

Shaping Energy for a Sustainable Future

**Institut de Recerca en Energia de Catalunya
(IREC)**

CERCA
Centres de Recerca
de Catalunya

ACCIÓ
Generalitat
de Catalunya
T tecnio
catalonia
Visoriat 50/2020

INTRODUCTION

Mission

Contribute to the **sustainable development** of society and enhance corporate **competitiveness** via:

- Innovation and the development of new technological products
- Mid- and long-term research
- Dissemination of scientific knowledge to citizens

Vision

Become a **centre of excellence** and an **international benchmark** organization in the energy field through **research, development and innovation**, working in coordination with the administration, the industry and the academia.

ORIENTATION

CERCA Research Centre, with a TECNIO accreditation.
IREC has a dual approach:

Market orientation

Market Orientation focusing on **technology development, new products** and new **technical solutions** for energy sector companies active in the same fields as IREC's established lines of action.

Long-term research

Long-term research into different aspects of the established lines of action. It will not be initially aimed at the market, but at **generating knowledge** amongst groups in the Institute itself, with a **long-term commercial projection** in mind.

LOCATION

The IREC has three locations: Sant Adrià de Besòs, Barcelona and Tarragona.

**Sant Adrià
IREC headquarters**

Barcelona

Tarragona

BOARD OF TRUSTEES

GOVERNMENT OF CATALONIA

Departament de Territori, Habitatge i Transició Ecològica
Direcció General d'Energia
Direcció General de Recerca

GOVERNMENT OF SPAIN

Secretaría de Estado de Energía
Secretaría General de Investigación
CIEMAT (Ministerio de Ciencia, Innovación y Universidades)
IDAE (Instituto para la Diversificación y Ahorro de la Energía - Ministerio de Transición Ecológica)

UNIVERSITIES

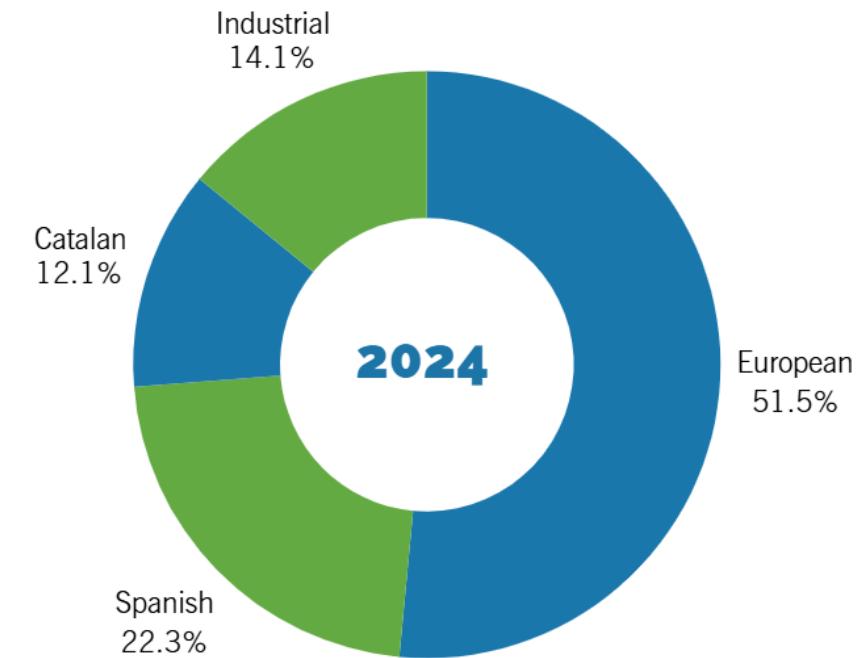
Politécnica de Catalunya (UPC)
Barcelona (UB)
Rovira i Virgili (URV)

COMPANIES

Enagás
Endesa
Naturgy

FIGURES

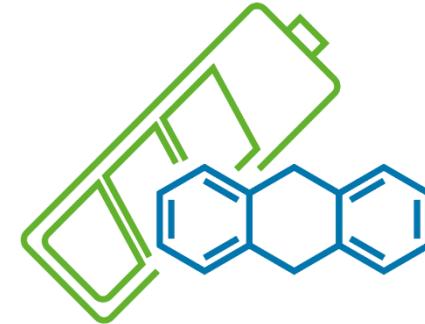
2024


total

 LEDMOTIVE
Turn on the future

 eoLos
FLOATING LIDAR SOLUTIONS

 **bamboo
energy**



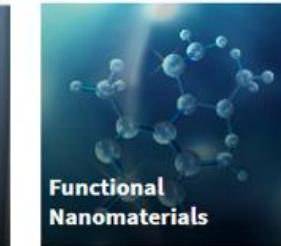
AREAS OF EXPERTISE

Energy & Environment

- Renewable energy sources and integration to the grid
- Sustainable mobility
- Fusion energy
- Environmental impact

Energy Storage

- Batteries
- Chemical storage
- Energy conversion
- Harvesting and other autonomous systems


Smart Energy Management

- Smart cities & districts
- Smart grids
- Distributed energy management and aggregators
- Energy efficiency in buildings

RESEARCH AT IREC

RESEARCH DEPARTMENTS

Solar Energy Materials and Systems

Nanoionics and Fuel Cells

Functional Nanomaterials

Energy Storage, Harvesting and Catalysis

Power Systems

Energy Systems Analytics

Climate Neutral and Resilient Buildings and Communities

SOLAR ENERGY MATERIALS AND SYSTEMS

The Dept. develops innovative cost-efficient, robust and stable technologies for **next generation advanced PV products**, compatible with **industrial deployment** and suitable for **customisation**. Looking to the **ubiquitous penetration of PV** in all the scenarios of human life.

