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Abstract
Prediction of mortality, functional outcome and recovery after status epilepticus (SE) is a challenge. Biological and clinical 
markers have been proposed to reflect the brain injury or to monitor critical ill patients’ severity. The aim of this study was to 
characterize short-term and long-term prognostic factors for SE patients hospitalized in intensive care unit. Patient’s outcome 
was assessed using the modified Rankin Scale at discharge and after 6–12 months. We first assessed the univariate progno-
sis significance of 51 clinical, demographic or biochemical markers. Next, we built multivariate clinico-biological models 
by combining most important factors. Statistical models’ performances were compared to those of two previous published 
scales STESS and mSTESS. Eighty-one patients were enrolled. Thirty-five patients showed a steady state while 46 patients 
clinically worsened at discharge: 14 died, 14 had persistent disability at 6–12 months and 18 recovered. Logistic regression 
analysis revealed that clinical markers (SE refractoriness, SE duration, de novo SE) were significant independent predictors 
of worsening while lipids markers and progranulin better predicted mortality. The association of clinico-biological variables 
allowed to accurately predict worsening at discharge (AUC > 0.72), mortality at discharge (AUC 0.83) and recovery at long-
term (AUC 0.89). Previous scales provided lower prediction for worsening (AUC 0.63, STESS; 0.53, mSTESS) and mortality 
(AUC 0.56, STESS; 0.62, mSTESS) (p < 0.001). We proposed new clinico-biological models with a strong discrimination 
power for prediction of short- and long-term outcome of hospitalized status epilepticus patients. Their implementation in 
electronic devices may enhance their clinical liability.
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Abbreviations
AUC​	� Area under the receiver operating characteristic 

curve
CSF	� Cerebrospinal fluid
FC	� Free cholesterol
ICU	� Intensive care unit
ML	� Machine learning
mRS	� Modified Rankin score
NORSE	� New-onset refractory status epilepticus
NPV	� Negative predictive value
PPV	� Positive predictive value
RSE	� Refractory status epilepticus
S100B	� S100-beta protein

SE	� Status epilepticus
SVM	� Support vector machine

Introduction

Status epilepticus (SE) is a life-threatening prolonged epi-
leptic seizure [1, 2]. The reported SE mortality ranges from 
5 to 46% [2, 3]. Survivors of severe SE—, resistant to drugs, 
managed in intensive care unit—frequently show impair-
ment of their functional outcome at discharge, with incon-
sistent recovery after several months [2, 4].

The identification of valuable prognostic biomarkers is 
challenging due to the heterogeneity of SE etiology and 
clinical presentation. To help clinicians, various markers 
(demographic, clinical, biochemical, electrophysiological, 
brain imaging) and four scales (STESS, EMSE, mSTESS, 
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END-IT) have been proposed to predict SE outcome [5–10]. 
The STESS, EMSE and mSTESS scales were built to assess 
the risk of mortality at discharge. Only STESS and mSTESS 
scales, based on pre-hospitalized clinical data (i.e. seizure 
type, consciousness level, age, previous history of epilepsy; 
and functional state before SE for mSTESS), can be applied 
to all patients. Indeed, the EMSE scale, a clinical-electro-
physiological tool, is only available for specific etiologies. 
Moreover, while EEG findings have a certain significance 
to predict the outcome of SE patients, EEG findings may 
rapidly change over time. Therefore, only a quantification 
of the findings obtained by a continuous EEG monitoring 
could participate to patients’ outcome. Nonetheless, con-
tinuous EEG monitoring is not available in every country 
for every SE patient and quantification of its features is not 
simply available.

Despite its key role for treatment decisions, the END-IT 
scale is the only one developed to assess the functional out-
come at 3 months post discharge. Nevertheless, the END-IT 
scale requires brain MRI, which is not always performed in 
SE management and rarely in the same timeframe across 
patients. Thereafter, STESS and EMSE scales were further 
evaluated to assess the functional outcome [11–14]. Never-
theless, their performances are inconsistent and these scales 
are not able to predict the degree of worsening, precluding 
their utilization to accurately assess the functional outcome 
[11–14].

Here, we wondered if demographic, clinical and bio-
chemical markers, available for all hospitalized SE patients, 
could efficiently assess the SE outcome and if these variables 
could be combined to improve the prediction of short-term 
and long-term SE outcome. Statistical models obtained by 
machine learning (ML) methods allow the integration of 
complex and heterogeneous data into personalized medicine 
systems. Although statistical algorithms have been success-
fully used in the neurocritical care setting [15] (e.g. for the 
assessment of consciousness, intracranial pressure and hem-
orrhages, or seizure detection), they have never been applied 
to predict SE outcome.

Here, we assessed, in 81 patients, the prognosis value of 
51 demographic, clinical or biochemical markers and we 
applied statistical analysis to build new multivariate clinico-
biological models, to predict mortality, functional outcome 
(i.e., worsening of clinical condition and its degree) at dis-
charge and recovery after 6–12 months.

Methods

Study design, setting and participants

We prospectively enrolled adult patients admitted in the 
neurological intensive care unit (ICU), the medical ICU or 

the neurological continuing care unit of the Pitié-Salpêtrière 
Hospital, from February 2013 to June 2020. Patients were 
either initially managed at Pitié-Salpêtrière Hospital or 
transferred from another ICU due to an uncontrolled SE.

Eligible SE patients were patients aged at least 18 years, 
with an ongoing SE, either a generalized convulsive SE, or a 
focal convulsive or non-convulsive SE diagnosed according 
to the International League Against Epilepsy criteria. None 
of the patients had a generalized non-convulsive SE. Physi-
cians from ICU excluded: patients with a subtle SE defined 
by minor and erratic myoclonic movements in patients with 
severely impaired consciousness; patients with post-anoxic 
SE; patients whose SE was linked to a pathological condi-
tion, such as trauma or subarachnoid aneurysmal hemor-
rhage, who needed immediate surgery and for whom the out-
come could be impaired by the underlying disease. Patients 
for whose parent, guardian or other reliable person refused 
permission or patients who refused themselves permission 
were also excluded.

Standard protocol approvals, registrations, 
and patient consents

This study received approval from the University Ethic 
Committee (2012, CPP Paris-VI). All patients or relatives 
were informed and provided their consent. The study design 
and report are in accordance with the Strengthening the 
Reporting of Observational Studies in Epidemiology report-
ing guidelines [16].

Variables selection

We evaluated the prognosis significance of 51 features which 
have been selected according to previous studies (see details 
in Table1) [5, 6, 8, 17–21].

First, we looked for demographic marker (age) as it was 
reported that younger patients have a better outcome than 
older patients [2, 12, 22]. We did not look for the impact of 
gender because it did not seem to impact the SE outcome 
[22].

