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1. Introduction

The Asymmetric Steiner Traveling Salesman Path Problem
ASTSPP has been unattended in the past despite its vital im-
portance for OR, navigation, logistics, defence, ... We are
given a digraph G with asymmetric arc weights X, start point
s, target point ¢, and a subset 2 € V;;. The objective is to find

a shortest route from s to 7 in G visiting all destinations Q at
least once. We start from the Traveling Salesman Problem
TSP: “Given undirected complete graph G with edge length
L Eg — R{. Find a shortest Hamiltonian tour through V!,

TSP is NP-hard, Garey&Johnson 1979. We present an effi-

cient ASTSPP-algorithm called U that looks in digraphs G
for a function w: {0, 1,..., |Q+1}— Q U {s, ¢} with n(0):=s
and m(Qf+1):= ¢ minimizing Y da(n(k),n(k+1)) with
shortest distances dg: Vé— R, resulting to layout

m=|| ' Pa(n(k), n(k+1)) with shortest path Pg (x, y) from
X to y in G. Table 1 shows the relation of the ASTSPP with
other TSP related VP-hard problems in order to show which

problems M can now be tackled by ASTSPP algorithm 2.

Table 1. The TSP Problem Family — An Overview.

In graph G or digraph G ol o | B
we look for a function = describing 2| 8 E
a) closed path b)s—t—path . o[ 3|25
viaQ € Vg Instance | S| S| G |>
N 1l
c) closed walk c¢)s—t—walk = Clolyld
TSP |Traveling Salesman Problem (G=K,, M) n 1
ATSP | Asymmetric TSP Vg G=K,, %) y y
TSPP |Traveling Salesman Path Problem 1 o
- (G=K,, A\, s, 1) n f
M TSWP |Traveling Salesman Walk Problem. >1f o
n
ATSPP | Asymmetric TSPP I 1
- (G=Kn, A s, 1) y
M ATSWP |Asymmetric TSWP >1
M STSP |Steiner Trav. Salesman Problem (G, \,Q) n
@ ASTSP |Asymmetric STSP @G % Q) Ty | =
>
M STSPP |Steiner Trav, Salesman Path Problem | (G, A, Q, s, 1) ni|- é’;’
I n
M ASTSPP | Asymmetric STSPP (G, A, Q1) y
Graph G or K,= (V¢, Eg), A: Eg— Ry, .
D'p ) a E-(GEG)X'EG RZO X€ Q to be visited:
igrap or K= (Vg, Eg), A: Eg—> Ry, 1 — exactly once
Destinations  Q c Vg, starts, target t, > 1 —at least once
Result: Function m:{1, 2, ...|Q[}—> Q,
M: Problems also efficiently tackled by algorithm 2L.

Since any algorithm that can process digraphs G (like ) is
also able to cope with undirected graphs (X(x, y)= X(y, X)=
MX, y)) we can refer the following problems M to be solved
ASTSPP algorithm U:
TSWP:
Given: G=K,, A, {s,t}C Vg,
Sought: Shortest s--walk meeting all x€ V; at least once.
Call: UG, A Vg, s, t,...).
ATSWP:
Given: G= I_(;l, X, {s, t}c Vg,
Sought: Shortest s-#-walk meeting all Xx€ V; at least once.
Call: UG, A Vg, st ...).

STSP:

Given: G, A, Qc Vg,

Sought: Shortest tour meeting all x€ Q at least once.

Call:  UA(G, A, ) s, ¢, ...) with an arbitrary s= ¢ € V.
ASTSP:

Given: 6, Qc Vg, X,

Sought: Shortest tour meeting all x€ Q at least once.

Call: UG, % s, ¢, ...) with an arbitrary s= ¢ € V..
STSPP:

Given: G, Qc Vg, A, {s,t}C Vg

Sought: Shortest s-#-walk meeting all x€ V;; at least once.