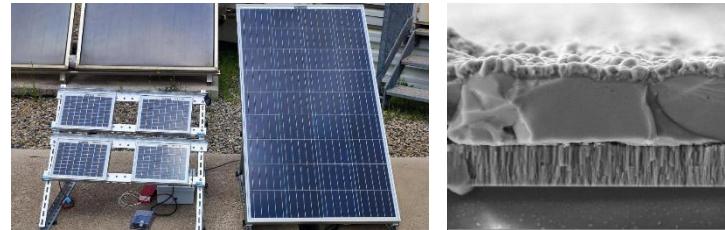
PV MATERIALS AND DEVICES

- New PV concepts and materials beyond silicon
- Research in IoT-PV and Agri-PV
- Technology testing platform
- Demonstration of industrial transferability

CHARACTERIZATION

- Materials and devices characterization
- Statistical and AI assisted data analysis

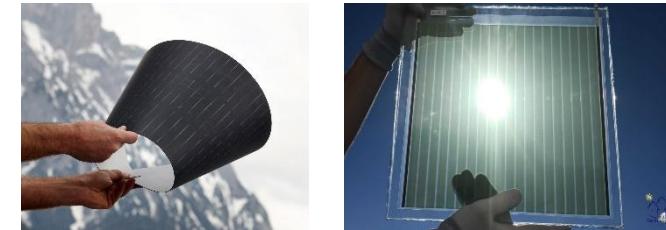
INDUSTRIAL PROCESSES


- Real-time Industrial process monitoring
- Validation of new methodologies for fast inspection
- Provide solutions for efficient processes

SOLAR ENERGY MATERIALS AND SYSTEMS

HIGHLIGHTS

HI-BITS


MATERIALS

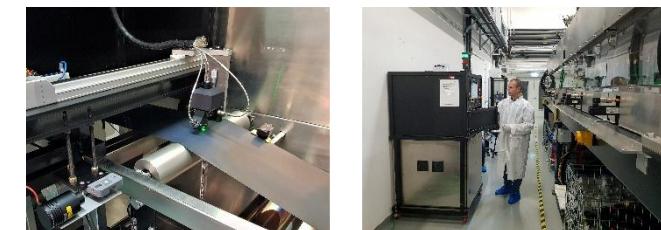
Materials without critical raw elements.
Thin film fabrication for PV applications

BIPV

BIPV

Flexible and (semi) transparent solar cells for easy integration in buildings

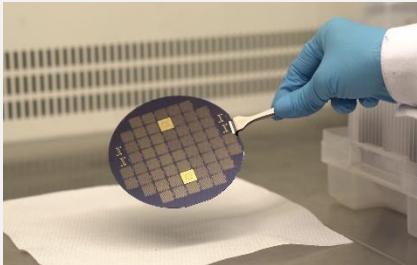
CUSTOM-ART


DEMONSTRATION

PV-integrated BIPV and PIPV prototypes under real-world operational conditions

PLATFORM-ZERO

ADVANCED CHARACTERIZATION

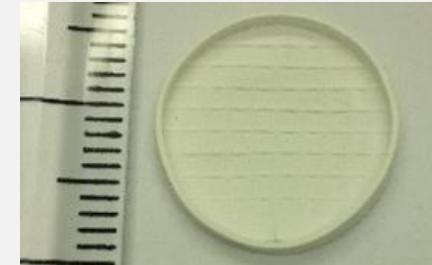

Easy process monitoring design for integration in both research and industrial lines

NANOIONICS AND FUEL CELLS

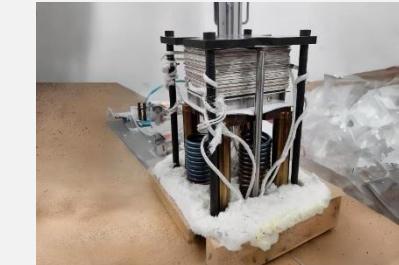
The Department aims at mastering mass transport phenomena in inorganic materials to deliver a new generation of solid-state energy devices enabled by advanced manufacturing and AI technologies.

NANOIONICS & IONTRONICS

- New concepts
- Ionic or mixed ionic electronic conduction
- Interface-dominated materials
- IoT devices
- Thermoelectrics


ADVANCED MATERIALS AND PROCESSING

- Thin films and microfabrication
- 3D printing (ceramics)
- Complex geometries
- Materials discovery by AI


ALL-SOLID-STATE-BATTERIES

- New generation of Li-ion batteries
- 3D printing and thin-film coating
- New families of highly performant materials

FUEL CELLS AND ELECTROLYSERS

- Hydrogen technologies
- 3D printing
- Syngas generation
- Power-to-gas technologies
- SOFC and SOECs
- Synthetic fuels
- AI and machine learning

NANOIONICS AND FUEL CELLS

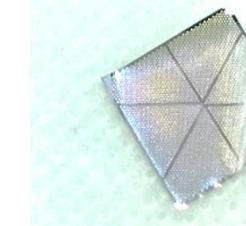
HIGHLIGHTS

H₂ TECHNOLOGIES

DEMONSTRATOR

kW range co-electrolyser for hydrogen production or CO₂ methanation

3D printing


ADVANCED MANUFACTURING

Multimaterial ceramic 3D printing of enhanced energy devices

EPISTORE

MICRO-DEVICES

Ultra-compact micro-SOC devices

HARVESTSTORE

ADVANCED CHARACTERIZATION

Novel energy and harvesting concepts in the nanoscale

FUNCTIONAL NANOMATERIALS

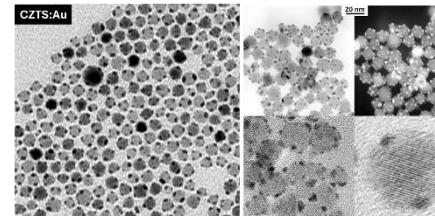
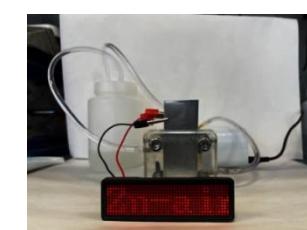
The Department designs and engineers **nanomaterials** with optimized **functionalities** and applies them in **energy conversion, energy storage and environmental remediation products**.