Second, we focused on clinical markers previously found 
to be involved in SE severity: previous history of epilepsy, 
SE etiology (classified into four groups [acute, remote, pro-
gressive, or unknown] according to the previous history 
epilepsy and how the SE appeared [20]), SE refractoriness 
(defined as a failure of at least two appropriately selected 
and dosed parenteral medications including a benzodiaze-
pine; super-refractory SE and prolonged super-refractory SE 
were defined respectively as a refractory SE that persists for 
at least 24 h and 7 days, including ongoing need for anesthet-
ics [21]), SE duration (the SE end was defined as the absence 
of seizures after the anesthetics withdrawal), and conscious-
ness at admission evaluated by the Glasgow Coma Scale and 



Journal of Neurology	

1 3

the Full Outline of UnResponsiveness score. We did not look 
for the impact of individual anti-seizure medications as we 
previously observed that anti-seizure medications did not 
modify biochemical markers levels [19, 23, 24].

Third, as SE is associated with molecular and cellular 
changes that may induce brain injury and subsequent neu-
rologic sequelae, we looked for biochemical markers able to 
reflect the SE consequences [25]. Protein markers were pro-
posed to assess the brain injury (e.g. Neuron Specific Eno-
lase, S100beta protein, progranulin) [17, 18, 26–30]. Moreo-
ver, we have highlighted the role of lipid metabolism in SE 
excitotoxicity, suggesting the usefulness of lipid biomark-
ers as SE outcome biomarkers [19, 31, 32]. In addition, we 
looked for routine laboratory markers (ion count, liver and 
kidney markers) and other biological variables (white blood 
cell count, platelet count, bilirubin, hemoglobin) previously 
found to be useful to monitor the critical ill patients’ sever-
ity or potential complications of treatment [33–37]. Despite 
their interest, we did not consider albumin and C-reactive 
protein because they had been measured for a too small pro-
portion of our patients [11, 38].

We did not look for brain imaging biomarkers and elec-
trophysiological (EEG) variables because MRI and EEG 
were not performed for all SE patients in our cohort.

Biochemical analyses and data extraction

The clinical data and routine laboratory measures were 
extracted from medical records. The biochemical markers 
were assessed upon admission in Pitié-Salpêtrière hospital. 

All patients presented with an ongoing SE during the blood 
and CSF samples collection.

Neuron Specific Enolase (NSE) and S100beta protein 
(S100B) assays were performed using immunofluorimet-
ric assays and electrochemiluminometric sandwich immu-
noassays (Kryptor®, Brahms and Modular®E170, Roche 
Diagnostics), respectively. Progranulin measurements were 
obtained, in duplicated, using the progranulin-human-
ELISA kit (Adipogen).

Total cholesterol (TC), triglycerides, HDL-cholesterol 
were analyzed by enzymatic methods; and apolipopro-
tein A1 and apolipoprotein B100 by immunoturbidimetric 
method on Cobas analyzer (Roche). Phospholipids and free 
cholesterol (FC) were analyzed by colorimetric method on 
Konelab analyzer (Thermo Fisher Scientific). Esterified cho-
lesterol (EC) was calculated by difference (EC = TC-FC). 
Lipoprotein(a) and apolipoprotein E were measured by 
immunonephelemetric method on BNII analyzer (Siemens).

Outcome assessment

The global outcome was assessed from medical records, or 
by in-person or telephone structured interview at discharge 
(called discharge) and at 6–12 months (called follow-up) 
using the 7-point version of the modified Rankin Scale 
(mRS), rated from death (6) to symptom-free full recovery 
(0) [39]. The same scale was used to assess the functional 
state before SE (called baseline). If patients had several fol-
low-up evaluations, we considered the last evaluation as the 
mRSfollow-up. The physicians were not informed on the results 

Table 1   Demographic, clinical and biochemical markers

CSF Cerebrospinal fluid, FOUR score Full Outline of UnResponsiveness score, GCS Glasgow Coma Scale, mRS modified Rankin score, SE sta-
tus epilepticus
a The SE end was defined as the absence of seizures after the anesthetic’s withdrawal

Demographic marker (1) Age

Clinical markers (12)
 SE subtype (3) Refractory SE, super-refractory SE, prolonged-super-refractory SE
 SE etiology (4) Acute, remote, progressive, unknown
 Others clinical markers (5) Previous history of epilepsy, SE durationa, mRS baseline, GCS score at enrollment, FOUR score at 

enrollment
Biochemical markers (38)
 Routine laboratory blood measures (14) Sodium, potassium, chloride, urea, creatinine, aspartate aminotransferase, alanine aminotransferase, 

gamma gt, lactates, bilirubin, hemoglobin, platelet count, white blood cell count, neutrophil/lym-
phocyte ratio

 Brain injury biomarkers in blood (3) Neuron specific enolase, S100-beta protein, progranulin
 Brain injury biomarkers in CSF (3) Neuron specific enolase, S100-beta protein, progranulin
 Routine blood lipid biomarkers (17) Total cholesterol (TC), triglycerides, HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C), TC/

HDL-C, apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB), ApoA1/HDL-C, ApoB/LDL-C, 
lipoprotein(a), apolipoprotein E, lipoprotein-associated phospholipase A2, free cholesterol, esteri-
fied cholesterol (EC), cholesterol esterification ratio (EC/TC), phospholipids (PL), TC/PL

 Routine CSF lipid biomarkers (1) Apolipoprotein E
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of the measurements before managing patients or assessing 
the mRS scores.

We performed four analyses: (1) prediction of poor 
outcome at discharge (i.e. mortality or worsening of 
clinical conditions; mRSdischarge > mRSbaseline); (2) pre-
diction of the degree of worsening at discharge (i.e. 1 ≤ 
mRSdischarge-mRSbaseline ≤ 6); (3) mortality prediction at dis-
charge (i.e. mRSdischarge = 6); and (4) prediction of recovery 
at 6–12 months (i.e. mRSfollow-up < mRSdischarge). We only 
focused on surviving patients with poor outcome at dis-
charge to identify biomarkers able to predict the recovery 
at 6–12 months.

Statistical analyses

Univariate analyses

We first performed univariate logistic regression analyses 
to identify markers able to predict SE outcome. The Benja-
mini–Hochberg procedure was used to correct for multiple 
comparisons. We used the boostrap method to estimate the 
standard errors of R2 (n = 1000).

Levels of correlation between quantitative variables 
and the degree of worsening at discharge (defined as 
mRSdischarge − mRSbaseline) were obtained with Spearman 
correlation analysis. We performed Fisher tests to assess 
whether the frequency distribution of categorical data dif-
fered between groups.