Call: UG, A Qs ¢, ...).


https://www.peterhrichter.de/ecco2021%20short.pdf
http://www.os-consultancy.de/

Figure 1 below gives a overview about the strategy algo-
rithm U proceeds.
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Figure 1. Summarized strategy of ASTSPP algorithm #via interim findings A ...F

The success of algorithm U relies on novel and very
efficient meta-heuristics. Explaining them below leads to
understanding of 2.
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2. Meta-Heuristics used by Algorithm %A

2.1 ASST - Advanced Scan of Spanning Trees

After a scan-entry a and a scan-exit f were determined (Fig-
ure 1 A) and after the locations Q c V;; have been connected
to a Steiner tree T (Figure 1 B) and after the Control path
W= Pr(a, B) has been determined (Figure 1 C) ASST scans
tree T adhering at W corresponding to Figure 1 D) as fol-
lows: ASST traces W from o and B padding © consecutively
with each x€ Q only if met for the first time. If ASST en-
counters a crossing z& Vi, being the root of one or two
bunches (left, right, or left and right of W) 2 proceeds scan-
ning T depending on the last used scan direction (clockwise
o= 1, anticlockwise @= 0): If currently holds ©= 1 (o= 0) the
left (right) bunch will be scanned first clockwise (anti-clock-
wise). If the bunch has been scanned and root z will be en-
countered again, ® will be changed to 0 (1) to scan the oppo-
site bunch anti-clockwise (clockwise). Figure 1 E) shows the
result if  is transformed to the catenation of the correspond-

ing shortest paths M= | | ll?:loPa(n(k), n(k+1)).

2.2 CCE - Confined Complete Enumeration

Meta-heuristic ASST fills = which each new location be-
ing encountered for the first time. Although the length C(=)
of routing = is sufficient enough, improvements mostly are
possible with low effort as following: Considering the cur-
rent partial bijection m: {1, 2, ..., 6}— Q with ¢ < |Q], each
time ASST finds a location xe Q and sets it into ©t by n(++
0):=X, CCE rearranges the current last 6 entities of @ within
the sequence n(c- 8), n(c- &+1), n(c- 8+2),..., n(c-1), (o),
n(c +1) where the inner nodes are taken for 3! permutations
for the last 6 service nodes to get the least cost ': {1, 2, ...,
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6, 0 +1} — Q with weight X.7_,_5dg(’(k), ©°(k+1)) for its
current length o+1. That is, while Tour() scans T using ASST
to fill &, CCE optimizes the sequence of the last but one 2 <
& < 5 nodes contained already in 7 each time a new x € Q is
added with m(o+1):= x to the end of 7. Because 4< 5 time
effort to calculate 8! permutations is neglectable. Figure 1 F)
should indicate how CCE improves the layout It to 9t* with
decreased cost C(1’).

2.3 TSE — Tree Structure Adaption

Some Steiner trees T(Q)c G have substructures, where it is
obvious that their modifications would improve 7. Proposed
is an efficient method that analyses T already during each
execution of ASST to generate a well-founded proposal p to

change T 2 T in order to get an “improved” tree T’ such
that ASST applied for T’ again provides better results. The
four criteria y;, .., evaluate different cuts of T between
some PE Vi and q€ V; to generate a proposal p= ((p, q),
(w, z)) applied to T for a new tree T as follows:
T' = (T\Pr(p,q) ) U Pg(w',z") with (w’, 2"):=

remove add

bridge(w, z). 1.e. the bidirectional path Pr(p, q) < T'is to re-

place by path Pg(bridge(w, z)) = G where function bridge()
is necessary to avoid cycles in T’, more detailed in ASTSPP
publication on Research Gate.