NANOMATERIALS DESIGN

- DFT design
- Solution-based synthesis
- Surface chemistry
- Nano-to-macro processing
- Scale-up and recycling

BIO MASS-DERIVED PRODUCTS

- Added value chemicals
- Coupled redox reactions
- New electrocatalysts
- Strategies for product separation/purification
- Viability and cost analysis



BATTERIES AND SUPERCAPACITORS

- Catalysts optimization
- Metal-air, metal-S batteries
- Solid-state electrolytes
- Li, Na, Zn, Al, Mg-based batteries
- Battery pack demonstrators

FUNCTIONAL NANOMATERIALS

HIGHLIGHTS

UNION	PROTOTYPE <p>New thermoelectric materials</p>	SYDECAT MATERIALS <p>Photocatalysts</p>
2BOSS	PROTOTYPE <p>High entropy alloys as oxygen catalysts in Zn-Air batteries</p>	PROTOTYPE <p>Metal-sulfur batteries</p>

ENERGY STORAGE, HARVESTING AND CATALYSIS

Divided into 2 groups: The **Battery Materials** group develops new electrode materials, components, and electrochemical storage systems. The **Sustainable Fuels** group focuses on catalytic technology development, from the synthesis of specific catalysts, the reactor design and prototyping until on-site validation.

BATTERY MATERIALS

- Electrode and battery cell fabrication
- Lithium battery chemistries
- Post-lithium batteries
- Supercapacitors
- In-situ studies
- Ageing and postmortem analysis

SUSTAINABLE FUELS

- Development of catalysts
- Design and prototyping of reactors
- Validation of technology on-site

ENERGY STORAGE, HARVESTING AND CATALYSIS

HIGHLIGHTS

COBRA

PROTOTYPE

Co-free Li-ion battery for next generation electric vehicles

BIOMETHANE

PILOT

Validation of biogas to synthetic natural gas reactor in a rural environment

FISCHER-TROPSCH

PROTOTYPE

Fischer-Tropsch reactor for CO₂ conversion to synthetic liquid fuel

SOLAR HYDROGEN

DEMONSTRATOR

Photoelectrocatalytic demo site for the generation of solar hydrogen

The Department aims to provide technical solutions (software and hardware) for the challenges of future electric grid, bringing innovation in aspects for a secure, resilient and RES-based electric system.

CYBER-PHYSICAL SYSTEMS

- LORA-technologies
- CyberSecurity
- PMU Systems
- Energy Cloud-based platforms
- Hardware development

OFFSHORE RENEWABLE ENERGY

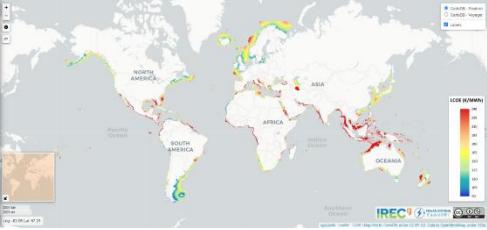
- LCOE and LCA estimation
- Modelling of floating Systems
- Digital twin for O&M
- Advanced control (local and coordinated)

POWER ELECTRONICS

- Modelling and optimal design
- Multilevel converters
- Prototyping and test
- Multiport configurations and fault-tolerant

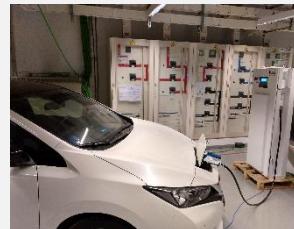
ELECTRICAL NETWORK

- State estimation & fault-location
- Resilience (risk assessment and mitigation)
- Grid operation & microgrids
- Advanced control (local and islanded)



ENERGY STORAGE

- Modelling and characterization
- Advanced BMS
- Advanced models
- Novel Integration schemes
- New battery configurations

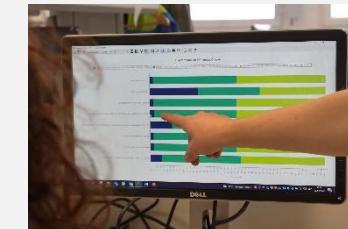

HIGHLIGHTS

RESISTO	<p>PREDICTIVE TOOL</p> <p>Helps to protect Doñana National Park towards extreme events using AI techniques</p>	FOWAPP	<p>APP</p> <p>Global map of costs for floating offshore wind energy</p>
COBRA	<p>PROTOTYPE</p> <p>Lighter and safer automotive battery system for electrical mobility</p>	CYBER-SECURITY	<p>TESTING INFRASTRUCTURE</p> <p>SDN technology to resist cyberattacks in an electrical grid system</p>

The Department, divided into 3 groups, focuses on energy system integration, the economic/social/regulatory impact assessment and the life cycle to understand how to increase reliability, reduce costs and minimize environmental impacts in our energy systems.