Selection of variables in multivariate analyses

To design multivariate models able to predict SE outcome 
for all patients, we selected only variables that were avail-
able for all patients. First, we excluded the CSF measures 
as lumbar puncture is not systematically performed in SE 
management (4 variables). Then, we discarded variables 
with more than 10% of missing data (6 variables), and inter-
related variables (9 variables, defined as Spearman’s ρ above 
0.80). Our multivariate analyses were conducted on 32 vari-
ables (26 non-binary and 6 binary variables). These vari-
ables are either routinely measured in all hospitalized units 
(e.g. ion count, white blood cell count, platelet count, liver 
and kidney markers, routine lipid biomarkers) or not looked 
for in daily practice but easy to implement in all biochemi-
cal departments (e.g. NSE, S100B, progranulin, esterified 
cholesterol, free cholesterol, apolipoproteins). Five patients 
had missing data on some of these 32 variables and were not 
considered for multivariate ML analysis.

Multivariate analyses

We applied a data-driven approach using statistical 
machine learning (ML) models (support vector machine 

and logistic regression) to identify markers predictive of 
SE outcome. The maximum number of variables to com-
bine was defined according to statistical rules.

Support vector machine (SVM)  The SVM classifiers are 
known to be robust to overfitting and work well with com-
plex and high-dimensional datasets (i.e. they allow to com-
bine more than 30 variables whatever the size of the study 
cohort) [15]. They used a kernel transformation to project 
input data in a higher dimensional space: input data that 
cannot be distinguished in the original space may become 
separable after transformation (Fig.  1a) [40]. Although 
there are some kernels proposed for binary variables, most 
of SVM classifiers are optimized for non-binary variables. 
For this reason, here we only evaluated the prognosis value 
of our 26 non-binary variables. There were two stages in 
building the prediction model (Fig. 1b): a training phase, 
in which a binary classifier (poor or good outcome, death 
or survival, recovery or non-recovery) used 70% of obser-
vations to learn the model; and then a testing phase, in 
which the remaining 30% of data were used to evaluate its 
prediction performance. A cross-validation procedure was 
used with 1000 folds. We also controlled classifiers’ per-
formance using permutation tests (n = 1000) where class 
labels are randomly re-assigned [41].

We next selected the most relevant variables. The most 
“non-significant” variables were removed one by one 
by a pruning procedure (Fig. 1c): (1) the area under the 
receiver operating curve (AUC) values were obtained by 
cross-validation, after removal of each variable; (2) the 
variable without which the model had the highest AUC 
was removed; and (3) the procedure was repeated with the 
remaining variables. We could thus identify a set of vari-
ables that improves the classification after their removal. 
If the removal procedure further continued, the classifica-
tion performance decreased. The most relevant variables 
were selected for each analysis separately (i.e. poor out-
come; mortality and recovery). Therefore, we identified 
a different set of variables to assess the poor outcome at 
discharge, the mortality at discharge and the recovery at 
long-term.

Logistic and linear regression models  Logistic regression 
analysis is currently used to assess relationships between 
one dependent binary variable and one or more continu-
ous or binary variables. It allows us to construct an index 
(score) that combined the most important markers. In con-
trast to SVM, logistic regression models are very sensitive 
to overfitting. For this reason, we retained only one feature 
per 10 patients. We therefore did not use logistic regres-
sion to predict SE mortality and recovery because we had 
less than 20 patients in both groups. Therefore, we only 
used it to predict the poor outcome at discharge (as 35 
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patients presented a good outcome and 46 a poor outcome, 
we were able to combine a maximum of 3 variables).

To identify the most significant variables to assess the 
poor outcome at discharge, we first split our population 
into two sets: a training set (70% of observations) and 
a testing one (the remaining 30% of data) (Fig. 1b). We 
performed a backward stepwise regression procedure with 
a 1000-fold cross-validation procedure. At each fold, we 
obtained the most significant variables and we selected 
the three most frequently found variables. We further used 
these variables, to build the prediction model (Fig. 1b). 
Again, a cross-validation procedure (70% of observations 
were used for the training phase and the remaining 30% 
for testing) was used with 1000 folds [41].

Here, we also used a linear regression model to identify 
variables able to predict the degree of worsening at dis-
charge. Validation and reliability of the prediction system 
were assessed with Bland–Altman method and Spearman 
correlation coefficient.

Comparison with previous scales

Except END-IT, previous scales mostly assessed short-
term mortality [5–8]. We did not compare our scores 
to END-IT because this scale required MRI data for all 
patients. We compared our prediction performances, 
using Wilcoxon-test, for poor outcome and mortality at 
discharge to both STESS and mSTESS scales using the 
better cut-off reported, 3 for STESS score and 4 for mST-
ESS score, respectively [6, 10, 14]. We did not use EMSE 
scale, as some of our patients had SE etiologies, such as 
auto-immune encephalitis, not covered by this algorithm.

Data availability

Anonymized data will be made available by request from 
any qualified investigator.
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Fig. 1   General scheme of the prediction method. a Nonlinear trans-
formation of non-separable data in the original input space: input 
data are mapped into a higher dimensional feature space (from 1 to 
2-dimensional space in this example) where data become separable. 
b Scheme of the cross-validation procedure. The ML classifiers used 
70% of the observations to train the model; and then the remaining 
30% of data were used to test the prediction performance. A first step 
of variable selection was performed for logistic regression: the 3 most 
frequently found variables were retained for the prediction perfor-

mance. A cross-validation procedure was used with 1000 folds. c The 
SVM classifier prediction performances were optimized by select-
ing the most relevant variables. The “non-significant” variables were 
removed one by one by a pruning procedure: (i) The area under the 
receiver operating curve (AUC) values were obtained by cross-vali-
dation, after removal of each variable; (ii) the variable without which 
the model had the highest AUC was removed; and (iii) the procedure 
was repeated with the remaining variables
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Results

Study participants

We included 81 patients with SE (49 men and 32 women, 
mean age: 50 (± 19) years) (Fig. 2). Fifty-six patients 
(69%) were initially managed at Pitié-Salpêtrière Hospi-
tal while 25 patients (31%) were transferred from another 
hospital due to uncontrolled SE. At admission, patients 
had in average 3 antiepileptic drug (minimum = 1, maxi-
mum = 7), 1 anesthetic (minimum = 0, maximum = 4) and 
an average Glasgow Coma Score of 7 (± 4). At admission, 
33 patients (41%) were treated by propofol, 30 patients 
(37%) by midazolam, 11 patients (14%) by pentothal and 
9 patients (11%) by ketamine. Fifty-seven patients (70%) 
presented with refractory SE (RSE); among them, 44 
patients (77%) presented with super-refractory SE and 29 
(51%) with prolonged super-refractory SE. The SE eti-
ologies were categorized into four subgroups: acute (29 
patients, 36%), remote (24 patients, 30%), progressive (19 
patients, 23%), and SE of unknown etiology (9 patients, 
11%). The SE etiologies are detailed in Supplementary 
Table 1. Thirty-eight patients (47%) had previously been 
diagnosed with epilepsy. Thirty-eight patients (47%) 
had no previous neurological disability (mRSbaseline = 0), 
while 15 patients (19%) were already dependent before 
SE (mRSbaseline ranging from 3 to 5). All blood and CSF 
samples were collected at Pitié-Salpêtrière hospital admis-
sion, in average 8 (± 15) days after the ongoing SE onset.

