

Ephion Health is a digital health company revolutionising the monitoring of chronic patients

Using wearables and artificial intelligence to create new clinically validated digital biomarkers

WHAT

Ephion Health measures functional capacity

HOW

Multiple sources of data and Artificial Intelligence

WHY

To identify new digital biomarkers

WHO

Healthcare Providers
Clinical Decision Support Tool
Pharmaceutical companies
Prove the efficacy of drugs

FUNCTIONAL CAPACITY (FC): an individual's capacity for performing key tasks of daily living

FC IS A KEY METRIC OF
disease severity, progression and efficacy of therapy

Clinical Trials with FC assessments

Avg. YoY GROWTH 12%

Aging
Stroke
Oncology
Respiratory
Orthopaedics
Cardiovascular
Neuromuscular Diseases
1st product

Global spending on
clinical trials for
these conditions:
\$40 billion a year
by 2025

PROBLEM

Traditional methods to measure FC are **subjective** and show **low sensitivity**.

Functional Tests

6 Minutes Walk Test

Activities	Extreme Difficulty or Unable to Perform Activity	Quite a Bit of Difficulty	Moderate Difficulty	A Little Bit of Difficulty	No Difficulty
a. Any of your usual work, homework, or school activities.	0	1	2	3	4
b. Your usual hobbies, recreational or sporting activities.	0	1	2	3	4
c. Getting into or out of the bath.	0	1	2	3	4
d. Walking between rooms.	0	1	2	3	4
e. Putting on your shoes or socks.	0	1	2	3	4
f. Squatting.	0	1	2	3	4
g. Lifting an object, like a bag of groceries from the floor.	0	1	2	3	4
h. Performing light activities around your home.	0	1	2	3	4
i. Performing heavier activities around your home.	0	1	2	3	4
j. Getting into or out of a car.	0	1	2	3	4
k. Walking 2 blocks.	0	1	2	3	4
l. Walking a mile.	0	1	2	3	4
m. Going up or down 10 stairs (about 1 flight of stairs).	0	1	2	3	4
n. Stand for 1 hour.	0	1	2	3	4
o. Sitting for 1 hour.	0	1	2	3	4
p. Running on even ground.	0	1	2	3	4
q. Running on uneven ground.	0	1	2	3	4
r. Making sharp turns while running fast.	0	1	2	3	4
s. Hopping.	0	1	2	3	4
t. Rolling over in bed.	0	1	2	3	4
Column Totals:					

Questionnaires

Patient Reported Outcomes

Clinical and pharmaceutical research are **slow and inefficient**.

Our AI based system brings a precise and sensitive solution

Functional test with Wearables

Doctor & patient REPORTING

Continuos Monitoring

Google Fit Apple Health

App smartphone

AI Analysis cloud

Biomarker results site

We integrate data from multiple sources, analyse it with artificial intelligence and provide a disease specific biomarker of patient functional capacity

Sensorization of tests

- 3rd party wearables: **Ephion Health is hardware agnostic.**
- **High Usability:** seamless **integration with current protocols** and test.
- **Plug-and-play**

IMU & Heart rate

Plantar Pressure

Surface electromyography

Movesense MD Sensor & Movella DOT

- Single channel ECG, Heart rate, R-R intervals
- 9-axis movement sensor: 3 x accelerometer, 3 x gyroscope, 3 x magnetometer
- Configurable sample rates
- In-built memory for logging data
- Bluetooth® Low Energy (BLE)
- Water (IP68) and shock proof construction

Moticon OpenGo & Sensoria smart-sock

- 16 Plantar Pressure Sensors: 0,25N/cm² resolution
- 6-axis movement sensor: 3 x accelerometer, 3 x gyroscope
- Configurable sample rates
- In-built memory for logging data
- Bluetooth® Low Energy (BLE)

Myontec MBody3

- 6 EMG biosignal channels: Quadriceps, Hamstrings, Gluteus
- 9-axis movement sensor: 3 x accelerometer, 3 x gyroscope, 3 x magnetometer
- Configurable sample rates
- In-built memory for logging data
- Bluetooth® Low Energy (BLE)

