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1. Introduction 

The Asymmetric Steiner Traveling Salesman Path Problem 

ASTSPP has been unattended in the past despite its vital im-

portance for OR, navigation, logistics, defence, ... We are 

given a digraph G⃗⃗  with asymmetric arc weights λ⃗ , start point 

s, target point t, and a subset  ⊆ VG. The objective is to find 

a shortest route from s to t in G⃗⃗  visiting all destinations  at 

least once. We start from the Traveling Salesman Problem 

TSP: “Given undirected complete graph G with edge length 

λ: EG → ℝ0
+. Find a shortest Hamiltonian tour through VG!”. 

TSP is NP-hard, Garey&Johnson 1979. We present an effi-

cient ASTSPP-algorithm called 𝔄 that looks in digraphs G⃗⃗  

for a function π:{0, 1,..., ||+1}→  ∪ {s, t} with π(0):= s 

and π(||+1):= t minimizing ∑ d𝐆⃗⃗ 
||
k=0 (π(k),π(k+1)) with 

shortest distances dG⃗⃗ : V𝐆
2→ ℝ≥0 resulting to layout 

𝔐=││ P𝐆⃗⃗ k=0
||   

(π(k), π(k+1)) with shortest path PG⃗⃗  (x, y) from 

x to y in G⃗⃗ . Table 1 shows the relation of the ASTSPP with 

other TSP related NP-hard problems in order to show which 

problems  can now be tackled by ASTSPP algorithm 𝔄. 

 

Table 1.   The TSP Problem Family – An Overview. 

In graph G or digraph G⃗⃗  
we look for a function π describing  

a) closed path b) s t path

c) closed walk c)s t walk

− −

− −  via  ⊆ VG 
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 TSP Traveling Salesman  Problem (G= 𝐾𝑛, λ) 
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n 
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
=

 V
G

 

 ATSP Asymmetric TSP VG  (G⃗⃗ = 𝐾⃗⃗⃗ 𝑛, λ⃗ ) y 

 TSPP Traveling Salesman Path Problem 
(G= 𝐾𝑛, λ, s, t) 

n 

n 
1 

 TSWP Traveling Salesman Walk Problem.  ≥ 1 

 ATSPP Asymmetric TSPP 
(G⃗⃗ = 𝐾⃗⃗⃗ 𝑛, λ⃗ , s, t) y 

1 

  ATSWP Asymmetric TSWP  ≥ 1 

  STSP Steiner Trav. Salesman Problem (G, λ, ) 
y 

n 

 ≥ 1 


⊆

 V
G

   ASTSP Asymmetric STSP (G⃗⃗ , λ⃗ , ) y 

  STSPP Steiner Trav, Salesman Path Problem (G, λ, , s, t) 
n 

n 

  ASTSPP Asymmetric STSPP (G⃗⃗ , λ⃗ , , s, t) y 

Graph  G or 𝐾𝑛= (VG , EG ), λ: EG → ℝ≥0,  

Digraph  G⃗⃗  or 𝐾⃗⃗⃗ 𝑛= (VG , EG⃗⃗ ), λ⃗
 : EG⃗⃗ → ℝ≥0,  

Destinations   ⊆ VG ,  start s, target t, 

Result: Function π:{1, 2, …||}→ , 

: Problems also efficiently tackled by algorithm 𝔄. 

  x∈  to be visited: 

   1   –  exactly once 

  ≥ 1 – at least once 

 

Since any algorithm that can process digraphs G⃗⃗  (like 𝔄) is 

also able to cope with undirected graphs (λ⃗ (x, y)= λ⃗ (y, x)= 

λ(x, y)) we can refer the following problems  to be solved 

ASTSPP algorithm 𝔄: 

TSWP:  

Given:  G= 𝐾𝑛, λ, {s, t}⊂ V𝐆,  

Sought: Shortest s-t-walk meeting all x∈ V𝐆 at least once. 

Call: 𝔄(G, λ, VG, s, t, …). 

ATSWP:  

Given:  G⃗⃗ = 𝐾⃗⃗ 𝑛, λ⃗ , {s, t}⊂ V𝐆,  

Sought:  Shortest s-t-walk meeting all x∈ V𝐆 at least once. 

