

Plastalyst uses Chemolysis

Chemical Recycling - Chemolysis

Gasification vs. Plastalyst

- ✓ Wood Chips
- ✓ Cellulose
- ✓ Paper Sludge
- Microplastics

Tar, Char, Ash

- Wood Chips
- Cellulose
- ✓ Paper Sludge
- Microplastics

Anaerobic Digestion vs Plastalyst

- ✓ Sludge
- **X** Cellulose
- X Paper Sludge
- **X** Microplastics

- Cellulose
- ✓ Paper Sludge
- Microplastics

Small Area only 2 hours reaction time Catalysts are affordable and easy to procure

Roadmap

Demo Plant

TEMASEK

Partnerships

Business Model

USP: PET into Methanol

3 Paid Pilots in Japan

H2O, acetic acid, formic acid, salts of chlorine

Water+Catalyst

200-300°C

Carbonization

Chemical Recycling of Mixed Plastic Waste into Charcoal

PVC completed pilot

Pilotwith one of the largest wire and cable manufacturers in the world

Rubber completed pilot

Demo Plant in Indonesia

Organic Waste from the Palm Oil Industry

100L Reactor Water + Catalyst 200°C

Syngas 50% H2 45% Methane

Useful biochemicals Methanol Acetone Acetic Acid

Materials Successfully Decomposed

Cellulose L-glutamic acid Lignin POME (palm oil mill effluent) Gelatin Pectin Leather Textiles, Jeans Cow manure Coffee beans, tea leaves, orange peel

PBT PE PU **EVA** PVC **PET** PP Rubbers **CFRP FRP** Multi-Layered Mixed Plastic

Our Requests

Technical collaborations

Demonstration Plant

Partners for Commercial Scale-up

Funding

Series A

Our Founders

Sojitz

New way, New value

UNIVERSITY OF

CAMBRIDGE

Atsushi Mizusawa Ph.D. Material Science

DAIKIN KRI

COO Robert Kunzmann **MPhil Engineering**

Our Vision

Zero Waste to Landfill & Incineration

Our Team

Engineer Habibur Rahman Ph.D. Material Science

Chemist Sarah Sultan Ph.D. Material Chemistry

Advisor Prof. Nishiyama Ph.D. Engineering

Chemist Kesava Rao Ph.D. Material Science

Material Scientist Fabrication Engineer Diaa Hamed Ph.D. Material Chemistry

Jeganathan Chellamuthu

Ph.D. Material

Fabrication

THANK YOU.

Questions?

Robert Kunzmann
robert.kunzmann@acbiode.com

CEO
Tadashi Kubo
tadashi.kubo@acbiode.com

Where does Plastalyst fit into the renewable Carbon Refinery of the Future?

Why Methanol?

Rather than ethylene glycol (EG)?

Market Size	The world market size of Methanol is 1.8 times larger that of EG *
Viscosity	The viscosity of methanol is only 1/42 th of that of EG. This leads to Methanol having Lower losses in the process Lower CAPEX and OPEX Higher throughput
Temperature	The vaporizing temperature of methanol is 40% lower than EG, reducing the energy required.
Solvent Cost	While EG requires expensive organic solvents for the process. Plastalyst to Methanol uses only water as solvent.

^{*} Market size in 2030: methanol: 63B USD worldwide, EG: 35B USD, according to [SDKI.jp](http://sdki.jp/) and Methanol Institute 2023)

Copyright © AC Biode all rights reserved