Computer Simulation of Flow and Mass Transfer in a Bioprinted In-Vitro Device of Human Cancer Cells for Optimizing Oxygen Supply a Progress Report

Peter Farber, Simone Marasso

The Team

 National Research Council (CNR) Institute of Materials for Electronics and Magnetism (IMEM), IMEM Laboratory Torino Politecnico di Torino (PoliTO)

Contact person: Simone L. Marasso

(simoneluigi.marasso@imem.cnr.it)

https://www.imem.cnr.it/en/torino/509/contacts

IMH - Institute of Modelling and High-Performance Computing

Hochschule Niederrhein

Contact person: Peter Farber

(peter.farber@hs-niederrhein.de)

ORCID ID: http://orcid.org/0000-0002-7640-6555

https://www.hs-niederrhein.de/imh/

- A Few Words about the Labs at PoliTO
- A Few Words about IMH
- The Real Process
- First Results of Numerical Simulations
- Future Steps

A Few Words about the Labs at PoliTO - 1

Project members:

- Nanoscience Lab
- PolitoBIOMed Lab

francesca.frascella@polito.it

lucia.napione@polito.it

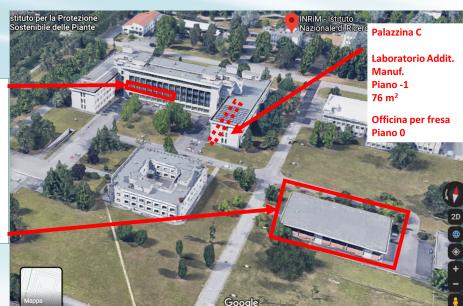
- Chi-Lab
- Piquet Lab

simone.marasso@polito.it

matteo.cocuzza@polito.it

A Few Words about the Labs at PoliTO - 2

- Polito^{Bio}Med biological field
 - Lab Cell culture & cell biology
 - Imaging Bioprinting
 - Biochemistry & molecular biology
 - Biomatrix preparation



A Few Words about the Labs at PoliTO - 3

- ChiLab Micro&Nano Technological field
 - Lab class 100 15 m²
 - Lab class 1000 45 m²
 - Lab class 10 000 90 m²
 - Biomatrix preparation
- PiQuET Micro&Nano
 - Technological field

- A Few Words about the Labs at PoliTO
- A Few Words about IMH
- The Real Process
- First Results of Numerical Simulations
- Future Steps

A Few Words about IMH - 1

- Members:
 - 4 professors
 - Computer Science, Parallel Systems
 - Robust Design Optimization, Mathematics,
 Optimization
 - Computer Simulation of Fluid Flow (Computational Fluid Dynamics, CFD)
 - 7 scientific assistants
 - 1 assistant for finance and organization

A Few Words about IMH - 2

- CPU-cluster "Europa" 512 cores / 2,0 TB RAM
- Cluster "fornix":
 - CPU-cluster 1.216 cores / 9,7 TB RAM
 - GPU-cluster 38 Nvidia A100 / 1,5 TB RAM
- 9 workstation (together 122 cores and 544 GB RAM)
- 75 permanent licenses Ansys Multiphysics
- 512 permanent parallel licenses Ansys Multiphysics
- DSMC OpenFOAM, software for coupling to Ansys
- And more ...

A Few Words about IMH - 3

The process of cooperation:

CFD experts: Definition of equations Checking which equations are in commercial CFD code Programing the missing equations

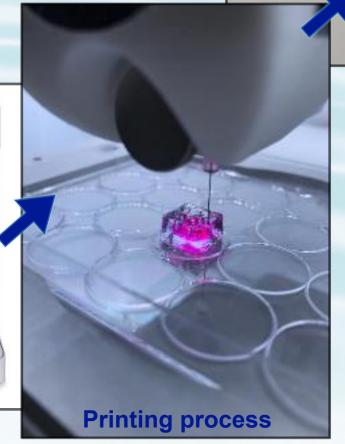
Joint:

- Critical examination simulation vs experiment
- Simulations to achieve goal
- Critical examination of experiments with implemented optimization

Expert of CFD Software laboratory

Expert of a real process: Delivers boundary conditions, material properties, reaction parameters and more ...

