The Asymmetric Steiner Traveling Salesman Path Problem ASTSPP - Open and Closed Tours' Efficient Determination in General Digraphs

34th Conference of the European Chapter on Combinatorial Optimization, ecco2021, Madrid 10.-11.06.2021,

Peter Hagen Richter

O&S Consultancy, Berlin, Germany, peterhrichter@online.de

1. Introduction

The Asymmetric Steiner Traveling Salesman Path Problem ASTSPP has been unattended in the past despite its vital importance for OR, navigation, logistics, defence, ... We are given a digraph \vec{G} with asymmetric arc weights $\vec{\lambda}$, start point s, target point t, and a subset $\Omega \subseteq V_G$. The objective is to find a shortest route from s to t in \vec{G} visiting all destinations Ω at least once. We start from the Traveling Salesman Problem TSP: "Given undirected complete graph G with edge length λ : $E_G \to \mathbb{R}_0^+$. Find a shortest Hamiltonian tour through V_G !".

TSP is NP-hard, Garey&Johnson 1979. We present an efficient ASTSPP-algorithm called $\mathfrak A$ that looks in digraphs \overrightarrow{G} for a function $\pi: \{0, 1, ..., |\Omega|+1\} \to \Omega \cup \{s, t\}$ with $\pi(0) := s$ and $\pi(|\Omega|+1) := t$ minimizing $\sum_{k=0}^{|\Omega|} d_{\overrightarrow{G}}(\pi(k), \pi(k+1))$ with shortest distances $d_{\overrightarrow{G}} \colon V_G^2 \to \mathbb{R}_{\geq 0}$ resulting to layout $\mathfrak{M} = \prod_{k=0}^{|\Omega|} P_{\overrightarrow{G}}(\pi(k), \pi(k+1))$ with shortest path $P_{\overrightarrow{G}}(x, y)$ from x to y in \overrightarrow{G} . Table 1 shows the relation of the ASTSPP with other TSP related NP-hard problems in order to show which problems \square can now be tackled by ASTSPP algorithm $\mathfrak A$.

Table 1. The TSP Problem Family – An Overview

Table 1. The 1st Fromem Family - An Overview.							
In graph G or digraph \overrightarrow{G} we look for a function π describing a) closed path b) $s-t-path$ c) closed walk c) $s-t-walk$ via $\Omega \subseteq V_G$		Instance 3=	Round trip?	G directed?	x∈ Ω to visit	$\Omega = V_G$?	
	TSP	Traveling Salesman Problem	$(G=K_n,\lambda)$	y	n	1	$V_{\rm G}$
	ATSP	Asymmetric TSP V _G	$(\vec{G} = \vec{K}_n, \vec{\lambda})$		у	1	
	TSPP	Traveling Salesman Path Problem	$(G=K_n, \lambda, s, t)$	n	n	1	
Ø	TSWP	Traveling Salesman Walk Problem.				≥ 1	_=ω
	ATSPP	Asymmetric TSPP	⇒ → →			1	
$\overline{\mathbf{V}}$	ATSWP	Asymmetric TSWP	$(\vec{G} = \vec{K}_n, \vec{\lambda}, s, t)$		У	≥ 1	
Ø	STSP	Steiner Trav. Salesman Problem	(G,λ,Ω)		n		
Ø	ASTSP	Asymmetric STSP	$(\vec{G}, \vec{\lambda}, \Omega)$	у	у	、 1	$V_{\rm G}$
Ø	STSPP	Steiner Trav, Salesman Path Problem	$(G, \lambda, \Omega, s, t)$		n	≥ 1	ଅ⊆
Ø	ASTSPP	Asymmetric STSPP	$(\vec{G}, \vec{\lambda}, \Omega, s, t)$	n	у		

Graph G or $K_n = (V_G, E_G), \lambda: E_G \to \mathbb{R}_{\geq 0},$ Digraph G or $\overline{K}_n = (V_G, E_{\overline{G}}), \overline{\lambda}: E_{\overline{G}} \to \mathbb{R}_{\geq 0},$ $\Sigma \in \Omega$ to be visited: $\Sigma \in \Omega$ to

 \square : Problems also efficiently tackled by algorithm \mathfrak{A} .

Since any algorithm that can process digraphs \vec{G} (like \mathfrak{A}) is also able to cope with undirected graphs $(\vec{\lambda}(x, y) = \vec{\lambda}(y, x) = \lambda(x, y))$ we can refer the following problems \square to be solved ASTSPP algorithm \mathfrak{A} :

TSWP:

Given: $G = K_n, \lambda, \{s, t\} \subset V_G$

Sought: Shortest *s-t*-walk meeting all $x \in V_G$ at least once.

Call: $\mathfrak{A}(G, \lambda, V_G, s, t, ...)$.

ATSWP:

Given: $\vec{G} = \vec{K}_n, \vec{\lambda}, \{s, t\} \subset V_G$,

Sought: Shortest s-t-walk meeting all $x \in V_G$ at least once.

Call: $\mathfrak{A}(\vec{G}, \vec{\lambda}, V_G, s, t, ...)$.