Outcome prediction at discharge

Prediction of poor outcome at discharge

Forty-six patients (57%) had a higher mRSdischarge score (i.e. 
poor outcome), when compared with their mRSbaseline score 
(Fig. 2). Forty of the 57 patients with RSE (70%) presented 
with poor outcome after SE compared to only 6 of the 24 
patients with non-refractory SE (25%; p = 0.049). Patients 
who had previously been diagnosed with epilepsy had a 
lower risk to present poor outcome (15 of the 38 patients, 
39%) when compared with the other patients (31 of the 43 
patients, 72%; p = 0.045).

Five clinical markers were found to be significantly dif-
ferent between the 46 patients with poor outcome and the 
35 patients for whom SE had no effect on their functional 
outcome at discharge in the univariate analyses (Table2): 
previous history of epilepsy, SE duration, refractory SE, 
super-refractory SE and prolonged super-refractory SE. 
Nevertheless, none of these biomarkers yielded a suffi-
cient R2 value to be used alone to predict the risk to present 
poor outcome after SE. Therefore, we looked for combined 
clinico-biological markers that optimally predicted the poor 
outcome.

The SVM analysis revealed that the association of all the 
26 non-binary variables retained for multivariate analyses 
failed in most cases (AUC = 0.46 [0.27–0.67]) to predict the 
poor outcome. The prediction performance was, however, 
improved using the following 10 most relevant markers iden-
tified after the pruning procedure (AUC = 0.72 [0.54–0.88], 
p = 0.003): phospholipids, serum NSE, gamma GT, sodium, 

81 pa�ents

35 pa�ents with a good outcome
mRSdischarge = mRSbaseline

46 pa�ents with a poor outcome
mRSdischarge > mRSbaseline

32 pa�ents with 6-12 months follow-up

5 deceased pa�ents
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Fig. 2   Flow chart of the study population
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Table 2   Prognosis value of selected markers in predicting poor outcome and mortality at discharge

Markers Mean values 
for good out-
come patients

Mean values 
for poor out-
come patients

Mean R2 p value Markers Mean value 
for surviving 
patients

Mean value 
for died 
patients

Mean R2 p value

Age (years) 47 52 0.019 0.51 Age (years) 49 53 0.009 0.82
Total choles-

terol (g/L)
1.53 1.59 0.003 0.75 Total choles-

terol (g/L)
1.61 1.34 0.047 0.28

Triglycerides 
(g/L)

1.61 1.80 0.003 0.75 Triglycerides 
(g/L)

1.67 1.95 0.009 0.82

HDL-choles-
terol (g/L)

0.41 0.34 0.035 0.36 HDL-choles-
terol (g/L)

0.40 0.25 0.091 0.09

Apolipoprotein 
B (g/L)

0.79 0.99 0.084 0.15 Apolipoprotein 
B (g/L)

0.90 0.90 0.001 0.98

Lipoprotein(a) 
(g/L)

0.28 0.41 0.025 0.39 Lipoprotein(a) 
(g/L)

0.38 0.21 0.013 0.47

Apolipoprotein 
E (mg/dL)

5.16 5.67 0.014 0.65 Apolipoprotein 
E (mg/dL)

5.39 5.73 0.003 0.85

Free cholesterol 
(g/L)

0.53 0.62 0.039 0.32 Free cholesterol 
(g/L)

0.57 0.63 0.012 0.78

Esterified cho-
lesterol (g/L)

1.01 0.98 0.000 0.87 Esterified cho-
lesterol (g/L)

1.05 0.71 0.123 0.044

Phospholipids 
(g/L)

2.13 2.25 0.010 0.64 Phospholipids 
(g/L)

2.19 2.24 0.002 0.88

NSE (ng/mL) 20.4 18.9 0.007 0.75 NSE (ng/mL) 19.1 22.0 0.017 0.77
S100-beta (ng/

mL)
0.11 0.24 0.024 0.39 S100-beta (ng/

mL)
0.13 0.46 0.090 0.10

Progranulin (ng/
mL)

120.7 154.4 0.051 0.31 Progranulin 
(ng/mL)

129.1 191.1 0.124 0.044

AST (UI/L) 409.1 74.8 0.009 0.51 AST (UI/L) 254.7 49.5 -0.007 0.83
ALT (UI/L) 97.0 77.7 0.002 0.83 ALT (UI/L) 95.8 39.6 -0.003 0.78
γGT (UI/L) 198.3 170.6 0.002 0.83 γGT (UI/L) 176.6 211.2 0.008 0.85
Sodium 

(mmol/L)
139.4 140.2 0.008 0.65 Sodium 

(mmol/L)
140.2 138.4 0.026 0.47

Potassium 
(mmol/L)

3.81 3.81 0.001 0.98 Potassium 
(mmol/L)

3.79 3.91 0.010 0.80

Chlorine 
(mmol/L)

102.9 103.6 0.004 0.75 Chlorine 
(mmol/L)

103.3 103.5 0.003 0.89

Urea (mmol/L) 5.21 5.44 0.010 0.87 Urea (mmol/L) 5.38 5.16 0.001 0.88
Creatinine 

(µmol/L)
86.1 61.9 0.050 0.31 Creatinine 

(µmol/L)
77.2 50.6 0.037 0.43

Platelet count 
(G/L)

228.7 277.0 0.020 0.39 Platelet count 
(G/L)

261.1 231.2 0.005 0.82

Hemoglobin (g/
dL)

11.7 10.7 0.048 0.31 Hemoglobin (g/
dL)

11.3 10.3 0.036 0.47

White blood 
cell count 
(G/L)

10.0 10.5 0.002 0.81 White blood 
cell count 
(G/L)

10.2 10.6 0.005 0.88

Previous epi-
lepsy (%)

60.5 39.5 0.136 0.048 Previous epi-
lepsy (%)

86.8 13.2 0.011 0.75

SE acute (%) 24.1 75.9 0.095 0.11 SE acute (%) 75.9 24.1 0.011 0.55
SE remote (%) 58.3 41.7 0.046 0.32 SE remote (%) 91.7 8.33 0.020 0.47
SE progressive 