ENERGY SYSTEM INTEGRATION

- Intelligent energy management
- Integration of sustainable mobility
- Data science for management of energy
- Battery management


ENERGY ECONOMICS, SOCIAL®ULATORY IMPACT ASSESSMENT

- Policy and regulation research
- Techno-economic analysis
- Socio-economic evaluation
- Market and consumer behaviour dynamics
- Energy poverty
- Risk assessment

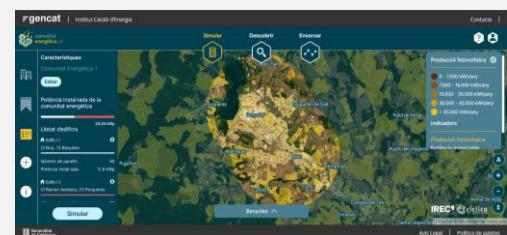
ENERGY TECHNOLOGIES, LCA AND SUSTAINABILITY

- Life cycle assessment and costing (LCA-LCC)
- Social life cycle assessment (S-LCA)
- Carbon footprint
- Eco-design
- Circular economy

HIGHLIGHTS

REFER	ANALYSIS Carbon footprint analysis of the biomethane reactor at the company Ahidra	ANALYSIS LCA to describe the environmental performance, KIPs for recyclability and the Energy Payback Time
PILOT PLANT	 Second life EV battery integration in the self-consumption system of a public library (Montgat)	PILOT PLANT Optimal EMS for NISSAN headquarters (BCN) with vehicle-to-grid chargers, storage systems and PV

The REACT Department aims To develop technological solutions, methodologies and provide simulation tools that will allow **buildings and urban areas** to contribute to the energy transition in our society, with a special focus on the requirements of **Mediterranean climate**.


URBAN SIMULATION

- Positive Energy Districts
- Simulation tools (2D or 3D)
- Tools for decision-makers and citizen engagement
- Assessment methodologies for cities
- Sustainability and business scenarios

BUSINESS MODELS

- Policies and business models
- Local/regional decarbonization pathways
- Large-scale granularity
- Mitigation and adaptation to climate change

INDOOR AND ENVIRONMENTAL QUALITY

- Evaluation of impacts in buildings and urban areas
- Quantification of social and economic benefits
- Support policymakers
- Empowerment of population
- Well-being of citizens

ENERGY FLEXIBILITY

- Advanced control strategies for complex systems
- Multiple energy sources, vectors and factors
- Improve efficiency and lifetime of HVAC systems

CLIMATE NEUTRAL AND RESILIENT BUILDINGS AND COMMUNITIES

HIGHLIGHTS

WEDISTRICT	DEMONSTRATOR <p>Waste heat recovery of fuel cell powered data centre</p>	ARV <p>DEMONSTRATOR Sustainable Plus Energy Neighbourhoods (SPEN)</p>
SOM COMMUNITAT	APP <p>Web-service platform able to unveil the potential energy communities</p>	CCF <p>TESTING Monitoring indoor environmental comfort in sports facilities to help reducing energy use</p>

LABORATORIES

MATERIALS LABORATORIES

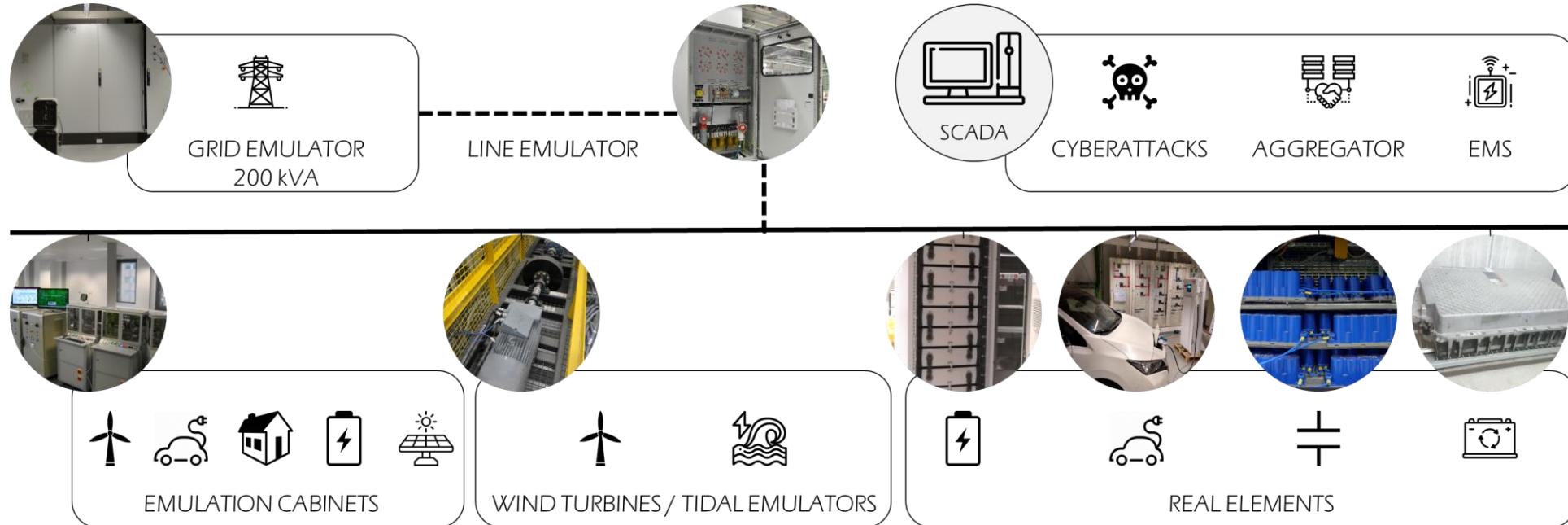
Nanoionics and Fuel Cells lab:

