space cell differentiation and expansion

Recent Flight-qualified Techshot Payloads

Bone Densitometer

ADSEP

MVP #2

MVP #1

3D BioFabrication Facility

PONDS

Bone Densitometer

tech\$hot ADvanced Space Experiment Processor **ADSEP**

- Multi-purpose payload
- Temperature and gas monitoring and control
- Remote operation
- Cameras
- Many types of experiment cassettes

Cell culturing, rotating bioreactor

C. elegans, Fluid Processing, Bacteria, squid, etc.

3D BioFabrication Facility



The Techshot 3D BioFabrication Facility (BFF) is the first-ever American 3D printer capable of manufacturing thick complex human & animal tissue in the microgravity condition of space.

Multi-use Variable-g Platform

- Dual 390 mm rotors, simultaneous 0-2g
- Thermal and gas control
- •12 sample modules, each with video capability
- Cell culturing (adherent and suspended)
- •Drosophila, C. elegans, fish, protein crystals, plants, etc.
- •Rotors and sample modules removable on orbit.

Multi-use Variable-g Platform

A Few MVP experiment module examples

Tissue Chips

Plant seedlings

Bacteria

Drosophila

Cement

Human cells

techshot Passive Orbital Nutrient Delivery System

Passive Orbital Nutrient Delivery System

Next generation on-orbit plant growth device

Developed with Tupperware

Plants grow in arcelite, large reservoir provides water/nutrients

techshot Techshot-managed payloads

Advanced Plant Habitat

tech\$hot Techshot-managed Payloads

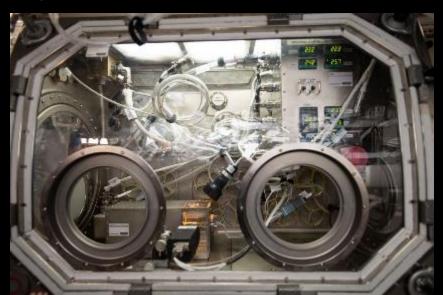
PFMI Furnace


Pore Formation and Mobility Investigation

SUBSA Furnace

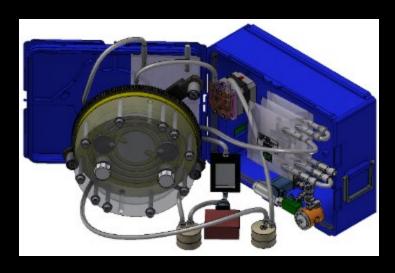
Solidification Using a Baffle in Sealed Ampoules

PFMI Thermal Chamber


SUBSA Thermal Chamber

Recent SUBSA Experiment

BRazing of Aluminum alloys IN Space (SUBSA-BRAINS)


- Understanding and control of:
 - the capillary flow features of the brazing alloy, and,
 - the extent of the weakening of the joint by remaining voids are examples of the key phenomena which may impact brazing/repair in microgravity, and these phenomena are studied in this project.

Cell Factory

In-work now

- •Continuously manufacture large quantities of a variety of extremely high-value cells needed in space and on Earth for:
 - Research
 - Cell therapies
 - •Regenerative medicine
 - Biomanufacturing with the Techshot BFF and other platforms

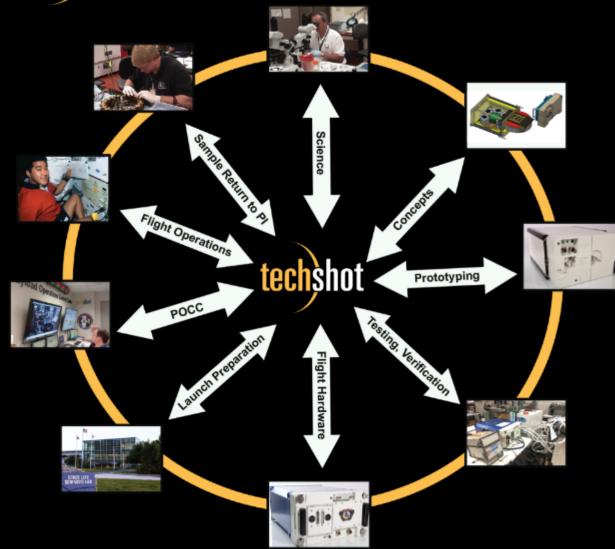
Techshot FabLab

In-work now

- All-in-one solution
- Additive manufacturing
- Subtractive manufacturing
- •3D printing
 - Metal
 - Electronics

Bone Densitometer

"Flybilization"


We make your device work in space

Bone Densitometer

Our Continuum of Service

Techshot takes care of all aspects of a space research campaign for its customers.

Office Locations

Indiana Florida

Greenville (metro Louisville, KY)

Kennedy Space Center

Payload Operations Control Center

Each Techshot location includes its own "Mission Control", where company scientists and engineers monitor and control their space-based equipment, speak directly with astronauts in space, and watch the experiments as they take place in real time.

Key NASA agreements

Space Act Agreement

 Allows Techshot to operate commercially aboard the ISS, includes transportation, crew time

IDIQ Contract

 Pre-negotiated pricing menu for NASA use of Techshot hardware and services

REMIS Contract

 Besides its own equipment, Techshot also manages NASA's Advanced Plant Habitat and two space-based materials-science research furnaces through REMIS.

Founders/Owners

Techshot was founded in 1988 by John Vellinger (left) and Mark Deuser (right).

The company develops, owns and operates its own extensive catalog of research and manufacturing equipment in space.

Techshot is very vertically integrated. From design, to fabrication, assembly, test, validation, verification and integration, all tasks are performed by the company's own internal mechanical, electrical, and software engineers.

Customers include U.S. federal agencies, universities and international commercial companies.

www.Techshot.space

rboling@Techshot.com