
1 / 5

The Asymmetric Steiner Traveling Salesman Path Problem ASTSPP -

Open and Closed Tours’ Efficient Determination in General Digraphs

34th Conference of the European Chapter on Combinatorial Optimization, ecco2021, Madrid 10.-11.06.2021,

Peter Hagen Richter

O&S Consultancy, Berlin, Germany, peterhrichter@online.de

1. Introduction

The Asymmetric Steiner Traveling Salesman Path Problem

ASTSPP has been unattended in the past despite its vital im-

portance for OR, navigation, logistics, defence, ... We are

given a digraph G⃗⃗ with asymmetric arc weights λ⃗ , start point

s, target point t, and a subset  ⊆ VG. The objective is to find

a shortest route from s to t in G⃗⃗ visiting all destinations  at

least once. We start from the Traveling Salesman Problem

TSP: “Given undirected complete graph G with edge length

λ: EG → ℝ0
+. Find a shortest Hamiltonian tour through VG!”.

TSP is NP-hard, Garey&Johnson 1979. We present an effi-

cient ASTSPP-algorithm called 𝔄 that looks in digraphs G⃗⃗

for a function π:{0, 1,..., ||+1}→  ∪ {s, t} with π(0):= s

and π(||+1):= t minimizing ∑ d𝐆⃗⃗
||
k=0 (π(k),π(k+1)) with

shortest distances dG⃗⃗ : V𝐆
2→ ℝ≥0 resulting to layout

𝔐=││ P𝐆⃗⃗ k=0
||

(π(k), π(k+1)) with shortest path PG⃗⃗ (x, y) from

x to y in G⃗⃗ . Table 1 shows the relation of the ASTSPP with

other TSP related NP-hard problems in order to show which

problems  can now be tackled by ASTSPP algorithm 𝔄.

Table 1. The TSP Problem Family – An Overview.

In graph G or digraph G⃗⃗
we look for a function π describing

a) closed path b) s t path

c) closed walk c)s t walk

− −

− − via  ⊆ VG

Instance

 ℑ= R
o
u
n
d
 t

ri
p
?

G
 d

ir
e
c
te

d
?

x
∈
 

 t
o
 v

is
it


=

 V
G

?

 TSP Traveling Salesman Problem (G= 𝐾𝑛, λ)
y

n
1


=

 V
G

 ATSP Asymmetric TSP VG (G⃗⃗ = 𝐾⃗⃗⃗ 𝑛, λ⃗) y

 TSPP Traveling Salesman Path Problem
(G= 𝐾𝑛, λ, s, t)

n

n
1

 TSWP Traveling Salesman Walk Problem. ≥ 1

 ATSPP Asymmetric TSPP
(G⃗⃗ = 𝐾⃗⃗⃗ 𝑛, λ⃗ , s, t) y

1

  ATSWP Asymmetric TSWP ≥ 1

  STSP Steiner Trav. Salesman Problem (G, λ, )
y

n

 ≥ 1


⊆

 V
G

  ASTSP Asymmetric STSP (G⃗⃗ , λ⃗ , ) y

  STSPP Steiner Trav, Salesman Path Problem (G, λ, , s, t)
n

n

  ASTSPP Asymmetric STSPP (G⃗⃗ , λ⃗ , , s, t) y

Graph G or 𝐾𝑛= (VG , EG), λ: EG → ℝ≥0,

Digraph G⃗⃗ or 𝐾⃗⃗⃗ 𝑛= (VG , EG⃗⃗), λ⃗
 : EG⃗⃗ → ℝ≥0,

Destinations  ⊆ VG , start s, target t,

Result: Function π:{1, 2, …||}→ ,

: Problems also efficiently tackled by algorithm 𝔄.

 x∈  to be visited:

 1 – exactly once

 ≥ 1 – at least once

Since any algorithm that can process digraphs G⃗⃗ (like 𝔄) is

also able to cope with undirected graphs (λ⃗ (x, y)= λ⃗ (y, x)=

λ(x, y)) we can refer the following problems  to be solved

ASTSPP algorithm 𝔄:

TSWP:

Given: G= 𝐾𝑛, λ, {s, t}⊂ V𝐆,

Sought: Shortest s-t-walk meeting all x∈ V𝐆 at least once.