- Nanostructures and thin film oxides-fabrication and characterization
- Advanced oxide materials and devices-fabrication and characterization, including large area PLD, CVD and a ceramic 3D printer
- Electrochemical characterization, from microdevices to kW-stacks

Functional Nanomaterials lab

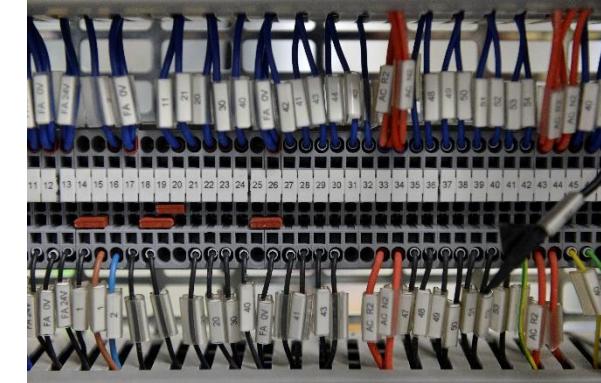
- Nanomaterials engineering: colloids, thin films, nanocomposites, gels, aerogels
- Electrocatalytic, photocatalytic and catalytic materials and tests
- Charge and thermal transport characterization
- Nanomaterial-based energy storage and conversion devices

Energy Storage, Harvesting and Catalysis lab:

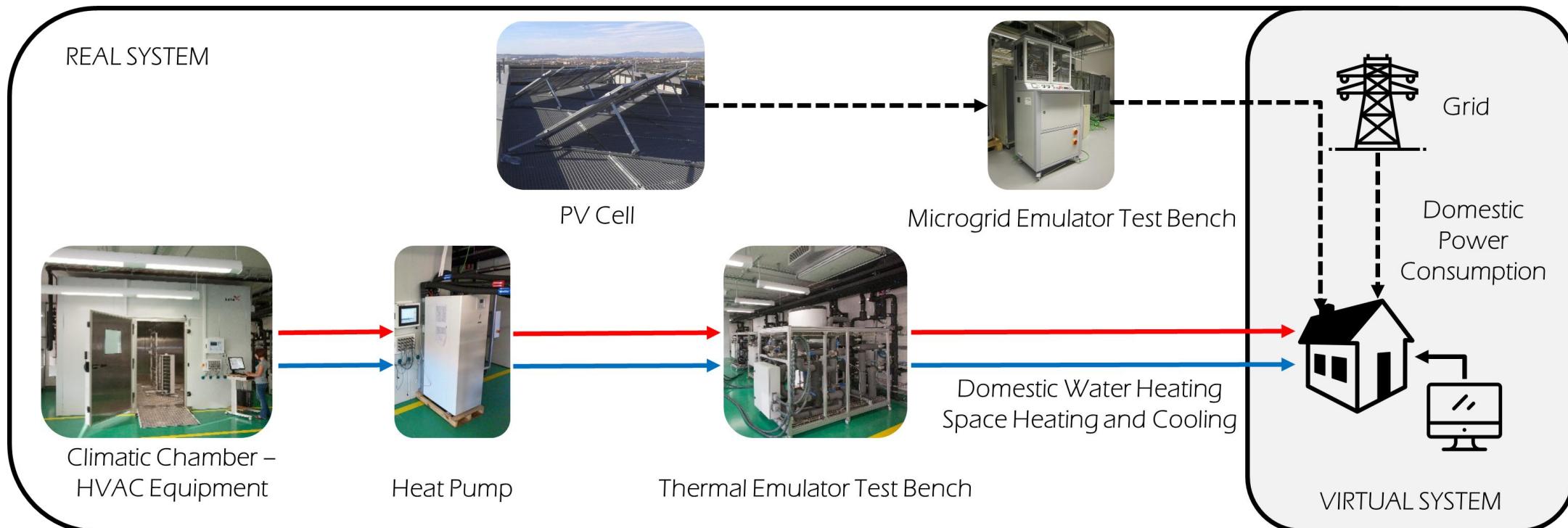

- Electrode/catalyst fabrication and thin film deposition
- Battery fabrication, assembly and testing
- Electrochemical and photoelectrochemical testing
- Catalytic reactors and reactor modelling (CFD)

Solar Energy Materials and Systems lab:

- Thin film processing
- Advanced characterization
- Prototyping and integration
- Optical workshop


ENERGY SMARTLAB

The laboratory is equipped with communication and electric infrastructures as a part of a flexible low voltage microgrid testing environment, which could work in either a centralized or distributed topology.



CAPABILITIES

- Control and communications architectures enable to test and validate Energy Management Systems (EMS), aggregator management strategies and emulate cyberattacks. Energy SmartLab and SEILAB are connected to test policies and management strategies at district level
- The grid emulator allows the test of faults, dynamics, islanded operation and perform power hardware-in-the-loop
- Set of emulator cabinets that can reproduce the electrical behaviour of generators, storage systems and consumers
- Rapid prototyping and validation of electric equipment
- Design, development and deployment of devices to monitor and control energy consumption, generation and storage

The **Semi-Virtual Energy Integration Laboratory (SEILAB)** provides advanced expertise to assess the development and integration of renewable energy solutions and innovative thermal and electrical equipment that are designed to improve energy efficiency in buildings and energy systems.