(%)
52.6 47.4 0.012 0.59 SE progressive 

(%)
84.2 15.8 0.000 0.88

SE unknown 
etiology (%)

44.4 55.6 0.002 0.97 SE unknown 
etiology (%)

77.8 22.2 0.006 0.85

SE duration 
(days)

2.17 12.5 0.094 0.048 SE duration 
(days)

6.91 13.3 0.093 0.47
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potassium, chloride, platelet count, hemoglobin, white 
blood cell count and mRSbaseline. We defined the associa-
tion of these ten variables as the “SVM-functional model”. 
The AUC of the “SVM-functional model” was better than 
those obtained with STESS (cut-off at 3, AUC = 0.63) and 
mSTESS (cut-off at 4, AUC = 0.53) (p < 0.001) (Table3). 
The combination of these 10 markers allowed to predict the 
poor outcome for 74% of the cases (positive predictive value, 
PPV = 0.74, p = 0.004). Our model also accurately predicted 
which patients will have good outcome (i.e. a steady state) at 
discharge (negative predictive value, NPV = 0.73, p = 0.001).

Multivariate logistic regression analysis revealed that the 
combination of three clinico-biological variables (“Refrac-
tory SE”, a binary variable which takes the value of 1 in case 
of refractory SE or 0 in case of non-refractory SE, “FC” 
the concentration of free cholesterol (g/L) and “phospho-
lipids” the concentration of phospholipids (g/L)) yielded 
similar results to the SVM-functional model (AUC = 0.78 
[0.67–0.88], PPV = 0.80, p < 0.001; Table3). This logistic 
regression model defined as “LR-functional model” resulted 
in a 24% improvement in AUC over the STESS and 47% 
over the mSTESS (p < 0.001).

Prediction of the degree of worsening at discharge

Forty-six of the 81 patients (57%) had poor outcome after 
SE. The difference between their mRSbaseline and their 
mRSdischarge scores was of 1 for 13 patients (28%), 2 for 6 

patients (13%), 3 for 7 patients (15%), 4 for 7 patients (15%), 
5 for 9 patients (20%) and 6 for 4 patients (9%).

Eighteen clinical and biochemical markers were 
significantly correlated with the difference “mRS-
discharge − mRSbaseline” in the univariate analyses (Table4). 
By linear regression analysis, we identified the three most 
relevant variables to predict the degree of disability: the total 
cholesterol level (g/L), the mRSbaseline and the creatinine 
value (µmol/L).

The Bland–Altman analysis reported a 95% agreement 
between − 2.7 and 2.73 with a bias of 0.034 between the real 
(mRSdischarge − mRSbaseline) and the predicted degree. Moreo-
ver, significant correlation coefficients between both meas-
urements are revealed in all states (Spearman’s ρ  = 0.637, 
p < 0.001).

Prediction of mortality at discharge

Fourteen patients died at hospital discharge (mean delay 
after SE onset, 47 (± 40) days), mostly after the withdrawal 
of life sustaining therapy (11 patients, 79%) (Fig. 2). Twelve 
of the 57 patients with RSE (21%) died at hospital discharge 
compared to 2 of the 24 patients (8.3%) with non-refractory 
SE (p = 0.34). Nine of the 29 patients with prolonged super-
refractory SE (31%) died at hospital discharge compared to 
only 5 of the 52 patients with non-prolonged super-refrac-
tory SE (9.6%) (p = 0.074). The risk of death was not found 
to be significantly higher for patients with RSE or prolonged 

Table 2   (continued)

Markers Mean values 
for good out-
come patients

Mean values 
for poor out-
come patients

Mean R2 p value Markers Mean value 
for surviving 
patients

Mean value 
for died 
patients

Mean R2 p value

Refractory SE 
(%)

29.8 70.2 0.229 0.007 Refractory SE 
(%)

79.0 21.0 0.021 0.47

mRS baseline 1.34 0.93 0.022 0.43 mRS baseline 1.04 1.43 0.012 0.75
Super-refractory 

SE (%)a
25.0 75.0 0.212 0.007 Total choles-

terol/HDL-C 
(TC/HDL-C) 
(AU)a

5.47 11.3 0.150 0.044

Prolonged 
super-refrac-
tory SE (%)a

20.7 79.3 0.138 0.045 Apolipoprotein 
A1/HDL-C 
(ApoA1/
HDL-C) 
(AU)a

3.07 4.78 0.171 0.044

Esterification 
ratio (EC/TC)

(AU)a

0.64 0.52 0.159 0.044

TC/Phospholip-
ids (AU)a

0.75 0.62 0.124 0.044

The variables in bold represent the variables significantly associated with the risk of poor outcome or mortality at discharge
a Markers not considered for multivariate analyses
ALT = Alanine Aminotransferase; AST = Aspartate Aminotransferase; AU = Arbitrary Unit; mRS = modified Rankin Score; NSE = Neuron Spe-
cific Enolase; SE = Status Epilepticus; TC = Total Cholesterol
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super-refractory SE due to lack of statistical power. Half of 
the 14 died patients presented with SE of acute etiology and 
five of the 14 died patients had previously been diagnosed 
with epilepsy (36%).

Six biochemical markers were significantly different 
between the 14 died patients and the 67 surviving patients 
in the univariate analyses (Table2): esterified cholesterol, 
progranulin, total cholesterol/HDL-cholesterol ratio, apoli-
poprotein 1/HDL-cholesterol ratio, esterification ratio, total 
cholesterol/phospholipids ratio. Nevertheless, none of these 
biomarkers had a sufficient R2 value to be used alone to pre-
dict the risk of death after SE. Therefore, we looked for com-
bined clinico-biological markers that optimally predicted the 
risk of mortality at discharge.

The SVM analysis revealed that the association of 
all the 26 non-binary variables retained for multivariate 
analyses failed in most cases (AUC = 0.44 [0.24–0.64]) 
to predict mortality. However, the prediction perfor-
mance was improved using the following 8 most relevant 

markers, identified by a pruning procedure, (AUC = 0.83 
[0.68–0.97], p < 0.001): apolipoprotein B, free cholesterol, 
progranulin, alanine aminotransferase, sodium, creatinine, 
platelet count and white blood cell count. We defined the 
association of these 8 markers as the “SVM-mortality 
model”. The prediction of the “SVM-mortality model” 
was clearly better than those obtained with STESS (cut-off 
at 3, AUC = 0.56) and mSTESS (cut-off at 4, AUC = 0.62) 
(p < 0.001) (Table 3). The combination of the 8 most dis-
criminant variables allowed to predict the death after SE 
in almost 50% of cases (PPV = 0.49, p = 0.002) and the 
survival in 97% of cases (NPV = 0.97, p < 0.001). As the 
number of observations was unequal in our two groups, 
we also computed the F1 score, which is a more appropri-
ate metrics for imbalanced scenarios, and defined as the 
harmonic mean of precision (PPV) and recall (sensitivity) 
[42]. The F1 score of the “SVM-mortality model” was of 
0.63 [0.43–0.1.0]; a higher value than those obtained by 
STESS (0.29) and mSTESS (0.36) scales.