Call: 𝔄(G⃗⃗ , λ⃗ , VG, s, t, …). 

STSP: 

Given:  G, λ, ⊂ VG, 

Sought: Shortest tour meeting all x∈  at least once. 

Call: 𝔄(G, λ, , s, t, …) with an arbitrary s= t ∈ VG . 
ASTSP: 

Given:  G⃗⃗ , ⊂ VG , λ⃗ ,  

Sought: Shortest tour meeting all x∈  at least once. 

Call: 𝔄(G⃗⃗ , λ⃗ , , s, t, …) with an arbitrary s= t ∈ VG .. 
STSPP: 

Given:  G, ⊂ VG , λ, {s, t}⊂ V𝐆   

Sought: Shortest s-t-walk meeting all x∈ V𝐆 at least once. 

Call: 𝔄(G, λ, , s, t, …).  

https://www.peterhrichter.de/ecco2021%20short.pdf
http://www.os-consultancy.de/
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Figure 1 below gives a overview about the strategy algo-

rithm 𝔄 proceeds. 

 

 

 

 

 

A Take  and determine scan-entry α and exit β 

with least distance to s and t and α ≠ β. 

 
B Build the Steiner Tree T= T() spanning . 

 

 
 

 
C Build the control path W= PT(α, β) ⊂ T. D Scan T from α to β adhering to W with meta-

heuristic ASST to get routing function π. 

 
 

 
E Layout of routing π with interlinked walks  

P𝐆(π(i), π(i+1))⊂ G, here without CCE. 

 
F π honed by meta-heuristic CCE and TSA running 

scanning of T corresponding to D). 

  

Figure 1. Summarized strategy of ASTSPP algorithm 𝔄 via interim findings A …F 

 

The success of algorithm 𝔄 relies on novel and very 

efficient meta-heuristics. Explaining them below leads to 

understanding of  𝔄.  
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2. Meta-Heuristics used by Algorithm 𝔄 

2.1 ASST – Advanced Scan of Spanning Trees 

After a scan-entry α and a scan-exit β were determined (Fig-

ure 1 A) and after the locations  ⊂ VG have been connected 

to a Steiner tree T (Figure 1 B) and after the Control path 

W= PT(α, β) has been determined (Figure 1 C) ASST scans 

tree T adhering at W corresponding to Figure 1 D) as fol-

lows: ASST traces W from α and β padding π consecutively 

with each x∈  only if met for the first time. If ASST en-

counters a crossing z∈ VW being the root of one or two 

bunches (left, right, or left and right of W) 𝔄 proceeds scan-

ning T depending on the last used scan direction (clockwise 

ω= 1, anticlockwise ω= 0): If currently holds ω= 1 (ω= 0) the 

left (right) bunch will be scanned first clockwise (anti-clock-

wise). If the bunch has been scanned and root z will be en-

countered again, ω will be changed to 0 (1) to scan the oppo-

site bunch anti-clockwise (clockwise). Figure 1 E) shows the 

result if π is transformed to the catenation of the correspond-

ing shortest paths  𝔐=││ P𝐆⃗⃗ k=0
||   

(π(k), π(k+1)). 

2.2 CCE – Confined Complete Enumeration 

Meta-heuristic ASST fills π which each new location be-

ing encountered for the first time. Although the length C(π) 

of routing π is sufficient enough, improvements mostly are 

possible with low effort as following: Considering the cur-

rent partial bijection π:{1, 2, …, σ}→  with σ ≤ ||, each 

time ASST finds a location x∈  and sets it into π by π(++ 

σ)≔x, CCE rearranges the current last δ entities of π within 

the sequence π(σ- δ), π(σ- δ+1), π(σ- δ+2),..., π(σ-1), π(σ), 

π(σ +1) where the inner nodes are taken for δ! permutations 

for the last δ service nodes to get the least cost π′: {1, 2, …, 

σ, σ +1} →  with weight ∑ dG
σ
k=σ- δ (π’(k), π’(k+1)) for its 

current length σ+1. That is, while Tour() scans T using ASST 

to fill π, CCE optimizes the sequence of the last but one 2 ≤ 

δ ≤ 5 nodes contained already in π each time a new x∈  is 

added with π(σ+1)≔ x to the end of π. Because δ≤ 5 time 

effort to calculate δ! permutations is neglectable. Figure 1 F) 

should indicate how CCE improves the layout 𝔐 to 𝔐` with 

decreased cost C(π’).   