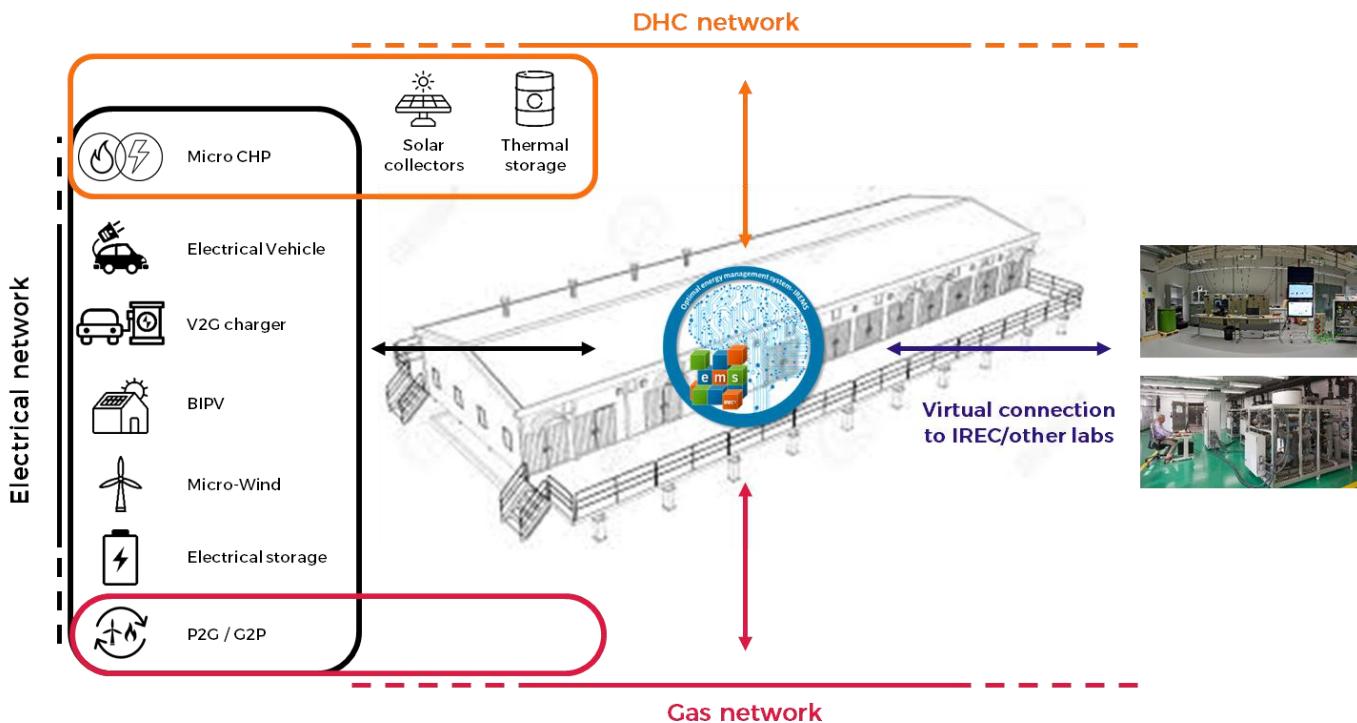
CAPABILITIES

- Semi-virtual testing approach: operation of real equipment as a function of dynamic virtual models
- Testing the performance of components or complex energy systems under defined building and environmental conditions
- Development and integration of innovative, sustainable and renewable building energy supply systems: thermal solar systems, photovoltaics, micro-cogeneration, energy storage, heat pumps and other HVAC equipment
- Analysis of equipment behaviour at particular transient phases
- SEILAB and Energy SmartLab are connected allowing to test aggregator policies and management strategies for districts

STRATEGIC INITIATIVES

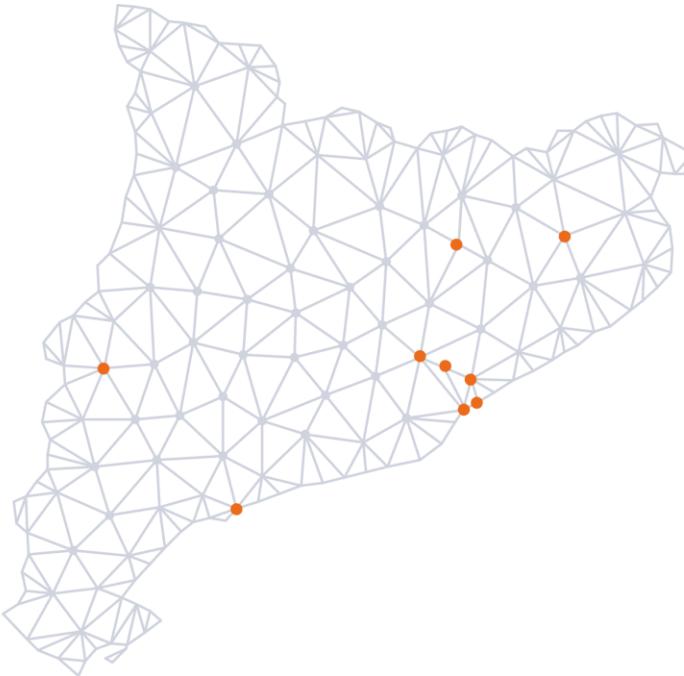
PLEMCAT will offer an area in the Mediterranean Sea, within LEBA-I, with a laboratory for testing and validation of **floating wind power, marine energies** and other related research activities, as well as the study of the **impact on the marine environment** of these types of installations.

It is led by IREC and with the support of the Generalitat de Catalunya.


Plemcat will:

- shed light over the offshore energy projects in the Mediterranean
- attract talent, investment, knowledge and research opportunities
- position Catalonia as a reference in offshore energy

[LINK](#)



R+D+I platform for the energy transition led by IREC that aims to transform the energy sector through research, development, commercialization and deployment of low carbon, energy efficiency and renewable energy technologies .