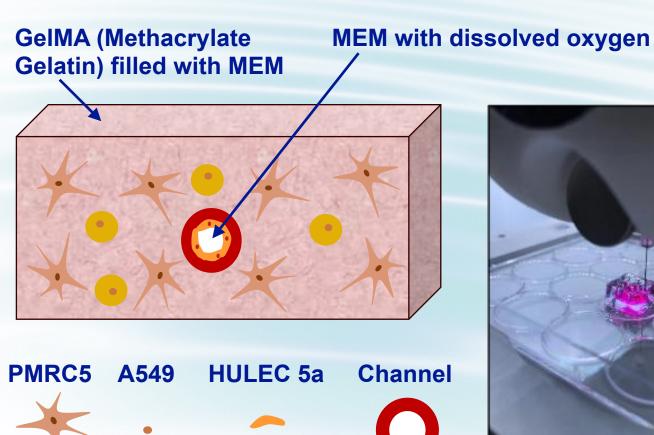
Discussion, mutual learning and joint definition: When are we successful? What is the goal?

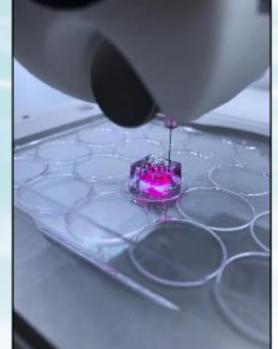

Expert of a real process Physical laboratory

Real process

- A Few Words about the Labs at PoliTO
- A Few Words about IMH
- The Real Process
- First Results of Numerical Simulations
- Future Steps

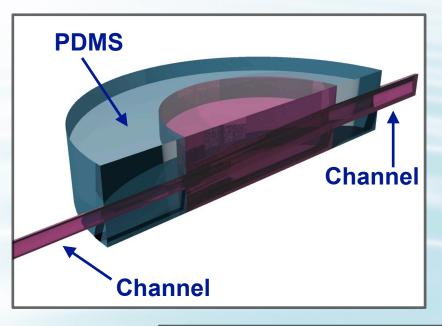
 Organ-on-a-Chip study for tumoral cells bioprinting

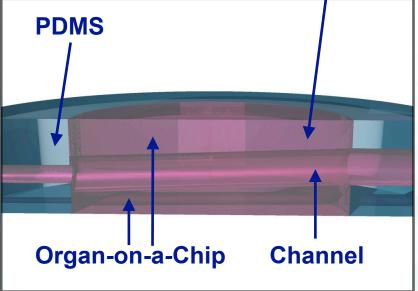


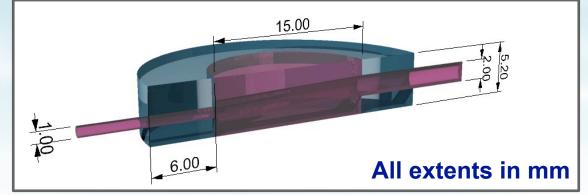


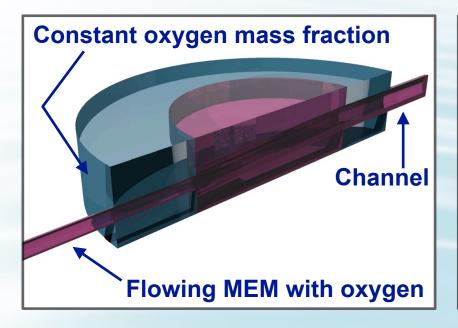
Assembled bioreactor

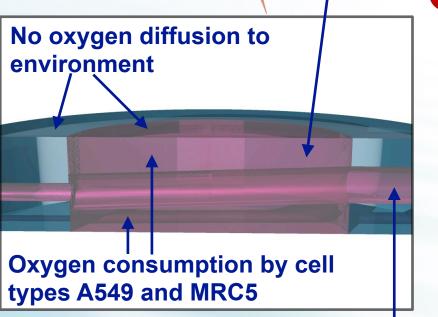
 Sketch of the bioprinted in-vitro device of human lungcancer