2.3 TSE – Tree Structure Adaption 

Some Steiner trees T()⊂ G  have substructures, where it is 

obvious that their modifications would improve π. Proposed 

is an efficient method that analyses T already during each 

execution of ASST to generate a well-founded proposal 𝓅 to 

change T 


→ 𝐓′ in order to get an “improved” tree 𝐓′ such 

that ASST applied for  T′ again provides better results. The 

four criteria χ1, ..χ4 evaluate different cuts of T between 

some 𝕡∈ VT and 𝕢∈ VT to generate a proposal 𝓅= ((𝕡, 𝕢), 

(w, z)) applied to T for a new tree T′ as follows: 

T′ := (T \ P̅T(𝕡, 𝕢)⏟    
remove

 ) ∪ P𝐆(w
′, z′)⏟      

add

  with (w’, z’):=  

bridge(w, z). I.e. the bidirectional path P̅T(𝕡, 𝕢)   is to re-

place by path P̅𝐆(bridge(w, z))  G where function bridge() 

is necessary to avoid cycles in T′, more detailed in ASTSPP 

publication on Research Gate.  

3. Algorithm 𝔄 

Figure 2 shows how 𝔄 proceeds using an outer cycle, exe-

cuted with different pairs (α, β), and an inner cycle that suc-

cessively improves the tree T → T’ → T’’ … till there is no 

tree improvement proposal  or the cycle limit Γ is exhausted. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

W:= 𝐏𝐓(, )⊆ T; 

ran(π)≔0;  

π(0)≔ s; π(||+1)≔ t; 

 

T:= 

ST1(); 

stein:=0; 

(, 𝓹∗ vary):=  

Tour(G, ,T,dG , s, t, α, β, ω); 

with ASST, CCE, TSA  

 

y 

y 

n 

y 
n 

T 
∗

   T′ ; T≔ T′ ;  
stein:= 1; 

 

∀ ((, ), ωs):Θ ×{0, 1};  

if(s∈ :{≔ \{s}};  

if(t∈ : {≔ \{t}}; 

first:= stein≔ 1;  

Build  ||:= 𝑛𝑆 ; 

Start 
n 

y 

n 

Stop 

TSA  

first? 

y 

n 
 ++γ < Γ? 

y 

𝛑∗:= ;  

first:= 0; 

 

C() < C(𝛑∗)? 
γ:= 0; 

 

ASST, CCE and TSA  
are executed in functions 

succ() and scan()  

contained in Tour() 

n 

vary?  

stein? 

∀((, ), ω) 
applied?  

 
Figure 2.  ASTSPP algorithm 𝔄 corresponding to its implementation  

ST1() – Build up Steiner Tree T  

Tour() – Scanning T using ASST, CCE, TSA 

Θ – priority queue containing pairs (scan-entry α, scan-

exit β) with least distance to start s and target t 

γ -  parameter to confine the TSA cycle 

ω – orbit direction ASST has to begin with 

 

https://www.researchgate.net/publication/353915221_The_Asymmetric_Steiner_Traveling_Salesman_Path_Problem_ASTSPP_-_Open_and_Closed_Tours'_Efficient_Determination_in_General_Digraphs
https://www.researchgate.net/publication/353915221_The_Asymmetric_Steiner_Traveling_Salesman_Path_Problem_ASTSPP_-_Open_and_Closed_Tours'_Efficient_Determination_in_General_Digraphs


4 / 5 

 

  

Figure 3   A part of an ASTSPP-Route by 𝔄 represented on the screen for | |= 299. The arc lengths there don’t correspond to the 

real random cost λ: 𝐸𝐺 → ℝ≥0. Although not represented each arc is coupled with its reverse one generally with different length. 

