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Abstract
In this work, we propose a modular multi-modal architecture to
automatically detect Alzheimer’s disease using the dataset pro-
vided in the ADReSSo challenge. Both acoustic and text-based
features are used in this architecture. Since the dataset provides
only audio samples of controls and patients, we use Google
cloud-based speech-to-text API to automatically transcribe the
audio files to extract text-based features. Several kinds of au-
dio features are extracted using standard packages. The pro-
posed approach consists of 4 networks: C-attention-acoustic
network (for acoustic features only), C-Attention-FT network
(for linguistic features only), C-Attention-Embedding network
(for language embeddings and acoustic embeddings), and a uni-
fied network (uses all of those features). The architecture com-
bines attention networks and a convolutional neural network (C-
Attention network) in order to process these features. Experi-
mental results show that the C-Attention-Unified network with
Linguistic features and X-Vector embeddings achieves the best
accuracy of 80.28% and F1 score of 0.825 on the test dataset.
Index Terms: Alzheimer’s disease, Multi-Modal Approach,
CNN-Attention network, Acoustic feature, Linguistic feature

1. Introduction
Alzheimer’s Disease (AD) is a neurodegenerative disease that
is the most common form of dementia and continual cognitive
impairments [1]. The number of cases is increasing rapidly ev-
ery year so that AD has become a non-negligible social public
health problem. Therefore, early diagnosis of AD is an essential
task and has attracted much attention in recent years.

The ADReSSo challenge at INTERSPEECH 2021 defines
a shared task through which different approaches to target the
automatic detection of AD [2] can be proposed. The ADReSSo
challenge provides only audio data of patients extracted from
the Pitt Corpus [3].

Our approach uses both the audio features directly extracted
from the audio files and linguistic and other language-based
features extracted from the transcribed version of the same au-
dio file. Literature suggests that speech impairment is a com-
mon and significant sign of AD even at the early stage of de-
mentia [4, 5]. Therefore, some speech characteristics, such as
speech vagueness and abnormal pauses, can function as an im-
portant bio-marker. These features in patients’ speech can pro-
vide useful information about the cognitive status and other as-
pects related to the level of brain health [6]. Further, studies
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have shown that several lexical or syntactic features and in-
creases in conversational fillers or non-specific nouns are also
indicators of AD [7, 8]. Consequently, Natural Language Pro-
cessing (NLP) methods can be applied to extract linguistic fea-
tures from text data [9] and used in the detection of AD [10, 11].
Existing AD classification methods can be divided into three
categories depending on the types of features used: leveraging
raw audio data or acoustic features using linguistic features de-
rived from text or a combination of acoustic features and lin-
guistic features to detect AD. We have taken the third approach
here. The main contributions of this work are as follows: 1) a
CNN-attention Network (C-Attention Network) for automated
detection of Alzheimer’s disease. 2) a method to integrate fea-
tures extracted from both text and audio.

2. Related Work
Automated detection of Alzheimer’s disease has a long his-
tory of research. In early automated AD detection work, re-
searchers attempt to quantify the impairments by using compu-
tational methods [12]. They first construct or extract different
features from the different data sources and then apply tradi-
tional machine learning methods to detect Alzheimer’s disease.
These features can be divided into two categories: linguistic
features and acoustic features. Linguistic features including
part-of-speech (POS) tag frequencies, measures of lexical di-
versity were extracted and a linear discriminant analysis or other
classifiers were used to identify AD patients [12, 13]. Acous-
tic features such as mel-frequency cepstral coefficients (MFCC)
and low-level descriptors (LDD) were used in [14]. Then, the
combination of both acoustic and linguistic features based ma-
chine learning approaches were proposed to automatically de-
tect AD [15, 16]. These studies have shown that the methods
of combining different types of features have better detection
accuracy compared to using features separately.