Call: 𝔄(G, λ, VG, s, t, …).

ATSWP:

Given: G⃗⃗ = 𝐾⃗⃗ 𝑛, λ⃗ , {s, t}⊂ V𝐆,

Sought: Shortest s-t-walk meeting all x∈ V𝐆 at least once.

Call: 𝔄(G⃗⃗ , λ⃗ , VG, s, t, …).

STSP:

Given: G, λ, ⊂ VG,

Sought: Shortest tour meeting all x∈  at least once.

Call: 𝔄(G, λ, , s, t, …) with an arbitrary s= t ∈ VG .
ASTSP:

Given: G⃗⃗ , ⊂ VG , λ⃗ ,

Sought: Shortest tour meeting all x∈  at least once.

Call: 𝔄(G⃗⃗ , λ⃗ , , s, t, …) with an arbitrary s= t ∈ VG ..
STSPP:

Given: G, ⊂ VG , λ, {s, t}⊂ V𝐆

Sought: Shortest s-t-walk meeting all x∈ V𝐆 at least once.

Call: 𝔄(G, λ, , s, t, …).

https://www.peterhrichter.de/ecco2021%20short.pdf
http://www.os-consultancy.de/

2 / 5

Figure 1 below gives a overview about the strategy algo-

rithm 𝔄 proceeds.

A Take  and determine scan-entry α and exit β

with least distance to s and t and α ≠ β.

B Build the Steiner Tree T= T() spanning .

C Build the control path W= PT(α, β) ⊂ T. D Scan T from α to β adhering to W with meta-

heuristic ASST to get routing function π.

E Layout of routing π with interlinked walks

P𝐆(π(i), π(i+1))⊂ G, here without CCE.

F π honed by meta-heuristic CCE and TSA running

scanning of T corresponding to D).

Figure 1. Summarized strategy of ASTSPP algorithm 𝔄 via interim findings A …F

The success of algorithm 𝔄 relies on novel and very

efficient meta-heuristics. Explaining them below leads to

understanding of 𝔄.

3 / 5

2. Meta-Heuristics used by Algorithm 𝔄

2.1 ASST – Advanced Scan of Spanning Trees

After a scan-entry α and a scan-exit β were determined (Fig-

ure 1 A) and after the locations  ⊂ VG have been connected

to a Steiner tree T (Figure 1 B) and after the Control path

W= PT(α, β) has been determined (Figure 1 C) ASST scans

tree T adhering at W corresponding to Figure 1 D) as fol-

lows: ASST traces W from α and β padding π consecutively

with each x∈  only if met for the first time. If ASST en-

counters a crossing z∈ VW being the root of one or two

bunches (left, right, or left and right of W) 𝔄 proceeds scan-

ning T depending on the last used scan direction (clockwise

ω= 1, anticlockwise ω= 0): If currently holds ω= 1 (ω= 0) the

left (right) bunch will be scanned first clockwise (anti-clock-

wise). If the bunch has been scanned and root z will be en-

countered again, ω will be changed to 0 (1) to scan the oppo-

site bunch anti-clockwise (clockwise). Figure 1 E) shows the

result if π is transformed to the catenation of the correspond-

ing shortest paths 𝔐=││ P𝐆⃗⃗ k=0
||

(π(k), π(k+1)).

2.2 CCE – Confined Complete Enumeration

Meta-heuristic ASST fills π which each new location be-

ing encountered for the first time. Although the length C(π)

of routing π is sufficient enough, improvements mostly are

possible with low effort as following: Considering the cur-

rent partial bijection π:{1, 2, …, σ}→  with σ ≤ ||, each

time ASST finds a location x∈  and sets it into π by π(++

σ)≔x, CCE rearranges the current last δ entities of π within

the sequence π(σ- δ), π(σ- δ+1), π(σ- δ+2),..., π(σ-1), π(σ),

π(σ +1) where the inner nodes are taken for δ! permutations

for the last δ service nodes to get the least cost π′: {1, 2, …,

σ, σ +1} →  with weight ∑ dG
σ
k=σ- δ (π’(k), π’(k+1)) for its

current length σ+1. That is, while Tour() scans T using ASST

to fill π, CCE optimizes the sequence of the last but one 2 ≤

δ ≤ 5 nodes contained already in π each time a new x∈  is

added with π(σ+1)≔ x to the end of π. Because δ≤ 5 time

effort to calculate δ! permutations is neglectable. Figure 1 F)

should indicate how CCE improves the layout 𝔐 to 𝔐` with

decreased cost C(π’).