ECG & Respiratory rate

Acousto-mechanical sensing

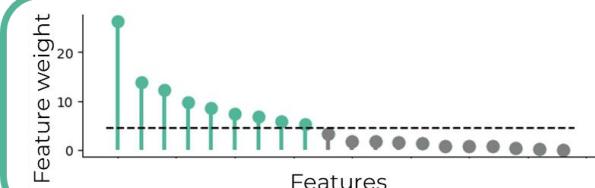
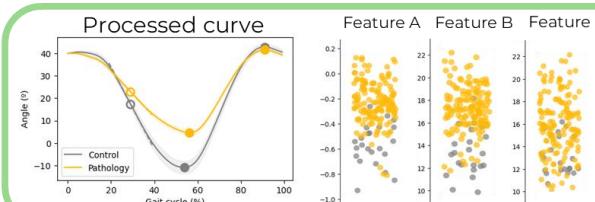
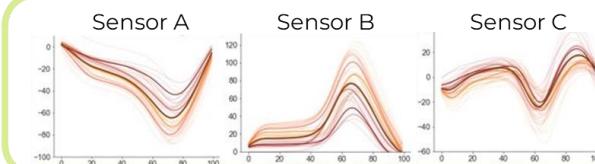
Grip strength

Vivalink - ECG Patch Monitor

- ECG rhythm
- Heart rate
- Heart rate variability
- RR-interval
- Respiratory rate
- Skin temperature
- Step count
- Posture
- 3-Axis accelerometer

Sibel Health - Aria

- Swallow count
- Cough count
- Talk time
- Movement
- Body position
- Skin temperature
- Fall count




Squegg

AI Analysis

Our algorithms analyze patient data to **reliably measure** disease progression and **response to treatment**.

Multiple source raw data

Processed curves and feature evaluation

Stability
Balance
Muscular Weakness
Symmetry
Disease specific Biomarker
Gait score

Current calculated parameters

Spatio-temporal parameters	
Parameters	Definition
Distance (m)	Distance covered by the patient during the test
Number of steps	Steps walked during the test
Speed (m/s)	Velocity of the patient gait
Cadence (steps/min)	Number of steps per minutes
Stride length (m)	Length in meters of a gait cycle normalized to height
Stride velocity (m/s)	Velocity in meters / second of a gait cycle
Stance phase (%)	Percentage of time in stance phase, foot- ground contact, on the overall gait cycle.
Swing phase (%)	Percentage of time in swing phase, foot in the air, on the overall gait cycle.
Single Support (%)	Percentage of time in single support, one foot on the ground, on the overall gait cycle.
Double Support (%)	Percentage of time in double support, both feet on the ground, on the overall gait cycle.
Step duration (s)	Time taken to perform a step

Cardiorespiratory parameters	
Parameters	Definition
Heart Rate (bpm)	Evolution of the heart rate value throughout the test
R - R intervals	Time intervals between consecutive heart beats
Heart Rate Variability (SDNN)	Variability of RR intervals calculated as the standard deviation of RR intervals
Initial values of Heart Rate (bpm)	Mean value of the first 15 samples of signal
Final values of Heart Rate (bpm)	Mean value of the last 10 samples of signal
Mean Heart Rate (bpm)	Mean value of the heart rate signal
Heart Rate tendency	Slope between initial heart rate mean and final heart rate mean
Heart Rate signal area	Area under the curve of heart rate signal
Heart Rate variability	Standard deviation of heart rate signal (in all signal, on the first 15 samples and the last 10 samples)
Heart Rate values on countdown phase (bpm)	Mean of heart rate countdown signal (rest signal)
RMSDD (ms)	Root mean square of successive differences between R-R
Initial values of R-R intervals	Mean value of the first 15 samples of signal
Final values of R-R intervals	Mean value of the last 10 samples of signal
Mean R-R intervals	Mean value of the heart rate signal
R-R intervals tendency	Slope between initial heart rate mean and final heart rate mean
R-R intervals signal area	Area under the curve of R-R signal