In recent related research work, the INTERSPEECH 2020
ADReSS challenge provides a baseline paper, which sum-
marized many useful acoustic features [17], including em-
boase [18], ComParE [19], eGeMAOS [20] and MRGG [21]
and followed it with machine learning methods such as Lin-
ear Discriminant Analysis (LDA), Decision Tree (DT), Support
Vector Machine (SVM) and Random Forests (RF) to detect AD.
In ADReSS 2020 challenge, the work [22] utilized two acous-
tic features, IS10-Paralinguistics feature set from ComParE and
Bag-of-Acoustic-Words (BoAW), to achieve a good classifica-
tion accuracy [22]. Cummins et.al proposed an end-to-end con-
volutional neural network to directly classify AD [23]. Pan
et.al considered the problem of audio data quality and they ap-
plied ASR techniques to identify high-quality speech segments



for more robust feature extraction to improve detection perfor-
mance [24]. Some researchers obtain latent features from lan-
guage embeddings and used the attention mechanism to achieve
better performance on text data [6, 9, 25]. A multi-modal ap-
proach that fused acoustic and linguistic features was proposed
in [26]. In that work, the author used dual-LSTM architecture,
one for audio feature and another for text feature. A gating
mechanism was used to fuse the two for the final classifier.

3. Proposed Approach
In this section, we introduce the acoustic and linguistic feature
sets we use and propose a modular multi-modal architecture to
classify AD from non-AD controls.

3.1. Acoustic and Linguistic Feature Sets

3.1.1. Acoustic Features

We used open source audio processing toolkits, OpenS-
MILE [18] and Kaldi [27], to obtain four different acoustic
features from the raw audio file, which are Emobase [18],
IS10 [19], VGGish [28] and X-Vector [29]. Specifically,
Emobase and IS10 are frame-level acoustic features. VGGish
and X-Vector are acoustic embeddings. Frame-level features
are directly extracted from audio files and these features cap-
ture the frequency characteristics and other statistical informa-
tion. Different from frame-level features, embedding features
are not directly derived from the audio data. The embedding
features are from the embedding model, where the embedding
model will generate a vector to represent the characteristics in
audio data. The embedding model is a deep neural network and
pre-trained on large audio datasets. We used these pre-trained
embedding models to extract features. Here are the specific de-
scriptions for different feature extraction processes:
Emobase: The Emobase feature set has abundant audio
features which include mel-frequency cepstral coefficients
(MFCC) information, fundamental frequency (F0), F0 enve-
lope, line spectral pairs (LSP), and intensity features.
IS10: The IS10 feature set includes many frame-level features:
16 types of LLDs, PCM loudness, eight log Mel frequency band
(0-7), eight line spectral pairs (LSP) frequency (0-7), F0 enve-
lope, voicing probability, jitter local, jitter DPP, and shimmer
local and more MFCC features.
VGGish: This is an acoustic embedding model which is pre-
trained on YouTube’s Audio dataset [28]. The architecture of
VGGish is a CNN-based structure and similar to VGG. The
VGGish embedding model extracts and transforms the audio
features into semantic and meaningful high-level feature vec-
tors with 128 dimensions.
X-Vector: X-vector is a deep neural network-based audio em-
bedder, widely used in the field of speech recognition [29, 30].
We employ x-vector to represent audio features from raw audio
files. The neural network that produces the x-vector consists
of three components: the frame-level layers to extract repre-
sentation from MFCC, a statistics pooling layer which receives
output from the last frame-level layer and a segment-level layer
that follows the statistics pooling layer to generate the x-vector.
Specifically, we obtain the x-vector features according to the
following steps: 1) First, all raw audio files are normalized and
re-sampled to 16,000Hz and 16-bits by using SOX audio pro-
cessing software; 2) Second, we compute the x-vector for each
audio segment by using Kaldi that uses the SER16 pre-trained
x-vector model. The SER16 pre-trained model is trained on
Switchboard, Mixer 6, and NIST SERs datasets [29, 30]; 3)

Third, we convert x-vector to a binary file to make it easier for
our proposed model to read.