ENERGY FOR SOCIETY NETWORK

Leader:

participants:

collaborators:

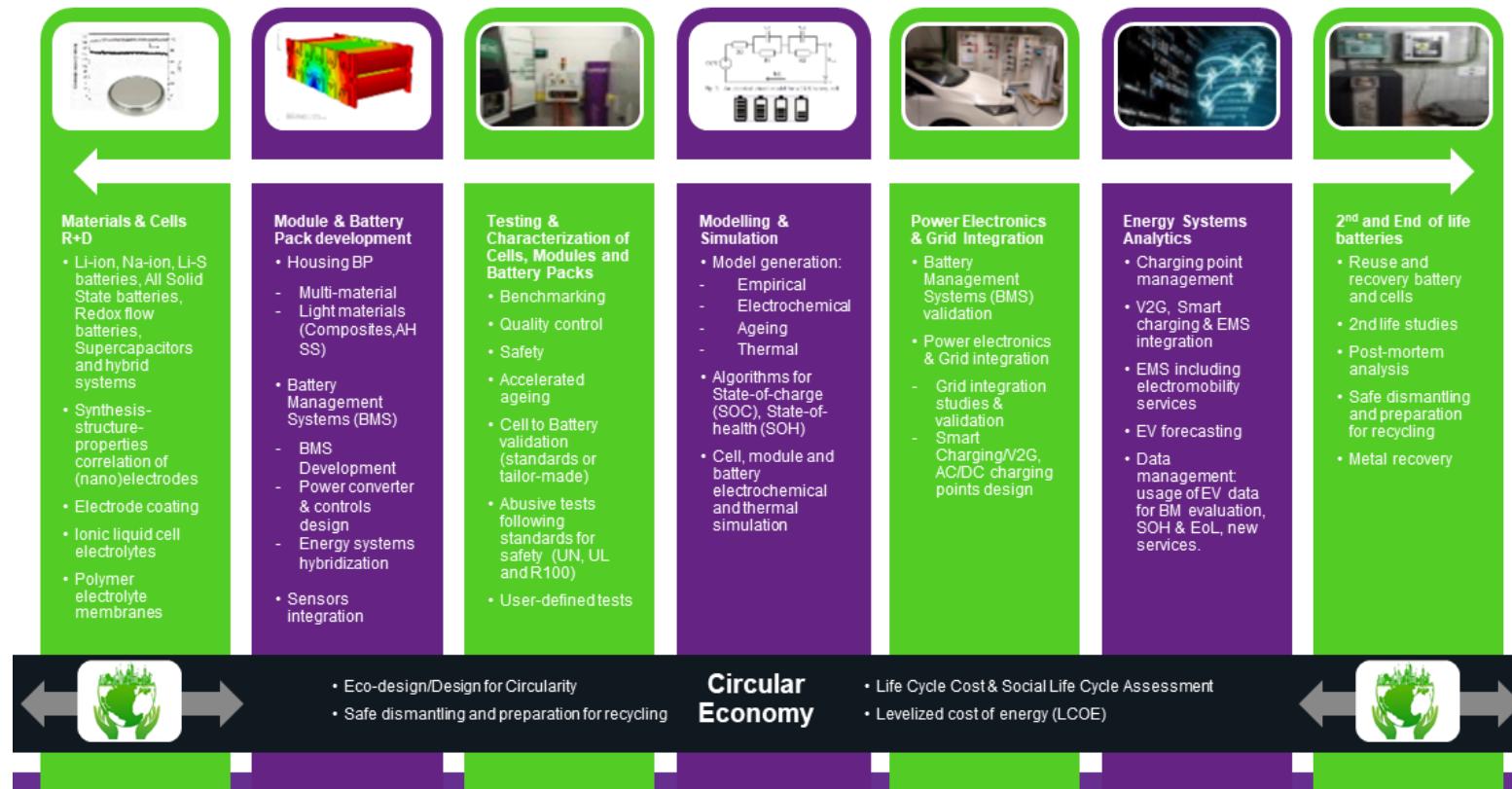
Mission

Promote the technology transfer and valorisation of energy technologies to industry and society.

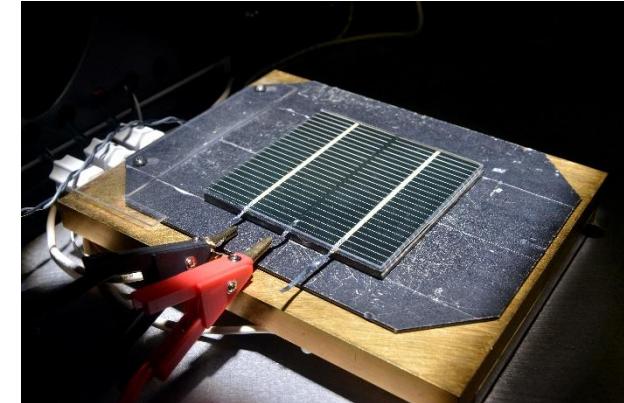
The mission is to increase the impact of the technology transfer to the productive and social sector in Catalonia; and convert XRE4S in a pool of innovation in energy at international level.

Valorisation and tech transfer program

Activities


PROMOTION

SCOUTING & ASSESSMENT


MATCHMAKING

TRAINING

Joint Research Unit between IREC and EURECAT - a reference center to cover all the R&D&i of the **battery ecosystem in southern Europe**, which includes research, development and innovation of the entire value chain of the next generation of **electric cells and batteries for the markets of electric mobility, renewable energies and capital goods**.

- Strategic research alliance between SEMS Dept. from IREC and MNT Group from UPC
- Strengthen **R+D activities** in the development of **new solar technologies** exploiting the strongly complementary in skills, know-how and infrastructure available at both groups
 - Emerging cost-efficient thin film PV sustainable technologies
 - New device architectures for advanced PV integration concepts
 - New methodologies for advanced characterization of devices and processes using machine learning and Artificial Intelligence strategies.

