

Organoids Organoid-chip

Construction & Functional Verification of Biopsy-Derived, Cell / Structure / Function-Specific Organoid-Chip

ORGANOPlus delivers an animal-free, human-relevant evaluation platform

The optimal evaluation solution accurately assessing novel modalities without animal testing and accelerating drug-development efficiency

Platform Technology

Intestinal Organoid Chip Platform for Advanced Probiotic Discovery

Limitations of Conventional Probiotic Discovery

Molecular Mechanisms in a Villus-Specific Organoid-Chip

Bifidobacterium binds to mucin through sortase-dependent pilli. Ishikawa et al. (2021) iScience, **21**, 103363.

Platform Technology

Intestinal Organoid Chip Platform for Advanced Probiotic Discovery

Establishing human intestinal structural specificity

B. adolescentis enhances epithelial barrier Integrity by increasing the expression of occluding and Villin 1 (VIL1).

Microfluidic gut-on-a-chip with three-dimensional villi structure.

Biomedical microdevices 19 (2), 37, 2017

Facilitates bacterial adhesion-rate analysis

	SY827 생균수	Cell 생존률
Standard method	8.3	94.8
Simple oil method	96.1	88.7
Organoid-Chip	92.0	92.8

Molecular mechanism-of-action analysis

SY827 helps maintain mucosal homeostasis in inflammatory conditions

Disease-specific model

Recapitulating intestinal characteristics

Platform Technology

Multi-inlet Hanging Dripper (MHD)-based Tumor Model

Multi-inlet hanging drop (MSG) Platform

Competitive Advantage

Multiplexed injection control

Optimized for high-throughput and high-efficiency screening

Strategic Significance

Large-scale screening

 $\label{eq:mechanisms} \textbf{Mechanisms}, \ \textbf{drug penetration}, \ \textbf{and combination the rapies}$

Strong competitiveness in cost, speed, and automation

Scalable Use Cases

Mechanism-of-action verification for anticancer drugs
Assessment of drug penetration, resistance, and toxicity
Preclinical evaluation of immuno-oncology therapeutics
PK-PD (pharmacokinetic–pharmacodynamic) simulation

Cancer organoids enable efficient validation of anticancer therapies

The new paradigm creator an organoid-chip solution that finally delivers precise evaluation for human-microbiome therapeutics where conventional assays fail

Rising gut disorders and the rapid advancement of the functional-food sector are fueling demand for sophisticated intestinal models

Prof. Sejong Oh Chonnam Univ.

- In-house strain bank
- Metabolomics analysis databank
- Spheroid-based gut organoids
- Efficacy evaluation and MoA studies for the target indication

Live-Biotherapeutic Product Evaluation Solution

Companies are focused on discovering novel strains and rigorously validating their efficacy

- The human-microbiome therapeutics market is forecast to USD 3.2 billion by 2034. 31.1 % CAGR
- Bifidobacterium probiotic, used to treat gastrointestinal di sorders, enhance immune function, anticancer benefits
- Bifidobacterium is a strict anaerobe, cultivation hurdles can be overcome

Drug repurposing represents a high-growth business segment for pharmaceutical companies, offering superior risk-adjusted returns as an R&D strategy.

The 97 % attrition in oncology pipelines can be transformed into a new-purpose opportunity

Organoid-chip platforms equipped with virus specific infection models make rigorous drug repurposing screens feasible

Collaborative project with Institute for Basic Science (IBS)

- In vivo efficacy testing in ferret models
- SARS-CoV-2 infection assays using human lung organoids

A Highly Scalable Organoid-Chip Platform Converging anti-cancer Drug Discovery, Precision Medicine, Companion Diagnostics, and Functional Nutrition

Oncology Therapeutic Evaluation Solution

- √ MoA verification for anticancer drugs
- √ Assessment of drug penetration, resistance, and toxicity
- ✓ Preclinical evaluation of immuno-oncology therapeutics
- √ PK-PD simulation

Collaborative project with Prof. Jung-Eon Lee (Samsung Medical Center)

Companion-Animal Precision Evaluation Solution

- ✓ Animal-Derived Organoid Chips in Companion-Animal Cancer Diagnostics
- ✓ Cancer is the leading cause of death in 47 % of dogs and 32 % of cats
- √ The pet-oncology diagnostics segment already exceeds USD 2 billion and is expanding at ~8 % CAGR

By integrating GenesisEGO

Organoid-chip platform, Al-powered companion-animal healthcare ecosyste m complete with advanced interpretive analytics

By fusing organoid-on-chip technology with strategic AI modeling, accurately predict clinical trial outcomes eliminating the need for animal testing

Al-enhanced PBPK modeling using organoid-chip data

1. Clinic-Grade Predictive Accuracy

Organoid-on-chip experiments now correlate with Phase I/II read-outs at >90 % concordance

2. AI-Enhanced PBPK Modeling

Real-time chip data feed a machine-learning PK-PD engine that simula tes human ADME providing dose-selection guidance regulators accept as *in-silico* evidence.

3. Genomic Toxicology & Biomarker Discovery

Chip-derived drug-response transcripts are mined to flag off-target to xicity signatures and identify companion-diagnostic biomarkers—laying the groundwork for personalized regimens.

Seong-Pil Han, M.D., Ph.D.