3.1.2. Features from Transcribed Text

We used Speech-to-Text API 1 provided by Google cloud to
automatically transcribe speech recordings. Then based on the
transcripts, we extracted linguistic features and sentence em-
beddings.
Linguistic Features: We used two tools to generate linguistic
features: 1) Like [2], we converted transcripts into CHAT for-
mat, then ran EVAL and FREQ commands in CLAN [31] to
generate a composite profile of 34 measures and Moving Aver-
age Type Token Ratio [32]; 2) we generated 22 Part-of-Speech
tags using NLTK [15]. After removing all-zero and duplicate
features, 50 linguistic features in total were extracted.
Sentence embeddings: We used Universal Sentence Embed-
ding (USE) [33] to represent each sentence in the context.

3.2. Proposed Architectures: C-Attention Networks

We propose a modular multi-modal architecture consisting of
three standalone networks. The architectures are shown in
Fig 1. The left-hand side leg processes acoustic features, such as
Emobase and IS10 features, and is called C-Attention-Acoustic
Network. The middle leg processes linguistic features, and
is called C-Attention-FT Network. The right-hand side leg
processes embedding features, such as USE, VGGish and X-
Vector, and is called C-Attention-Embedding Network.

Figure 1: The proposed architecture of C-Attention-Acoustic
Network, C-Attention-FT Network and C-Attention-Embedding
Network. The C-Attention-Acoustic Network uses acoustic fea-
tures, the C-Attention-FT network uses the linguistic features,
and the C-Attention-Embedding network uses embeddings of
the patient/control’s recordings.

1https://cloud.google.com/speech-to-text



Figure 2: The Architecture of Unified C-Attention Network for
Acoustic Features, Linguistic Features, and Embeddings

3.2.1. C-Attention Acoustic Model

This architecture (C-Attention Acoustic Network) is depicted
on the left-hand side of Figure 1. The C-Attention Acoustic
Model comprises of a multi-head-attention (MHA) module to-
gether with a dilated convolution layer [34, 35]; followed by
a 1-D CNN layer and a softmax layer. We used the same
MHA module and the encoder structure of the transformer that
was proposed in [36]. Let R = {r1, r2, ..., rn} be the set of
speech recordings, then ri is the ith record in the dataset. We
extract acoustic feature sets presented in Sec 3.1.1 and gener-
ate the acoustic feature vectors, Let F = {F1, F2, ..., Fn} be
the set of acoustic feature vectors, and Fi be the ith vector in
the acoustic matrix. The MHA transforms the feature matrix
F = {F1, F2, ..., Fn} to another matrix of n-dimensional vec-
tors A = {A1, A2, ..., An}. After each MHA module, we use
a dilated convolution layer to further distill the MHA matrix
A = {A1, A2, ..., An} to half its original size. This is done
to reduce the dimensions of the acoustic features which are too
large for the attention mechanism to capture interactions well.
This procedure forwards from jth layer into (j + 1)th layer as

Xj+1 = MaxPool (ELU (Conv1d (Xj))) (1)

Where the Conv1d(·) performs a 1-D convolutional filters and
ELU(·) [37] is the activation function. The MHA and dilated
CNN module is followed by a 1-layer CNN and a softmax layer
to get the final classification.

3.2.2. C-Attention FT Model

This architecture (C-Attention FT Network) is depicted in the
middle of Figure 1. It is proposed to capture the interaction
among linguistic features. This architecture is similar to the
proposed C-Attention (Sec 3.2.1) except for the removal of di-
lated CNN layer.

3.2.3. C-Attention Embedding Model

This architecture (C-Attention Embedding Network) is depicted
on the right-hand side of Figure 1. We propose this architecture
as a means of capturing latent feature information implicit in

embeddings. This architecture is similar to the proposed C-
Attention (Sec 3.2.1) except for the addition of a positional
encoding module. The positional encoding module is used to
maintain the relative positions of the embedding features and
is the same as that used in the transformer [36] architecture.
More specifically, the Audio to Text layer is only applied to text
embeddings and the dilated convolution layer is only used on
X-Vector embeddings.