Table 3   Predictive performance of the models obtained by SVM classifier and logistic regression

The values are represented as mean [CI 95%]
AUC​ area under the receiver operating characteristic curve, NPV negative predictive value, PPV positive predictive value, Se sensitivity, Sp 
specificity, SVM support vector machine
a F1 score is calculated as: 2 × Se × PPV/(Se + PPV)
2 The most relevant markers are: phospholipids, NSE, gamma GT, sodium, potassium, chloride, platelet count, hemoglobin, white blood cell 
count, mRSbaseline
c The most relevant markers are: apolipoprotein B, free cholesterol, progranulin, alanine aminotransferase, sodium, creatinine, platelet count, 
white blood cell count
d The most relevant markers are: apolipoprotein B, lipoprotein(a), phospholipids, NSE serum value, sodium, chloride, urea, creatinine, white 
blood cell count, total SE duration and mRSbaseline

Analysis Methods Se Sp PPV NPV Accuracy AUC​ F1 scorea

Poor outcome 
at discharge

SVM-
functional 
model (10 
variables)b

0.75 [0.50–
0.92]

0.70 [0.45–
0.91]

0.74 [0.58–
0.90]

0.73 [0.55–
0.91]

0.73 [0.57–
0.87]

0.72 [0.54–
0.88]

0.74 [0.54–
0.91]

LR-functional 
model

0.69 [0.52–
0.86]

0.71 [0.45–
0.92]

0.80 [0.50–
0.95]

0.56 [0.33–
0.82]

0.69 [0.55–
0.79]

0.78 [0.67–
0.88]

0.74 [0.51–
0.90]

STESS (cut-
off 3)

0.49 0.77 0.71 0.56 0.62 0.63 0.58

mSTESS 
(cut-off 4)

0.29 0.77 0.60 0.48 0.51 0.53 0.39

Death at dis-
charge

SVM-mortal-
ity model (8 
variables)c

0.87 [0.75–
1.0]

0.78 [0.58–
1.0]

0.49 [0.30–
1.0]

0.97 [0.92–
1.0]

0.79 [0.61–
0.96]

0.83 [0.68–
0.97]

0.63 [0.43–1.0]

STESS (cut-
off 3)

0.46 0.65 0.21 0.85 0.62 0.56 0.29

mSTESS 
(cut-off 4)

0.46 0.78 0.30 0.88 0.72 0.62 0.36

Recovery at 
6–12 months

SVM-
recovery 
model (11 
variables)d

0.86 [0.60–
1.0]

0.90 [0.75–
1.0]

0.93 [0.75–
1.0]

0.85 [0.60–
1.0]

0.88 [0.67–
1.0]

0.89 [0.65–
1.0]

0.89 [0.67–1.0]
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Outcome prediction at long‑term

Prediction of recovery at long‑term

All 32 surviving patients with poor outcome after SE under-
went a follow-up neurological evaluation at 6–12 months. 
Eighteen patients (56%) showed partial or total recovery of 
neurologic symptoms (Fig. 2).

Not one of the 51 evaluated biomarkers were significantly 
different between the 18 patients who recovered and the 
remaining 14 patients in the univariate analyses (Table 5). 
Nevertheless, we assessed their outcome predictive potential 
by multivariate analyses.

The SVM analysis revealed that the association of all the 
26 non-binary variables retained for multivariate analyses 
had a moderate predictive value (AUC = 0.56 [0.20–0.95]) 
for the patient evolution. Nevertheless, the prediction per-
formance was improved using the 11 most relevant markers, 
identified by a pruning procedure, (AUC = 0.86 [0.60–1.0], 
p < 0.001): apolipoprotein B, lipoprotein(a), phospholipids, 
NSE, sodium, chloride, urea, creatinine, white blood cell 
count, SE duration, and mRSbaseline. This “SVM-recovery 
model” was able to predict the recovery for 93% of the cases 
(PPV = 0.93, p < 0.001). Moreover, it was able to predict 
which patients will have persistent disability in 85% of the 
cases (negative predictive value, NPV = 0.85, p < 0.001).

Discussion

To better manage SE, tools that accurately predict out-
come, at discharge and at long-term, are needed. Current 
tools cannot be used to follow all SE patients over time: 
STESS and mSTESS scales can be applied for all patients 
but these scales used only pre-hospitalized data, and cannot 
be repeated to follow patient evolution in ICU; EMSE algo-
rithm covered only some SE etiologies; and END-IT scale 
requires MRI data [5–8]. Here, using a cohort of 81 patients 
and applying statistical methods to clinical and biochemi-
cal data, we found new clinico-biological markers able to 
accurately predict SE outcome at both short- and long-term.

Outcome prediction at discharge

We confirmed the higher risk of poor outcome for patients 
with RSE, higher SE duration and the lower risk for patients 
previously diagnosed with epilepsy [2, 3, 5, 8, 43]. We 
proposed two clinico-biological models able to accurately 
predict outcome at discharge. The SVM-functional model 
identified 10 variables that can be obtained quickly in all 
biochemistry departments and reflected non-neurologic 

Table 4   Estimation of the degree of worsening at discharge

The correlation between the markers and the difference between 
mRSdischarge and mRSbaseline was assessed with Spearman correlation 
analysis
The variables in bold were significantly associated with the degree of 
worsening at discharge
ALT alanine aminotransferase, AST aspartate aminotransferase, AU 
arbitrary unit, GCS Glasgow Coma Scale, mRS modified Rankin 
score, NSE neuron specific enolase, SE status epilepticus
a Markers not considered for multivariate analyses