3. Algorithm «

Figure 2 shows how 21 proceeds using an outer cycle, exe-
cuted with different pairs (a, ), and an inner cycle that suc-
cessively improves the tree T — T — T’ ... till there is no
tree improvement proposal or the cycle limit I is exhausted.
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Figure 2.
ST1(€) — Build up Steiner Tree T

Tour() — Scanning T using ASST, CCE, TSA

ASTSPP algorithm 2 corresponding to its implementation

O — priority queue containing pairs (scan-entry a, scan-
exit §) with least distance to start s and target t

y - parameter to confine the TSA cycle

o — orbit direction ASST has to begin with
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Figure 3 A part of an ASTSPP-Route by ¥ represented on the screen for |Q) |=299. The arc lengths there don t correspond to the

real random cost 1: E; — Rsq. Although not represented each arc is coupled with its reverse one generally with different length.

Figure 3 shows the layout for |Q|= 299 determined in a digraph
G with A: Eg, — [0, 40], [Vg|= 1.504 and |E;|= 5.864 (high
density D= %= 1,951). To not exceed the concern of this
summary, for the test on different random graphs and the cor-

responding result evaluation we refer to the ASTSPP publica-
tion on Research Gate.

4. Conclusion

The deterministic O(n?)-algorithm U has intensively been
tested for open and closed tours. The tests used digital traffic
maps G without to twist them to complete ones, what enables
the consideration of turn-restrictions, activating / deactivat-
ing one-way-streets, considering traffic jam, etc.

The new optimization features Advanced Scan of Spanning
Trees ASST, Confined Complete Enumeration CCE and Tree
Structure Adaption TSA show an impressive optimization po-
tential: Determining the sample standard deviation q,,, We
used large set of random grid graphs with problem size |Q=
14 (JQ3] > 14: exuberant time consumption getting optimal re-
sults). Algorithm U running ASST, CCE and TSA with |®]=5
didn’t surpass a sample standard deviation g, = 1,86 %! Op-
timization feature CCE (&= 5) contributes evenly over (2 for
the most respectable result improvement.

The introduction of the Priority Queue ® compared to the
conventional use of A x B (choosing pairs (o, B)€ A x B)
leads to an essential runtime reduction without to peril get-
ting near-optimal results.

Regarding larger problem sizes 100< |QQ< 1.000, the com-
mon use of CCE and TSA gets 15% length improvement
compared to the sole use of ASST!

Algorithm U running on a 2,70 GHz PC using graph G,
with |®@|= 3 retains real-time ability (t <2 sec) for the following
problem sizes: (a) using TSA: |Q= 115, (b) not using TSA:
|Q= 1590. That means that time-critical apps processing
higher problem sizes should use CCE without TSA to keep
real-time ability but with a loss of about 5% solution quality.
Because U tackles the cases

(1) (Qc Vg & Q= V),

2) (s#t&s=1)

(3) (digraphs & undirected graphs)

it efficiently solves not only ASTSPP but also
TSWP, ATSWP, STSP ASTSP, STSPP!
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Apart from the algorithm’s efficiency, the special peculiarity
of algorithm U additionally lies in the following characteristics
/ requirements:

Graphs are allowed to be directed (G) or undirected (6).
= U takes G as G with X(x, y)= X(y, X)=MX, y)).

G can but must not necessarily be a complete graph.

= G C K, is the general case.

Complying with symmetric and asymmetric arc costs.
= “Asymmetric” problems are the general ones,
Routes might visit only a subsets Q € V.

= Not Q= V but Q € V;; is the normal case.

Service locations might be visited more than once.

= “Walks” for shorter routes require that.
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Walks and tours must be allowed.

= “s-t-walks” as well tours (s= ¢) are to consider.

G can but must not comply with the triangle inequality.
= normal case: a graph metric is not required,

Turn restrictions are to observe for the route calculation.
= Edge-queuing shortest path algorithms tackle this.
Open or closed routes to built with same efficiency.

= §=t or s# t are equally to process.

Drawing advantage from using planar graphs.

= traffic maps are planar,

Algorithm U takes all these demands into account!



