

INOCON Technologie GmbH

INOCON Technologie GmbH

Inocon Technologie GmbH is located in Attnang-Puchheim, Upper Austria and is part of the INO-group with 240 employees. The company was founded in 1994 with a focus on plasma technologies, welding and customer based engineering. We see us as One-Stop-Shop beginning at first customer trials to the final machine.

Welding and brazing

Customer based engineering

Core competences

R&D

Mechanical design

Automation

Manufacturing

Assembly

Start up and installation

INO GmbH organisation chart

Customer based engineering as perfect addition

For years now, INOCON is partner in the field of special machine building and system engineering, beginning with small special solutions up to huge production lines - using economical aspects and serial components – for a big variety of industrial partners.

Steamer production line inner life

- 10 working stations
- 11 Robots (6 handling, 5 welding)
- 30s clock cycle
- 1,5 operator production
- 0,4 mm sheet thickness

- 15 types
- Set-up time below 15 minutes
- Joining of all add-on parts:
 body sheet metal, back sheet,
 front, drain pipe
- Combination of bending process,
 punching process and welding process

Cardan shaft production

- Flange Ø120-200mm
- Material thickness 2,5 7mm
- Seam finding
- Automated torch change
- Batch size 1, adapter change of several 100 models in cycle time

- Tube Ø 90-144mm
- Tube length 56-2740mm
- Torch TCP correction
- Cycle time 104s

Shift fork welding machine

INOCON

- Welding of tripping pin with fork
- 2 welding robots
- Gripper system for transportation

- Clock cycle 18s
- 4 welding stations
- Cooling conveyor belt

Plasma welding/brazing

No welding spatter

Even when using filler wire, Plasmatron is spatter-free.

appearance

Due to the clean and smooth surface of the weld seam, Plasmatron is mainly used for visible seams.

collet, the electrode can also be replaced automatically within a few seconds without operator intervention.

Plasmatron technology

Unlike conventional plasma processes, the Plasmatron® process generates the electric arc in front of the nozzle. This significantly reduces the thermal load on the nozzle. The plasma jet is no longer focused by a long, straight nozzle, but by the gas flow, which forms an effective focus at a defined angle away from the nozzle.

Practical Plasmatron applications

Brazing of galvanized sheets

Steel welding applications

Stainless steel applications

Aluminum & copper welding

Plasmatron - Brazing of galvanized sheets

Roof seam

Water drain

Door step seam

Plasmatron - Stainless steel welding

Steamer

Steamer material 1.4301 Material thickness 0.5 – 0.8mm

Linear welding

U-shape profile welding

Corner seam welding

Disclosure or duplication without consent is prohibited

InoCoat - Multi-functional coating tool

Plasma cleaning

Cleaning and pre-treatment of the substrate with plasma

Micro layers

Several powders as.: zinc, tin, copper, ceramics,... can be applied in layer thicknesses of 10 - 500µm. Precursors are vaporized and injected to the plasma column resulting in layer thicknesses of 10 - 300nm

The plasma-technology is an **atmospheric process** for the treatment and/or coating of 2D to 3D surfaces.

Therefore materials such as powders or precursors are fed into a spatial temperature field and accelerated towards the substrate.

 Coating speed up to 1000mm/s (depending on the application)

• Power range from 2kW to 15kW

 Coating width (CW) from 10mm (powder) up to 80mm (liquids)

Coating materials

Additional material for micro- and nano layers

Micro powder

- Copper, copper alloys (Cu)
- Special alloys (Core-Shell,...)
- Zinc (Zn)
- Silver (Ag)
- Titanium dioxide (TiO₂)
- Aluminum oxide (Al₂O₃)
- Hydroxylapatit (HAP)
- etc.

Powders with **melting points < 2000°C** can be processed

Precursors

- HMDSO (injection of Si-vapour)
- Other precursors in the course of R&D activities in use (e.g. sealing)
- Aerosol (with / without particle-loading)
- etc.

Universally useable Precursors for different applications

Summary of applications

Conductive layers

- Intelligent surfaces
- Substitute wiring harness

Corrosion protective layers

- Local protection (passive, active)
- Transparent nano-layers

Microlayers

Tribological layers

- Force transmission
- Changing the friction coefficient

Thermal / mechanical barrier layers

- Cost reduction
- Weight reduction

Functionalization of polymers

- Low friction coatings
- Local tribological coatings

Biocidal layers

Germicidal layers

Adhesion promoting layers

- Gluing processes
- Painting processes
- Printing processes

Non-stick layers

- Injection molding, improve lifetime
- Friction reducing characteristics

Nanolayers

Research and Development

Overview about patents and research projects 2025

5 patents in plasma- and coating technology

- 3 EU-projects
- 2 CAS-projects
- 12 national FFG-research projects
 - → 17 research projects (functional coatings, joining and AM)
- Implementation of R&D projects with industrial partners and potential end-users
- Long-term cooperation with industry partners → customer enquiries outside of research projects
- 4 journal publications
- Participation in various trade fairs and conferences

Excerpt from research partners