Markers Spearman’s ρ 
estimate

p value

Age (years) − 0.068 0.88
Total cholesterol (g/L) − 0.303 0.14
Triglycerides (g/L) 0.377 0.047
HDL-cholesterol (g/L) − 0.482 0.009
Apolipoprotein B (g/L) 0.092 0.79
Lipoprotein(a) (g/L) − 0.162 0.58
Apolipoprotein E (mg/dL) 0.372 0.047
Free cholesterol (g/L) 0.156 0.58
Esterified cholesterol (g/L) − 0.474 0.009
Phospholipids (g/L) 0.074 0.86
NSE (µg/L) 0.099 0.79
S100B (µg/L) 0.226 0.37
Progranulin (ng/mL) 0.464 0.011
AST (UI/L) 0.273 0.20
ALT (UI/L) 0.214 0.37
γGT (UI/L) 0.177 0.51
Sodium (mmol/L) − 0.128 0.65
Potassium (mmol/L) 0.097 0.79
Chloride (mmol/L) − 0.004 0.99
Urea (mmol/L) 0.007 0.99
Creatinine (µmol/L) − 0.377 0.047
Platelet count (G/L) 0.028 0.95
Hemoglobin (g/dL) − 0.378 0.047
White blood cell count (G/L) 0.099 0.79
Previous epilepsy (%) − 1.739 0.037
SE acute (%) 2.031 0.007
SE remote (%) − 1.443 0.034
SE progressive (%) − 0.656 0.65
SE unknown etiology (%) − 0.486 0.62
SE duration (days) 0.491 0.0088
Refractory SE (%) 1.502 0.88
mRS baseline − 0.415 0.028
Prolonged super-refractory status epi-

lepticus (%)
1.977 0.028

Apolipoprotein A1 (g/L)a − 0.584 0.0018
TC/HDL-C (AU)a 0.367 0.047
Esterification ratio (EC/TC) (AU)a − 0.496 0.0088
TC/Phospholipids (AU)a − 0.477 0.009
GCS at enrollmenta − 0.421 0.028
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organ failure (hepatic [gamma GT, phospholipids] and sys-
temic dysfunctions [sodium, potassium, chloride]) [13], SE 
related brain injury [NSE] [29], critical illness severity or 
complications of treatment [platelet count, hemoglobin, 
white blood cell count] [33–37], and the functional state 
before SE highlighted by the mRSbaseline [43]. The LR-
functional model revealed the 3 most important markers 
to predict poor outcome: RSE, free cholesterol (FC) and 
phospholipids levels. Patients with RSE were more likely 
to have poor outcome at discharge [13]. Similarly, patients 
with higher FC levels had poor outcome more frequently. 
Accumulation of FC in neuronal cells was found respon-
sible to neuronal death [31]. This can lead to neurocogni-
tive sequelae and may explain the poorer prognosis. Con-
versely, patients with higher phospholipids levels had better 

outcome. Phospholipids composed cellular membranes and 
are essential for the proper functioning of membrane-bound 
proteins [44]. Decreased levels may disturb cellular mem-
branes properties and induce a membrane conformational 
change that would enhance cellular dysfunctions and subse-
quent sequelae [45]. Both models have similar performances 
to predict poor outcome but performances were lower for 
LR-functional model to predict good outcome (NPV = 0.56 
vs NPV = 0.73). Conversely to STESS and mSTESS scales, 
our both models might be applied several times during the 
ICU stay of the same patient, because they were built on 
data that can be monitored over time (with the exception of 
a clinical data measured only once for both scores, respec-
tively mRSbaseline for the SVM model and SE refractoriness 
for logistic regression model). The evolution of the model 

Table 5   Prognosis value of 
selected markers in predicting 
recovery after 6–12 months

ALT alanine aminotransferase, AST aspartate aminotransferase, mRS modified Rankin score, NSE neuron 
specific enolase, SE status epilepticus

Markers Mean values for patients 
without recovery

Mean values for 
patients with recovery

Mean R2 p value

Age (years) 54.6 48.7 0.027 0.66
Total cholesterol (g/L) 1.90 1.54 0.216 0.62
Triglycerides (g/L) 1.60 1.84 0.022 0.86
HDL-cholesterol (g/L) 0.44 0.34 0.099 0.62
Apolipoprotein B (g/L) 1.08 0.97 0.039 0.66
Lipoprotein(a) (g/L) 0.44 0.53 0.011 0.86
Apolipoprotein E (mg/dL) 5.66 5.64 0.010 0.98
Free cholesterol (g/L) 0.69 0.58 0.030 0.62
Esterified cholesterol (g/L) 1.24 1.00 0.106 0.62
Phospholipids (g/L) 2.32 2.20 0.015 0.83
NSE (µg/L) 18.24 17.01 0.008 0.86
S100B (µg/L) 0.19 0.13 0.042 0.62
Progranulin (ng/mL) 143.1 134.6 0.008 0.86
AST (UI/L) 141.3 42.8 0.034 0.62
ALT (UI/L) 150.1 51.2 0.053 0.62
γGT (UI/L) 110.8 185.5 0.031 0.62
Sodium (mmol/L) 142.1 140.2 0.046 0.62
Potassium (mmol/L) 3.64 3.87 0.067 0.62
Chlorine (mmol/L) 104.6 102.9 0.021 0.66
Urea (mmol/L) 5.40 5.70 0.005 0.86
Creatinine (µmol/L) 69.1 65.3 0.006 0.86
Platelet count (G/L) 223.1 359.1 0.130 0.62
Hemoglobin (g/dL) 11.6 10.3 0.143 0.62
White blood cell count (G/L) 10.7 10.4 0.006 0.90
Previous epilepsy (%) 40.0 60.0 0.003 0.86
SE acute (%) 40.0 60.0 0.010 0.86
SE remote (%) 37.5 62.5 0.002 0.86
SE progressive (%) 66.7 33.3 0.058 0.62
SE unknown etiology (%) 33.3 66.7 0.004 0.86
SE duration (days) 11.1 26.4 0.054 0.62
Refractory SE (%) 46.4 53.6 0.017 0.66
mRS baseline 1 0.5 0.060 0.62
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results could reflect the impact of neuroprotective or antiepi-
leptic drugs on the outcome (i.e., if the NSE levels decreased 
after the introduction of a new therapeutic, the results of the 
SVM-functional model will change and we should except a 
better prognosis at discharge). Alternatively, changes of the 
model results in the opposite way may indicate an increased 
risk of poor outcome.

To our knowledge, we proposed for the first time to com-
bine clinico-biological data to predict the degree of wors-
ening induced by SE. Our approach is particularly relevant 
to better manage SE and organize the medical care when 
leaving the ICU by providing information to physicians 
and families. The linear regression analysis revealed that 
the mRSbaseline, the total cholesterol level and the creatinine 
level are the best markers to assess the degree of worsen-
ing. Patients with lower mRSbaseline are more likely to have 
a higher degree of worsening at discharge. This result may 
be related to the frequency (22%) of New-Onset Refractory 
Status Epilepticus (NORSE) in our cohort. NORSE occurs 
in patients often young and without medical history [21]. 
These patients had the poorest outcome and the longest 
stay duration in ICU. They are often dependent in the first 
months after SE due to cognitive and motor sequelae. The 
high percentage of NORSE patients in our cohort can be 
explained by the enrollment of patients in an ICU unit spe-
cialized in super-refractory SE management. Patients with 
lower total cholesterol levels are more likely to present with 
a higher degree of worsening. We previously reported that 
SE patients had lower total cholesterol levels when com-
pared with control or epileptic patients [19]. The decrease 
of total cholesterol levels in SE patients hide different trends 
from the two subtypes of cholesterol: an increase of the free 
cholesterol, which is metabolically active, and a decrease 
of the esterified cholesterol, an inactive form stored in the 
liver. The decrease of total cholesterol content could there-
fore reflect an increase of the free cholesterol content which 
could induce neuronal death and impair outcome [31, 32]. 
Patients with lower creatinine levels presented with a higher 
degree of worsening. This may reflect the muscular atrophy 
induced by prolonged ICU stay, with a higher risk of critical 
illness neuropathy making patients dependent on walking 
with a value of mRSdischarge above 3.

