

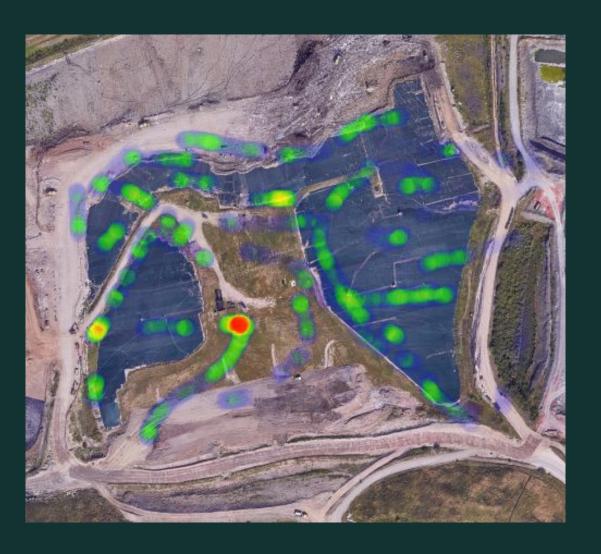
Data-Driven Solutions to monitor environmental risks

MethaneMapper

Monitor and reduce methane emissions at landfills and brownfield sites using an integrated solution of satellite data, ground sensors, and IoT technologies

TERRABOT

Disrupting agriculture through precision monitoring and sustainable practices using robotics and IoT technologies


Prevent wildfires through early detection of unusual patterns using a predictive cloud platform based on satellite data and ground sensors

Monitor river flows, flood risks, and water levels using satellite data, IoT devices, and advanced analytics for real-time flood risk management

MethaneMapper

Monitor and reduce methane emissions at landfills and brownfield sites using an integrated solution of satellite data, ground sensors, and IoT technologies

1 Key Features

- Mapping methane hotspots for better gas collection and emission reduction.
- Targeting landfill operators, brownfield developers, local authorities, and environmental consultants
- O Focuses on urban sustainability and innovative monitoring methods.

2 Partnerships

Politecnico di Milano, Suez Environment and Local Authorities across
UK and EU

3 Status

Prototype ready with scheduled pilots in UK, Italy, Spain and Africa

TERRABOT

Disrupting agriculture through precision monitoring and sustainable practices using robotics and IoT technologies.

1 Key Features

- A robotic platform designed to monitor soil health, crop conditions, and environmental factors in real time.
- Integrates satellite data, ground sensors, and Al
- Focuses on reducing resource waste and increasing agricultural yields for farmers.
- Enables small-scale and large-scale farmers to adopt precision farming techniques.

2 Impact

Enhances sustainable farming practices, reduces environmental impact, and increases resilience to climate change.

3 Status

Initial concept under development, aligning with disaster resilience goals.

WILDFIRE SENTINEL

Prevent wildfires through early detection of unusual patterns using a predictive cloud platform based on satellite and ground sensors

1 Key Features

- Combines advanced analytics with real-time monitoring to identify risks early.
- Aims to protect wild urban and suburban areas while enabling collaborative decision-making among stakeholders.
- Supports the stewardship and maintenance of wild urban and suburban spaces by transforming data into actionable insights.

2 Impact

Enhances disaster resilience, community safety, and urban ecosystem preservation.

3 Status

Initial concept under development, aligning with disaster resilience goals.

Monitor river flows, flood risks, and water levels using satellite data, IoT devices, and advanced analytics for real-time flood risk management

1 Key Features

- Deploys low-cost water level sensors combined with satellite imagery to provide accurate flood risk assessments.
- Includes predictive modeling of river flows and rainfall patterns to forecast flooding events.
- Integrates with local authority and emergency response systems for real-time alerts and response coordination.
- Targets communities, urban planners, and disaster resilience organizations to mitigate flooding impacts.

2 Impact

Reduces flood-related damages, supports infrastructure planning, and enhances climate resilience in vulnerable areas.

3 Status

Initial concept under development, aligning with disaster resilience goals.