2.3 TSE – Tree Structure Adaption

Some Steiner trees T()⊂ G have substructures, where it is

obvious that their modifications would improve π. Proposed

is an efficient method that analyses T already during each

execution of ASST to generate a well-founded proposal 𝓅 to

change T


→ 𝐓′ in order to get an “improved” tree 𝐓′ such

that ASST applied for T′ again provides better results. The

four criteria χ1, ..χ4 evaluate different cuts of T between

some 𝕡∈ VT and 𝕢∈ VT to generate a proposal 𝓅= ((𝕡, 𝕢),

(w, z)) applied to T for a new tree T′ as follows:

T′ := (T \ P̅T(𝕡, 𝕢)⏟
remove

) ∪ P𝐆(w
′, z′)⏟

add

 with (w’, z’):=

bridge(w, z). I.e. the bidirectional path P̅T(𝕡, 𝕢)   is to re-

place by path P̅𝐆(bridge(w, z))  G where function bridge()

is necessary to avoid cycles in T′, more detailed in ASTSPP

publication on Research Gate.

3. Algorithm 𝔄

Figure 2 shows how 𝔄 proceeds using an outer cycle, exe-

cuted with different pairs (α, β), and an inner cycle that suc-

cessively improves the tree T → T’ → T’’ … till there is no

tree improvement proposal or the cycle limit Γ is exhausted.

W:= 𝐏𝐓(, )⊆ T;

ran(π)≔0;

π(0)≔ s; π(||+1)≔ t;

T:=

ST1();

stein:=0;

(, 𝓹∗ vary):=

Tour(G, ,T,dG , s, t, α, β, ω);

with ASST, CCE, TSA

y

y

n

y
n

T
∗

 T′ ; T≔ T′ ;
stein:= 1;

∀ ((, ), ωs):Θ ×{0, 1};

if(s∈ :{≔ \{s}};

if(t∈ : {≔ \{t}};

first:= stein≔ 1;

Build  ||:= 𝑛𝑆 ;

Start
n

y

n

Stop

TSA

first?

y

n
 ++γ < Γ?

y

𝛑∗:= ;

first:= 0;

C() < C(𝛑∗)?
γ:= 0;

ASST, CCE and TSA
are executed in functions

succ() and scan()

contained in Tour()

n

vary?

stein?

∀((, ), ω)
applied?

Figure 2. ASTSPP algorithm 𝔄 corresponding to its implementation

ST1() – Build up Steiner Tree T

Tour() – Scanning T using ASST, CCE, TSA

Θ – priority queue containing pairs (scan-entry α, scan-

exit β) with least distance to start s and target t

γ - parameter to confine the TSA cycle

ω – orbit direction ASST has to begin with

https://www.researchgate.net/publication/353915221_The_Asymmetric_Steiner_Traveling_Salesman_Path_Problem_ASTSPP_-_Open_and_Closed_Tours'_Efficient_Determination_in_General_Digraphs
https://www.researchgate.net/publication/353915221_The_Asymmetric_Steiner_Traveling_Salesman_Path_Problem_ASTSPP_-_Open_and_Closed_Tours'_Efficient_Determination_in_General_Digraphs

4 / 5

Figure 3 A part of an ASTSPP-Route by 𝔄 represented on the screen for | |= 299. The arc lengths there don’t correspond to the

real random cost λ: 𝐸𝐺 → ℝ≥0. Although not represented each arc is coupled with its reverse one generally with different length.