Professor, College of Medicine,
The Catholic University of Korea

Absorption & Toxicity Prediction Solution

- ✓ Absorption Clarity Organoid- Chip to PBPK modelling predict s human tissue exposure months before first-in-human.
- ✓ Mechanism-linked Toxicity Genomic and functional biomar kers pinpoint off-target pathways; enables rational back-up chemistry.
- ✓ Regulatory Advantage Package delivers NAM-compliant hu man data, aligning with FDA & EMA push to reduce animals.

the leading causes of clinical attrition, poor absorption and hidden toxicity into solvable, data-driven steps, giving pharma a faster, safer path to approval while slashing R&D waste

Overview ORGANOPIUS

COMPANY OVERVIEW

Company Name	ORGANOPlus Co., Ltd.
CEO	Shin Jaeyoung (Ph.D.)
Date Incorporated	2025.6.10
Equity Capital	100 million won(KRW)
Employees	4
Business Area	Organoid-on-a-Chip Platform – Preclinical human microphysiology testing Gut-on-a-Chip Efficacy Suite – Microbiome and probiotic efficacy validation Al-PBPK / ADME-T Engine – Al-powered pharmacokinetic and toxicity prediction
Website	organoplus.kr
Headquarters	Suite 85216, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea

VISION

Shin Jaeyoung | PhD, CEO

Globally recognized expert in translational oncology, organoidbased modeling, and precision medicine

- **Ph.D. in Biomedical Sciences** from the Max Planck Institute for Heart and Lung Research in Germany, Molecular mechanisms of early tumorigenesis and cardiac development.
- Postdoctoral research at the University Medical Center Mainz, exploring protein signaling networks and kinase pathways involved in cancer progression.
- **Project Leader** at MERCK (Darmstadt, Germany), MOA elucidation, biomarker identification, and early clinical development strategies.
- Professor at the Center for Translational Medicine, St. Anne's University
 Hospital Brno in the Czech Republic, Patient-derived 3D organoids to model
 therapeutic responses and advance precision oncology. led ERC-funded
 research
- Director, PharmCADD, led R&D in Al-based drug discovery
- Director of R&D at AtoGen, leading projects in microbiome therapeutics (LBPs), and functional material screening.

ACCOMPLISHMENT

· Elucidated the early-stage mechanisms of tumorigenesis research at MPI, Germany

Max-Planck-Institut für Herz- und Lungenforschung W.G. Kerckhoff-Institut

MAAAS

Led Kinome-based discovery of novel immuno-oncology targets at MERCK Germany

· Professor of Translational Research in Precision Medicine

About CSO

Park Sungsu | PhD, CSO

Professor, Mechanical Engineering, Sungkyunkwan University

Education

- Ph.D. Food Science, Cornell University
- M.Sc. Food Science, Cornell University
- B.Sc. Microbiology, Pusan National University

Experience

- CEO, HanginBio, Ltd. / CSO, ORGANOPlus Co., Ltd.
- Professor, School of Mechanical Engineering, Sungkyunkwan University
- Full Professor, Dept. of Chemistry and Nano Sciences, Ewha Womans Univertsity
- Visiting Professor & Co-Principal Investigator, Mechanobiology Institute(MBI), National University of Singapore
- Assistant Professor, Division of Nano Sciences, Ewha Womans University
- Post-doc, Dept. of Physics, Princeton University
- Post-doc, Dept. of Bioengineering, Cornell University
- Post-doc, Dept. of Biological Information, Tokyo Institute of Technology

CURRENT WORKS

3D porous membrane

Janus []

- Non-powered blood plasma separation
- Porous electrode for POCT
- Smart mask for real-time disease monitoring

Tumor-on-a-chip

- 3D TIME model in MSG
- 3D Hanging spheroid plate
- Spheroid elongation assay

Organ-on-a-chip

- Recapitulating intestinal HCoV infection with human villi-on-chip.
- Investigating HCoV infection pathology in human gut.
- Infection mechanism & Antiviral discovery.

Key Publications

ACS Publications

Virus-Focused Gut-on-Chip Publications

No	Title	Journal	Year
1	Integration of Nanobiosensors into Organ-on-Chip Systems for Monitoring Viral Infections	Nano Converg	2024
2	Mechanisms of Plasma Ozone and UV-C Sterilization of SARS-CoV-2 Explored through Atomic Force Microscopy	ACS Appl. Mater. Interfaces	2024
3	Potential of bioprinted intestine-on-chip models in advancing understanding of human coronavirus infections and drug screening	Int. J. Bioprinting	2024
4	3D Printed Fluidic Swab for COVID-19 Testing with Improved Diagnostic Yield and User Comfort	Nano Converg	2023
5	Mobile Efficient Diagnostics of Infectious Diseases via On-Chip RT-qPCR: MEDIC-PCR	Adv. Sci.	2023
6	Organ-on-a-Chip for Studying Gut-Brain Interaction Mediated by Extracellular Vesicles in the Gut Microenvirnonment	Int. J. Mol. Sci	2021
7	Gut-Kidney Axis on Chip for Studying Effects of Antibiotics on Risk of Hemolytic Uremic Syndrome by Shiga Toxin-Producing <i>Escherichia coli</i>	Toxins	2021
8	Fast and Easy Disinfection of Coronavirus-Contaminated Face Masks Using Ozone Gas Produced by a Dielectric Barrier Discharge Plasma Generator	Environ. Sci. Technol. Lett.	2021
9	Integrated Microfluidic Preconcentration and Nucleic Amplification System for Detection of Influenza a Virus H1N1 in Saliva	Micromachines	2020
10	Three-dimensional in vitro gut model on a villi-shaped collagen scaffold.	Biochip J.	2017
11	Microfluidic gut-on-a-chip with three-dimensional villi structure	Biomed. Microdevices	2017
12	A microfluidic cell culture device (µFCCD) to culture epithelial cells with physiological and morphological properties that mimic those of the human intestine	Biomed. Microdevices	2015
13	Three-dimensional intestinal villi epithelium enhances protection of human intestinal cells from bacterial infection by inducing mucin expression	Integr. Biol	2014