Solution domain: 3D CAD rendering

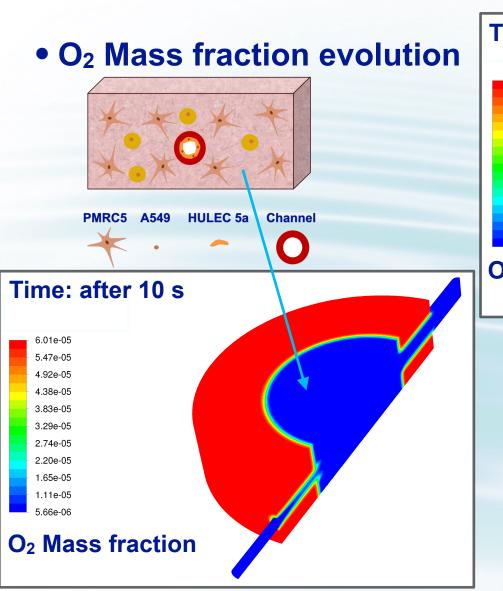


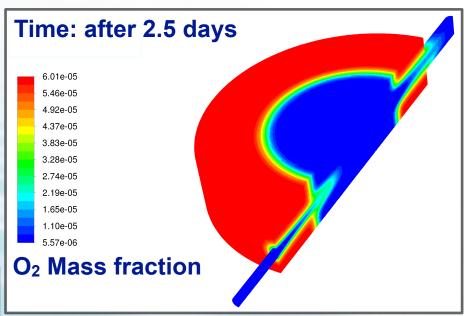


Boundary conditions

Flowing MEM with oxygen

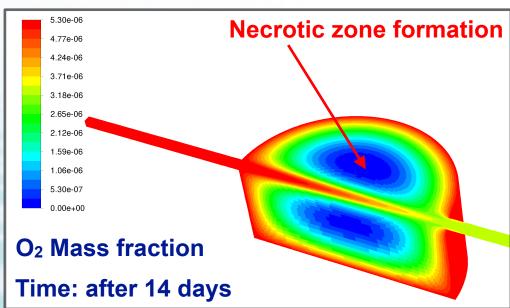
PMRC5 A549


HULEC 5a


Channel

- A Few Words about the Labs at PoliTO
- A Few Words about IMH
- The Real Process
- First Results of Numerical Simulations
- Future Steps

First Results of Numerical Simulations - 1



First Results of Numerical Simulations - 2

- Benefits of Computer simulation:
 - One can look inside a volume of a liquid or gas - at every point
 - This generates new insights into the process
 - and an increase of quality
 - as well as a shortening development time and cost

- A Few Words about the Labs at PoliTO
- A Few Words about IMH
- The Real Process
- First Results of Numerical Simulations
- Future Steps

Future Steps

- Implementation of additional program in Ansys Fluent to consider physical O₂ max fraction in MEM
- Check of iteration convergence and mesh convergence (i.e. check of numerical accuracy)
- Comparison with the O₂ evolution in the experimental model
- Avoid necrotic zones:
 - Optimization of the flow rate to obtain O₂
 optimal mass consumption with respect to
 MEM renewal in the OoC

References

Reference values

MEM

	Density [kg/	Viscosity	Flow rate [µl/
	m3]	[Pa s]	min]
MEM	1.01E+03	9.30E-04 ^[1]	200

O2 mass fraction in mem

	D COEF. O2 [m2/s]	Molarity in Medium	%wt of O2 in MEM
O2 mass fraction in MEM	2.88E-09	1.67E-04 ^[1]	5.30E-06

O2 consumption per cell (Kg/s)

·	Cell Type	#cell/ml	O2 consumption per cell [Kg/s]
O2 consumption	A549	1.50E+06	2.66E-18 ^[2]
	MRC5	1.50E+06	1.06E-17 ^[3]

 $[\]label{eq:continuous} \begin{tabular}{ll} [1] $https://www.pnas.org/doi/pdf/10.1073/pnas.91.25.12248 $https://www.pnas.91.25.12248 $https://www.pnas.91.25.1224 $https://www.pnas.91.25.$

^[2] https://www.pnas.org/doi/pdf/10.1073/pnas.91.25.12248

^[3]https://www.nature.com/articles/s41598-017-00130-x