Figure 3 shows the layout for ||= 299 determined in a digraph

G⃗⃗ with λ⃗ : EG2 → [0, 40], |VG|= 1.504 and |EG|= 5.864 (high

density D=
|E𝐺|/2

|V𝐺|
= 1,95!). To not exceed the concern of this

summary, for the test on different random graphs and the cor-

responding result evaluation we refer to the ASTSPP publica-

tion on Research Gate.

4. Conclusion

The deterministic O(𝑛3)-algorithm 𝔄 has intensively been

tested for open and closed tours. The tests used digital traffic

maps G⃗⃗ without to twist them to complete ones, what enables

the consideration of turn-restrictions, activating / deactivat-

ing one-way-streets, considering traffic jam, etc.

The new optimization features Advanced Scan of Spanning

Trees ASST, Confined Complete Enumeration CCE and Tree

Structure Adaption TSA show an impressive optimization po-

tential: Determining the sample standard deviation qmax we

used large set of random grid graphs with problem size ||=

14 (|| > 14: exuberant time consumption getting optimal re-

sults). Algorithm 𝔄 running ASST, CCE and TSA with |Θ|= 5

didn’t surpass a sample standard deviation qmax= 1,86 %! Op-

timization feature CCE (δ= 5) contributes evenly over  for

the most respectable result improvement.

The introduction of the Priority Queue Θ compared to the

conventional use of 𝔸  𝔹 (choosing pairs (α, )∈ 𝔸  𝔹)

leads to an essential runtime reduction without to peril get-

ting near-optimal results.

Regarding larger problem sizes 100≤ ||≤ 1.000, the com-

mon use of CCE and TSA gets 15% length improvement

compared to the sole use of ASST!

Algorithm 𝔄 running on a 2,70 GHz PC using graph 𝐆2

with |Θ|= 3 retains real-time ability (t ≤ 2 sec) for the following

problem sizes: (a) using TSA: ||= 115, (b) not using TSA:

||= 1590. That means that time-critical apps processing

higher problem sizes should use CCE without TSA to keep

real-time ability but with a loss of about 5% solution quality.

Because 𝔄 tackles the cases

(1) (⊂ V𝐆 & = V𝐆),

(2) (s ≠ t & s= t)

(3) (digraphs & undirected graphs)

it efficiently solves not only ASTSPP but also

TSWP, ATSWP, STSP ASTSP, STSPP!

file:///C:/Users/Peter/AppData/Roaming/Microsoft/Word/Fig.%2012.docx
https://www.researchgate.net/publication/353915221_The_Asymmetric_Steiner_Traveling_Salesman_Path_Problem_ASTSPP_-_Open_and_Closed_Tours'_Efficient_Determination_in_General_Digraphs
https://www.researchgate.net/publication/353915221_The_Asymmetric_Steiner_Traveling_Salesman_Path_Problem_ASTSPP_-_Open_and_Closed_Tours'_Efficient_Determination_in_General_Digraphs

5 / 5

Apart from the algorithm’s efficiency, the special peculiarity

of algorithm 𝔄 additionally lies in the following characteristics

/ requirements:

 Graphs are allowed to be directed (G) or undirected (G⃗⃗).

 𝔄 takes G as G⃗⃗ with λ⃗ (x, y)= λ⃗ (y, x)= λ(x, y)).

 G⃗⃗ can but must not necessarily be a complete graph.

 G ⊂ 𝐾𝑛 is the general case.

 Complying with symmetric and asymmetric arc costs.

 “Asymmetric” problems are the general ones,

 Routes might visit only a subsets  ⊆ VG.

 Not = VG but  ⊆ VG is the normal case.

 Service locations might be visited more than once.

 “Walks” for shorter routes require that.

 Walks and tours must be allowed.

 “s-t-walks” as well tours (s= t) are to consider.

 G⃗⃗ can but must not comply with the triangle inequality.

 normal case: a graph metric is not required,

 Turn restrictions are to observe for the route calculation.

 Edge-queuing shortest path algorithms tackle this.

 Open or closed routes to built with same efficiency.

 s= t or s≠ t are equally to process.

 Drawing advantage from using planar graphs.

 traffic maps are planar,

Algorithm 𝔄 takes all these demands into account!