STSP:

Given: $G, \lambda, \Omega \subset V_G$,

Sought: Shortest tour meeting all $x \in \Omega$ at least once. Call: $\mathfrak{A}(G, \lambda, \Omega, s, t, ...)$ with an arbitrary $s = t \in V_G$.

ASTSP:

Given: \vec{G} , $\Omega \subset V_G$, $\vec{\lambda}$,

Sought: Shortest tour meeting all $x \in \Omega$ at least once.

Call: $\mathfrak{A}(\vec{G}, \vec{\lambda}, \Omega, s, t, ...)$ with an arbitrary $s = t \in V_G$...

STSPP:

Given: G, $\Omega \subset V_G$, λ , $\{s, t\} \subset V_G$

Sought: Shortest s-t-walk meeting all $x \in V_G$ at least once.

Call: $\mathfrak{A}(G, \lambda, \Omega, s, t, ...)$.

Figure 1 below gives a overview about the strategy algorithm $\mathfrak A$ proceeds.

Figure 1. Summarized strategy of ASTSPP algorithm Uvia interim findings A ...F

The success of algorithm $\mathfrak A$ relies on novel and very efficient meta-heuristics. Explaining them below leads to understanding of $\mathfrak A$.

 $P_{\mathbf{G}}(\boldsymbol{\pi}(i), \boldsymbol{\pi}(i+1)) \subset \mathbf{G}$, here without CCE.

scanning of T corresponding to D).

2. Meta-Heuristics used by Algorithm a

2.1 ASST – Advanced Scan of Spanning Trees

After a scan-entry α and a scan-exit β were determined (Figure 1 A) and after the locations $\Omega \subset V_G$ have been connected to a Steiner tree T (Figure 1 B) and after the Control path W= $P_T(\alpha, \beta)$ has been determined (Figure 1 C) ASST scans tree T adhering at W corresponding to Figure 1 D) as follows: ASST traces W from α and β padding π consecutively with each $x \in \Omega$ only if met for the first time. If ASST encounters a crossing $z \in V_W$ being the root of one or two bunches (left, right, or left and right of W) A proceeds scanning T depending on the last used scan direction (clockwise ω= 1, anticlockwise ω= 0): If currently holds ω= 1 (ω= 0) the left (right) bunch will be scanned first clockwise (anti-clockwise). If the bunch has been scanned and root z will be encountered again, ω will be changed to 0 (1) to scan the opposite bunch anti-clockwise (clockwise). Figure 1 E) shows the result if π is transformed to the catenation of the corresponding shortest paths $\mathfrak{M} = \prod_{k=0}^{|\Omega|} P_{\vec{G}}(\pi(k), \pi(k+1)).$

2.2 CCE – Confined Complete Enumeration

Meta-heuristic ASST fills π which each new location being encountered for the first time. Although the length $C(\pi)$ of routing π is sufficient enough, improvements mostly are possible with low effort as following: Considering the current partial bijection π : $\{1, 2, ..., \sigma\} \rightarrow \Omega$ with $\sigma \leq |\Omega|$, each time ASST finds a location $x \in \Omega$ and sets it into π by $\pi(++\sigma)$:=x, CCE rearranges the current last δ entities of π within the sequence $\pi(\sigma-\delta)$, $\pi(\sigma-\delta+1)$, $\pi(\sigma-\delta+2)$,..., $\pi(\sigma-1)$, $\pi(\sigma)$, $\pi(\sigma+1)$ where the inner nodes are taken for δ ! permutations for the last δ service nodes to get the least cost π' : $\{1, 2, ..., \sigma\}$

 σ , σ +1} $\to \Omega$ with weight $\sum_{k=\sigma-\delta}^{\sigma} d_G(\pi'(k), \pi'(k+1))$ for its current length σ +1. That is, while Tour() scans T using ASST to fill π , CCE optimizes the sequence of the last but one $2 \le \delta \le 5$ nodes contained already in π each time a new $x \in \Omega$ is added with $\pi(\sigma$ +1):= x to the end of π . Because $\delta \le 5$ time effort to calculate δ ! permutations is neglectable. Figure 1 F) should indicate how CCE improves the layout $\mathfrak M$ to $\mathfrak M$ ' with decreased cost $C(\pi')$.

2.3 TSE – Tree Structure Adaption

Some Steiner trees $T(\Omega) \subset G$ have substructures, where it is obvious that their modifications would improve π . Proposed is an efficient method that analyses T already during each execution of ASST to generate a well-founded proposal p to change $T \stackrel{f^D}{\to} T'$ in order to get an "improved" tree T' such that ASST applied for T' again provides better results. The four criteria χ_1 , ... χ_4 evaluate different cuts of T between some $p \in V_T$ and $q \in V_T$ to generate a proposal p = ((p, q), (w, z)) applied to T for a new tree T' as follows:

$$T' := (T \setminus \overline{\underline{P}_T(p, q)}) \cup \underline{\underline{P_G(w', z')}} \text{ with } (w', z') :=$$

bridge(w, z). I.e. the bidirectional path $\overline{P}_T(p, q) \subseteq T$ is to replace by path $\overline{P}_G(bridge(w, z)) \subseteq G$ where function bridge() is necessary to avoid cycles in T', more detailed in \underline{ASTSPP} publication on Research Gate.