3.2.4. C-Attention Unified Model

This architecture (C-Attention Unified Network) is depicted in
Figure 2. In this architecture, we use all three types of fea-
tures: acoustic features, linguistic features, and embedding fea-
tures. We used another attention layer to fuse the outputs from
C-Attention Acoustic Network, the C-Attention-FT network,
and the C-Attention-Embedding network followed by a softmax
layer. In order to fuse these other models together, we omit the
final softmax layers in each of the four modules.

4. Experiments
In this work, we employed four models on acoustic features,
linguistic features, and embeddings to detect AD, and evaluated
our proposed models on the ADReSSo challenge dataset.

4.1. Dataset

In this work, we employed four models on acoustic features,
linguistic features, and embeddings to detect AD, ane dataset is
a balanced sub-dataset of the DementiaBank [38] with respect
to age and gender. It consists of spontaneous speech recordings
of spoken picture descriptions elicited from participants through
the Cookie Theft picture description in the Boston Diagnostic
Aphasia Exam [39]. The training set consists of 166 speech
recordings, including 87 speech recordings from AD patients
and 79 speech recordings from healthy controls. The testing set
consists of 71 speech recordings without annotations.

4.2. Experiment Setup

We implemented our proposed models using Pytorch and
trained them using the 10-fold cross-validation (CV) approach.
Three types of features were extracted: acoustic features, lin-
guistic features, and embeddings (including text embeddings
and acoustic embeddings). For all models implemented in this
paper, each model has 6 multi-head attention layers. Apart from
that, in the C-Attention-Acoustic network and C-Attention-
Embedding Network, each multi-head attention module is fol-
lowed by a dilated convolution layer (kernel width=3) and a
max-pooling layer with stride 2 which downsizes the feature
set into its half slice. We found that due to the variation of fea-
ture size, the best configuration of modules is slightly different
among various feature sets. For Emobase and IS10 features, 6
multi-head attention modules and 6 dilated CNN modules gave
the best performance. However, 6 multi-head attention modules
plus two dilated CNN modules is the best setting for X-Vector
embeddings. Dilated CNN modules were not used on VGGish
embeddings.

4.3. Feature Generation

We have described how to generate each type of feature in
Sec 3.1.1. Here we add a few additional explanations on acous-
tic features and acoustic embeddings used in our experiments.
Acoustic Features: We generated Emobase and IS10 on each



speech recording, no segmentation was applied.
Acoustic Embeddings: 1) VGGish Embeddings: We ap-
plied 16k-downsampling on single-channel audio signals, and
computed the log mel spectrogram. Then each log mel spec-
trogram was segmented with a non-overlapping 960ms win-
dow. Finally, we generated 128-length VGGish embedding on
each segmented sample; 2) X-Vector embeddings: Similarly,
we segmented each speech recording with a non-overlapping
960ms window, then generated 512-length X-Vector embedding
on each segmented sample.

4.4. Experiment Results

The performance results are shown in Table 1. We note that on
the training dataset, the C-Attention-Unified model with Lin-
guistic and X-Vector features achieved the best performance in
respect to the accuracy, precision, and F1 score, the best Recall
was achieved by the C-Attention-Unified model with Linguis-
tic, IS10, and X-Vector. Due to time limitation, in C-Attention-
Unified network, we were not able to use all feature sets, such
as USE. Given C-Attention-Embedding (USE) did not perform
better than other approaches but it took longer to train, we trun-
cated this feature set in our unified model.