TECHNOLOGY TRANSFER

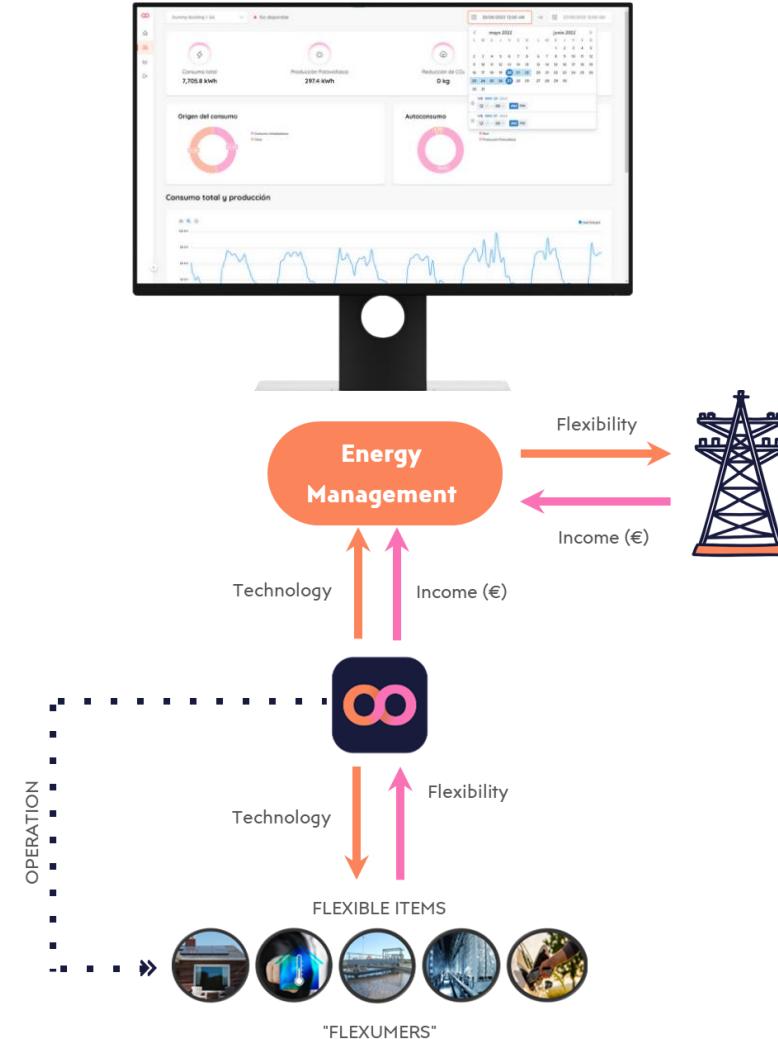
POSITIONING

ACTIVE PARTICIPATION

In national and international associations and platforms

ECOSYSTEMS LEADERSHIP

Large R+D+i, tech transfer ecosystems with more than 100 entities involved


SPIN-OFFS

BAMBOO ENERGY

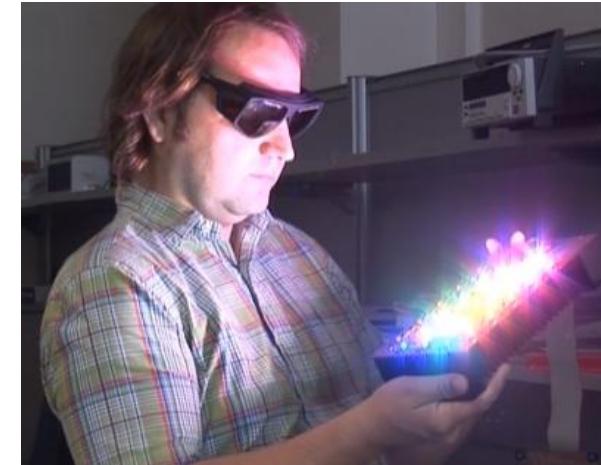
BAMBOO is a spin-off company from IREC, created in 2020. It was born to be the **software platform of choice** for demand aggregation offering a modular architecture and versatile platform.

It aims to accelerate the **energy transition**, democratize the access to cleaner and cheaper energy by providing ways to monetize the flexibility of energy assets and the integration of renewable energy sources.

bamboo
energy

EOLOS

IREC members created a spin-off company named **EOLOS FLOATING LIDAR SOLUTIONS S.L.**; set up in March 2014 with the objective of commercializing An energy autonomous system capable of taking accurate and reliable wind measurements at height of up to 200 meters at any offshore location, independent of water depth.


The system is fully energy autonomous, easy to transport and deploy, and designed to withstand the harshest offshore conditions.

As a result of research carried out in the field of lighting, the IREC has created a technology named **Ledmotive**.

The spin-off company **Ledmotive Technologies S.L.** is established, with its activity oriented towards the technological development and commercialization of Ledmotive technology wherein IREC will participate as a stakeholder.

Ledmotive ceased its activities in 2022.

Shaping Energy for a Sustainable Future

CONTACT

ktt@irec.cat

[@irec-energia.bsky.social](https://bsky.social/@irec-energia)

[@IREC_Energia](https://twitter.com/IREC_Energia)

[IREC - Institut de Recerca en Energia de Catalunya](https://www.linkedin.com/company/irec-institut-de-recerca-en-energia-de-catalunya/)

[IREC- Institut de Recerca en Energia de Catalunya](https://www.youtube.com/@IREC-Energia)

www.irec.cat