 

Figure 3 shows the layout for ||= 299 determined in a digraph 

G⃗⃗  with λ⃗ : EG2 → [0, 40], |VG|= 1.504 and |EG|= 5.864 (high 

density D= 
|E𝐺|/2

|V𝐺|
= 1,95!). To not exceed the concern of this 

summary, for the test on different random graphs and the cor-

responding result evaluation we refer to the ASTSPP publica-

tion on Research Gate. 

4. Conclusion 

The deterministic O(𝑛3)-algorithm 𝔄 has intensively been 

tested for open and closed tours. The tests used digital traffic 

maps G⃗⃗  without to twist them to complete ones, what enables 

the consideration of  turn-restrictions, activating / deactivat-

ing one-way-streets, considering traffic jam, etc.  

The new optimization features Advanced Scan of Spanning 

Trees ASST, Confined Complete Enumeration CCE and Tree 

Structure Adaption TSA show an impressive optimization po-

tential: Determining the sample standard deviation qmax we 

used large set of random grid graphs with problem size ||= 

14 (|| > 14: exuberant time consumption getting optimal re-

sults). Algorithm 𝔄 running ASST, CCE and TSA with |Θ|= 5 

didn’t surpass a sample standard deviation qmax= 1,86 %! Op-

timization feature CCE (δ= 5) contributes evenly over  for 

the most respectable result improvement.  

The introduction of the Priority Queue Θ compared to the 

conventional use of 𝔸  𝔹 (choosing pairs (α, )∈ 𝔸  𝔹) 

leads to an essential runtime reduction without to peril get-

ting near-optimal results. 

Regarding larger problem sizes 100≤ ||≤ 1.000, the com-

mon use of CCE and TSA gets 15% length improvement 

compared to the sole use of ASST!  

Algorithm 𝔄 running on a 2,70 GHz PC using graph 𝐆2 

with |Θ|= 3 retains real-time ability (t ≤ 2 sec) for the following 

problem sizes: (a) using TSA: ||= 115, (b) not using TSA: 

||= 1590. That means that time-critical apps processing 

higher problem sizes should use CCE without TSA to keep 

real-time ability but with a loss of about 5% solution quality. 

Because 𝔄 tackles the cases 

(1) (⊂ V𝐆 & = V𝐆),  

(2) (s ≠ t & s= t)  

(3) (digraphs & undirected graphs) 

it efficiently solves not only ASTSPP but also 

TSWP, ATSWP, STSP ASTSP, STSPP!  

  

file:///C:/Users/Peter/AppData/Roaming/Microsoft/Word/Fig.%2012.docx
https://www.researchgate.net/publication/353915221_The_Asymmetric_Steiner_Traveling_Salesman_Path_Problem_ASTSPP_-_Open_and_Closed_Tours'_Efficient_Determination_in_General_Digraphs
https://www.researchgate.net/publication/353915221_The_Asymmetric_Steiner_Traveling_Salesman_Path_Problem_ASTSPP_-_Open_and_Closed_Tours'_Efficient_Determination_in_General_Digraphs
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Apart from the algorithm’s efficiency, the special peculiarity 

of algorithm 𝔄 additionally lies in the following characteristics 

/ requirements: 

 Graphs are allowed to be directed (G) or undirected (G⃗⃗ ). 

 𝔄 takes G as G⃗⃗  with λ⃗ (x, y)= λ⃗ (y, x)= λ(x, y)). 

 G⃗⃗  can but must not necessarily be a complete graph.  

 G ⊂ 𝐾𝑛 is the general case. 

 Complying with symmetric and asymmetric arc costs.  

 “Asymmetric” problems are the general ones, 

 Routes might visit only a subsets  ⊆ VG.  

 Not = VG but  ⊆ VG is the normal case. 

 Service locations might be visited more than once. 

 “Walks” for shorter routes require that. 

 Walks and tours must be allowed. 

 “s-t-walks” as well tours (s= t) are to consider. 

 G⃗⃗  can but must not comply with the triangle inequality.  

 normal case: a graph metric is not required, 

 Turn restrictions are to observe for the route calculation.  

 Edge-queuing shortest path algorithms tackle this. 

 Open or closed routes to built with same efficiency.  

 s= t or s≠ t are equally to process.  

 Drawing advantage from using planar graphs. 

 traffic maps are planar, 

Algorithm 𝔄 takes all these demands into account! 

 

 