Conversely to previous studies, we did not find a higher 
risk of mortality for older patients, patients with acute SE or 
with RSE [3, 5, 8, 43]. This can be explained by an enroll-
ment bias: most of our patients who presented with a super-
refractory SE were young and improved under immuno-
therapy [3, 46]. Our SVM-mortality model using the 8 most 
relevant markers was able to predict with a good accuracy 
the risk of mortality (AUC = 0.83, PPV = 0.49). The 8 vari-
ables can be obtained quickly and are either routinely avail-
able or easy to implement in all biochemistry departments, 
potentially allowing for easier integration in ICU. They 

reflected non-neurologic organ failure (hepatic [apolipo-
protein B, free cholesterol, alanine aminotransferase], renal 
[creatinine] and systemic dysfunctions [sodium]), of which 
a part is known to be associated with the risk of SE and 
its prognosis [37, 47], illness severity and complications of 
treatment [platelet count, white blood cell count] [33–37], 
and the inflammation process related to SE [progranulin] 
[29]. The SVM-mortality model allowed also to predict 
survival.

Outcome prediction at long‑term

We provided for the first-time a tool allowing the predic-
tion of recovery at long-term without brain MRI. It is par-
ticularly relevant in SE management: a high probability of 
recovery may prompt clinicians to continue anesthesia for an 
extended period of time before deciding to discontinue life 
sustaining therapies. It is also relevant to provide accurate 
long-term prognostication to families. Our SVM-recovery 
model predicted accurately the recovery with 11 variables. 
The selected variables reflected non-neurologic organ failure 
(hepatic [apolipoprotein B, lipoprotein(a), phospholipids], 
renal [urea, creatinine] and systemic dysfunctions [sodium, 
chloride]) [13], brain injury induced by SE [NSE] [26], ill-
ness severity (white blood cell count), and the disease sever-
ity highlighted by the SE duration [43]. The mRSbaseline was 
also retained by the algorithm: patients without previous 
disability may recover more easily. We may hypothesize 
that lower phospholipids levels may induce higher cellular 
dysfunctions and that disturbances may be less reversible.

There are three main findings in this study. First, we identi-
fied new clinico-biological markers that can be applied for 
hospitalized SE patients, to predict functional outcome and 
mortality at discharge. Second, we identified three variables 
that could estimate the degree of worsening induced by SE, 
which can help to adapt therapeutics. Finally, we identify a 
set of variables that accurately predicted recovery at long-
term when including variables obtained upon admission.

In our cohort, the SVM-functional model and SVM-
mortality model presented better results to assess the poor 
outcome and the mortality than previous scales—STESS 
and mSTESS. Nonetheless, these results have to be con-
firmed in an independent cohort and could be explained by 
an enrollment bias. Indeed, our study was conducted in a 
single cohort of patients, with various SE etiologies and 
duration. Seventy percent of our patients presented with a 
refractory SE. We specifically observed that patients with 
non-refractory SE and a poor outcome at discharge were 
most frequently misclassified. The higher percentage of 
refractory SE patients in our cohort could explain why previ-
ous publications using STESS and mSTESS scales reported 
better performances to assess poor outcome at discharge [10, 
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48, 49]. Therefore, the model’s performance for future use 
might be lower for patients with non-refractory SE. We did 
not identify reason for the misclassification of patients who 
will die after SE. Misclassified patients did not shared com-
mon pre-existing morbidities. The prediction of mortality at 
discharge has to be interpreted with caution as almost 80% 
of the patients died after the withdrawal of life sustaining 
therapies. Therefore, selected variables and performances 
might have been different in centers with other protocols. In 
addition, we were not able to distinguish, with the modified 
Rankin scale, patients with poor outcome related to periph-
eral neurologic sequelae, with great chances of recovery, and 
those with central neurologic sequelae, potentially irrevers-
ible. Therefore, we believe that clinicians will not be able to 
rely solely on the model’s result to decide to withdrawal life 
sustaining therapies.

This study is the first that provides an efficient frame-
work to predict functional outcome, mortality at discharge, 
and recovery at long-term. The reproducibility in statistical 
studies using machine learning models is a concern [50], 
wherein performance measures observed in one cohort may 
not be generalizable to others, possibly due to overfitting. To 
minimize the model overfitting and improve generalizability, 
we used a 1000-fold cross validation procedure and a 1000-
fold permutation test to control classifier’s performance. 
Our scores integrate biochemical data to reflect pathophysi-
ological mechanisms involved in SE excitotoxicity and 
consequences. Contrary to previous scales, these clinico-
biological models can be applied for all hospitalized SE 
patients, as the selected biochemical data are either routinely 
available or easy to implement in all biochemical depart-
ment. To address the issue of their clinical liability, these 
clinico-biological models can be highly operable in mobile 
devices, which would facilitate their use in routine ICU set-
ting [51]. Moreover, the output of the SVM and LR models 
which is simply a probabilistic risk score between 0 and 1 
is easily translatable in most settings because, unlike MRI 
and EEG, expertise of trained technicians and physicians is 
not required. Nonetheless, the association of neuroimaging 
(MRI) or neurophysiological (EEG) data to these clinico-
biological models may also improve model’s performance. 
It might be particularly interesting to look at EEG periodic 
discharges which have been demonstrated associated with 
poorer outcome [52]. Similarly, the consequences of status 
epilepticus can be visualized on MRI, which could be used 
to predict long-term recovery [53].

As the biochemical data can be evaluated several times 
during the ICU stay, it would be interesting to evaluate the 
capacity of these models to monitor SE patients over time 
and to follow the impact of a new therapeutic. In addition, as 
data can be obtained quickly, these models could be useful to 

define, upon admission, a targeted, sufficiently homogenous, 
population for further clinical trials to permit precise estima-
tion of treatment effect. Further studies are needed to evaluate 
the models’ performance in cohorts from other centers and 
to determine whether these models could be applied equally 
well whatever the SE refractoriness. In addition, further stud-
ies should evaluate the models’ performance for patients devel-
oping SE in the context of an acute brain injury.
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