Table 1: AD classification accuracy on 10-fold cross-validation
(CV)

Approach Accuracy Precision Recall F1
C-Attention-Acoustic(Emobase) 0.614 0.632 0.632 0.632

C-Attention-Acoustic(IS10) 0.62 0.615 0.736 0.67
C-Attention-FT(Linguistic) 0.735 0.753 0.736 0.735

C-Attention-Embedding(USE) 0.657 0.679 0.655 0.667
C-Attention-Embedding(VGGish) 0.735 0.759 0.724 0.741
C-Attention-Embedding(X-Vector) 0.753 0.774 0.747 0.76

C-Attention-Unified(Linguistic + USE) 0.711 0.714 0.747 0.73
C-Attention-Unified(Linguistic + VGGish) 0.747 0.771 0.736 0.753
C-Attention-Unified(Linguistic + X-Vector) 0.772 0.787 0.74 0.763

C-Attention-Unified(Linguistic + IS10 + X-Vector) 0.725 0.724 0.778 0.75

Our experiment results would indicate that: 1) using both
audio embeddings and linguistic features seems to be the best
way to approach the problem of detecting AD, rather than
choosing only one; 2) On the text side, handcrafted linguistic
features perform better than USE representations on AD detec-
tion; 3) However, on the audio side, audio embeddings, such
as X-Vector and VGGish show better performance on AD de-
tection than frame-level acoustic features, such as Emobase and
IS10.

Further analysis of the values in this table would indicate
that using only the latent NLP-based features does not perform
as well as using only audio embeddings (X-Vector). However, it
is worthy to mention that the transcripts used in this work were
automatically converted from speech recordings. The automatic
conversion might have introduced errors and noises. Within au-
dio embeddings, X-Vector performs better than VGGish.

As part of the ADReSSo challenge, we were provided the
test dataset and asked to submit the labels from five attempts of
our algorithm on this dataset. Since we had multiple models,
we used the following method to decide on which model’s re-
sult to report. We randomly split the training dataset into 80%
for training, 10% for validation, and 10% for testing. We tried
multiple random seeds, then used the models which performed
best, on an average, on the training dataset. The best perform-
ing model was the C-Attention-Unified model with Linguistic
features and X-vectors. Hence we used this model to submit
the five attempts on the test dataset as required by the challenge
rules. The organizers then calculated the accuracy, precision,
recall and F scores based on the ground truth labels (which

Table 2: Attempts on test dataset

Attempts Accuracy Precision Recall F1
Attempt 1 0.8028 0.7500 0.8889 0.9167 0.6857 0.8250 0.7742
Attempt 2 0.7746 0.7500 0.8065 0.8333 0.7143 0.7895 0.7576
Attempt 3 0.7887 0.7692 0.8125 0.8333 0.7429 0.8000 0.7761
Attempt 4 0.7746 0.7273 0.8519 0.8889 0.6571 0.8000 0.7419
Attempt 5 0.7606 0.7111 0.846 0.8889 0.6286 0.7901 0.7213

were not revealed to the participants) of the test dataset. Ta-
ble 2 shows the results returned to us by the organizers, for our
model.

5. Future Work
In this challenge, due to time limitation, we were not able to
apply segmentation on acoustic features, nor apply 100ms win-
dow size segmentation on either VGGish or X-Vector embed-
dings. We believe that our models could learn better on the
acoustic features if time series segmentation is applied. Fur-
ther, we will continue to address the other subtasks set out in
the challenge, viz.: evaluate the models’ performance by calcu-
lating the MMSE score and generalize the proposed models to
predict the cognitive decline.

6. Conclusions
In this paper, we proposed a modular multimodal approach to
detect Alzheimer’s disease and this approach includes four ar-
chitectures using CNN and multi-head attention on the train-
ing set of the ADReSSo Challenge. Three types of feature
sets were used in this work: acoustic features, linguistic fea-
tures, and embeddings. One architecture uses only the acoustic
features, one architecture uses only the linguistic features, one
uses only the embeddings and the unified architecture uses all of
those features. Extensive experimental evaluations on the train-
ing dataset show that our proposed model can detect AD with an
accuracy of 77.2%, F1 of 0.763 using the C-Attention-Unified
model with Linguistic and X-Vector features. Using the same
model and feature sets, the best accuracy of our models was
80.28% and F1 of 0.825 on the test dataset.
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