3. Algorithm A

Figure 2 shows how $\mathfrak A$ proceeds using an outer cycle, executed with different pairs (α, β) , and an inner cycle that successively improves the tree $T \to T' \to T''$... till there is no tree improvement proposal or the cycle limit Γ is exhausted.

Figure 2. ASTSPP algorithm & corresponding to its implementation

 $STI(\Omega)$ – Build up Steiner Tree T O – priority queue containing pairs (scan-entry α , scan-exit β) with least distance to start α and target α – parameter to confine the TSA cycle α – orbit direction ASST has to begin with

Figure 3 A part of an ASTSPP-Route by \mathfrak{A} represented on the screen for $|\Omega| = 299$. The arc lengths there don't correspond to the real random cost λ : $E_G \to \mathbb{R}_{\geq 0}$. Although not represented each arc is coupled with its reverse one generally with different length.

Figure 3 shows the layout for $|\Omega|=299$ determined in a digraph \vec{G} with $\vec{\lambda}$: $E_{G2} \rightarrow [0, 40]$, $|V_G|=1.504$ and $|E_G|=5.864$ (high density $D=\frac{|E_G|/2}{|V_G|}=1,95!$). To not exceed the concern of this summary, for the test on different random graphs and the corresponding result evaluation we refer to the <u>ASTSPP publication</u> on Research Gate.

4. Conclusion

The deterministic $O(n^3)$ -algorithm $\mathfrak A$ has intensively been tested for open and closed tours. The tests used digital traffic maps \vec{G} without to twist them to complete ones, what enables the consideration of turn-restrictions, activating / deactivating one-way-streets, considering traffic jam, etc.

The new optimization features *Advanced Scan of Spanning Trees* ASST, *Confined Complete Enumeration* CCE and *Tree Structure Adaption* TSA show an impressive optimization potential: Determining the sample standard deviation q_{max} we used large set of random grid graphs with problem size $|\Omega|$ = 14 ($|\Omega|$ > 14: exuberant time consumption getting optimal results). Algorithm $\mathfrak A$ running ASST, CCE and TSA with $|\Theta|$ = 5 didn't surpass a sample standard deviation q_{max} = 1,86 %! Optimization feature CCE (δ = 5) contributes evenly over Ω for the most respectable result improvement.

The introduction of the *Priority Queue* Θ compared to the conventional use of $\mathbb{A} \times \mathbb{B}$ (choosing pairs $(\alpha, \beta) \in \mathbb{A} \times \mathbb{B}$) leads to an essential runtime reduction without to peril getting near-optimal results.

Regarding larger problem sizes $100 \le |\Omega| \le 1.000$, the common use of CCE and TSA gets 15% length improvement compared to the sole use of ASST!

Algorithm $\mathfrak A$ running on a 2,70 GHz PC using graph $\mathbf G_2$ with $|\Theta|=3$ retains real-time ability (t ≤ 2 sec) for the following problem sizes: (a) using TSA: $|\Omega|=115$, (b) not using TSA: $|\Omega|=1590$. That means that time-critical apps processing higher problem sizes should use CCE without TSA to keep real-time ability but with a loss of about 5% solution quality. Because $\mathfrak A$ tackles the cases

- (1) $(\Omega \subset V_G \& \Omega = V_G)$,
- (2) $(s \neq t \& s = t)$
- (3) (digraphs & undirected graphs) it efficiently solves not only ASTSPP but also TSWP, ATSWP, STSP ASTSP, STSPP!

Apart from the algorithm's efficiency, the special peculiarity of algorithm $\mathfrak A$ additionally lies in the following characteristics / requirements:

- Graphs are allowed to be directed (G) or undirected (\vec{G}). $\Rightarrow \mathfrak{A}$ takes G as \vec{G} with $\vec{\lambda}(x, y) = \vec{\lambda}(y, x) = \lambda(x, y)$).
- G
 can but must not necessarily be a complete graph.
 ⇒ G ⊂ K_n is the general case.
- Complying with symmetric and asymmetric arc costs.

 ⇒ "Asymmetric" problems are the general ones,
- Routes might visit only a subsets $\Omega \subseteq V_G$. \Rightarrow Not $\Omega = V_G$ but $\Omega \subseteq V_G$ is the normal case.
- Service locations might be visited more than once.

 ⇒ "Walks" for shorter routes require that.

- Walks and tours must be allowed.
 ⇒ "s-t-walks" as well tours (s=t) are to consider.
- \vec{G} can but must not comply with the triangle inequality.

 ⇒ normal case: a graph metric is not required,
- Turn restrictions are to observe for the route calculation.
 ⇒ Edge-queuing shortest path algorithms tackle this.
- Open or closed routes to built with same efficiency.

 ⇒ s=t or s≠t are equally to process.
- Drawing advantage from using planar graphs.

 ⇒ traffic maps are planar,

Algorithm A takes all these demands into account!