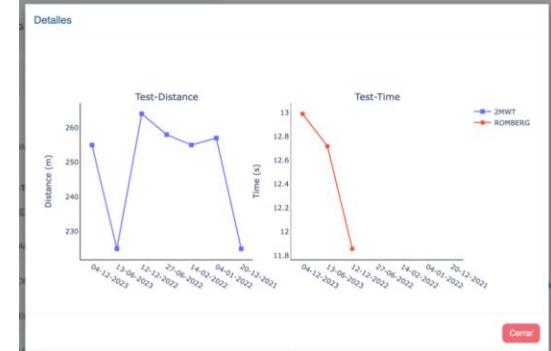
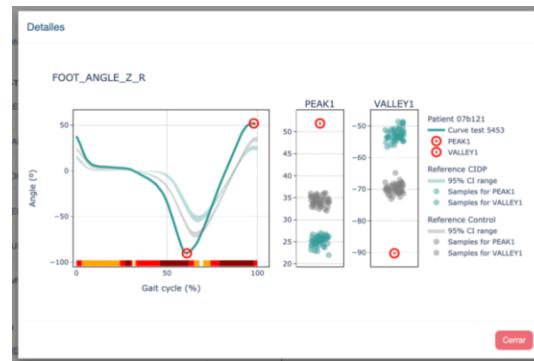
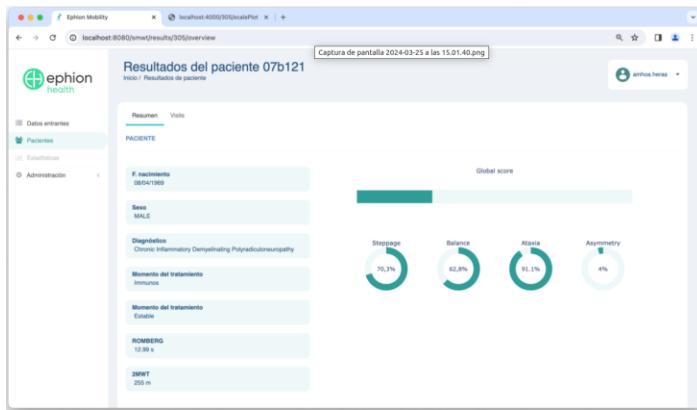
Current calculated parameters

Kinematic parameters	
Parameters	Definition
Trunk angle	Mean profile of flexion-extension segment angle evolution throughout gait cycle.
	Mean profile of lateral flexion-extension segment angle evolution throughout gait cycle.
	Mean profile of internal-external rotation segment angle evolution throughout gait cycle.
Pelvis angle	Mean profile of flexion-extension joint angle evolution throughout gait cycle.
	Mean profile of lateral flexion-extension segment angle evolution throughout gait cycle.
	Mean profile of internal-external rotation segment angle evolution throughout gait cycle.
Hip flexion angle	Mean profile of flexion-extension joint angle evolution throughout gait cycle. Right and Left side.
Knee flexion angle	Mean profile of flexion-extension joint angle evolution throughout gait cycle. Right and Left side.
Ankle flexion angle	Mean profile of flexion-extension evolution throughout gait cycle. Right and Left side.
Thigh flexion angle	Mean profile of flexion-extension segment angle evolution throughout gait cycle. Right and Left side.
	Mean profile of abduction - adduction segment angle evolution throughout gait cycle. Right and Left side.
	Mean profile of internal - external rotation segment angle evolution throughout gait cycle. Right and Left side.
Shank flexion angle	Mean profile of flexion-extension segment angle evolution throughout gait cycle. Right and Left side.
	Mean profile of abduction - adduction segment angle evolution throughout gait cycle. Right and Left side.
	Mean profile of internal - external rotation segment angle evolution throughout gait cycle. Right and Left side.
Foot flexion angle	Mean profile of flexion-extension segment angle evolution throughout gait cycle. Right and Left side.
	Mean profile of internal - external rotation segment angle evolution throughout gait cycle. Right and Left side.
	Mean profile of eversion - inversion segment angle evolution throughout gait cycle. Right and Left side.

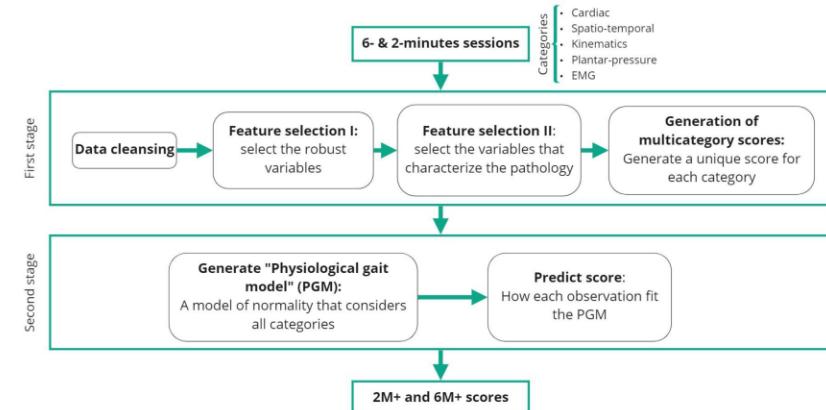
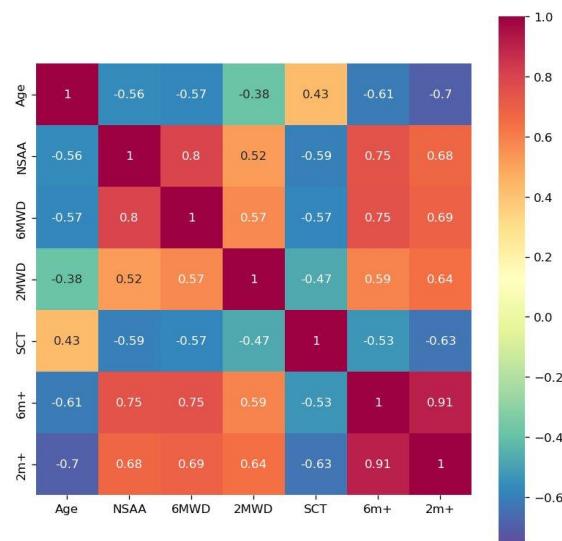
Electromyography (EMG) parameters	
Parameters	Definition
Maximum voluntary contraction (MVC)	Maximum muscle activation while doing isometric exercises, is related with muscle strength
Muscle Distribution	% of activation of each muscle in respect to the total activation
Co-activation indices	Timing of simultaneous activation of two muscles. Relation between (H/Q, H/G, Q/G).
Hamstring muscle	Mean profile of muscle activation evolution throughout gait cycle. Right and Left Side.
Gluteus muscle	Mean profile of muscle activation evolution throughout gait cycle. Right and Left Side.
Quadriceps muscle	Mean profile of muscle activation evolution throughout gait cycle. Right and Left Side.

Plantar pressure parameters	
Parameters	Definition
Ground Force Reaction	Mean profile of vertical force evolution throughout gait cycle. Right and Left side.
Force Balance (%)	Comparison of the percentage of the total force on right side versus left side
Centre of Pressure evolution	Mean profile of centre of pressure evolution throughout gait cycle. Right and Left side.
Angle of Centre of Pressure trajectory	Angle that Centre of pressure trajectory performs during the execution of gait cycle.

Current calculated parameters




Features calculated on all the gait parameters (Kinematics, EMG, Plantar Pressure)	
Parameters	Definition
Peaks and valleys	Maximum point between heel-off and middle-swing phase. Value and % of gait cycle when it occurs.
	Maximum point between heel-strike and heel-off phase. Value and % of gait cycle when it occurs.
	Maximum point during swing phase. Value and % of gait cycle when it occurs.
	Minimum point between middle-stance and toe-off phase. Value and % of gait cycle when it occurs.
	Minimum point between pre-swing and middle-swing phase. Value and % of gait cycle when it occurs.
	Prominance of each peak and valley detected during gait cycle.
Distance and amplitude between peaks and valleys	Distance in % of cycle between maximums and minimums during gait cycle.
	Amplitude of the pattern between maximums and minimums during gait cycle.
Peak slope during stance phase	Slope value between maximum and minimum point during stance phase.
Mean	Mean value during gait cycle.
Variability	Standard deviation of pattern during gait cycle.
Area	Area under the curve of the pattern during gait cycle.
Range of motion	Amplitude (maximum – minimum) of the pattern during gait cycle, and per each phase (stance and swing)

Instant Results



Results from the analysis are graphically presented in a secure site:

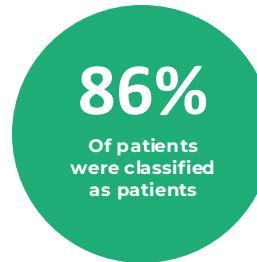
- **Digital biomarkers**
- **Longitudinal evolution of clinically relevant parameters**
- **Scales and completed questionnaires**

Study in collaboration with Hospital Sant Joan de Deu (Barcelona)

28 male children suffering from DMD (age 6.3–15.4 years)
 Control group: 27 healthy male children (age 9.0–13.9 years)
 Tests: 2MWD, 6MWD & NSAA
 Longitudinal data: 2019-2024



Ephion composite biomarkers (2M & 6M) correlation matrix:


- Ephion 6M highly correlated with NSAA, similar to 6MWD
- Ephion 2M maintains high correlation to NSAA, contrary to 2MWD
- Higher correlation of the Ephion Score with Age compared to NSAA and Distance

RELIABILITY

SPECIFICITY

SENSITIVITY

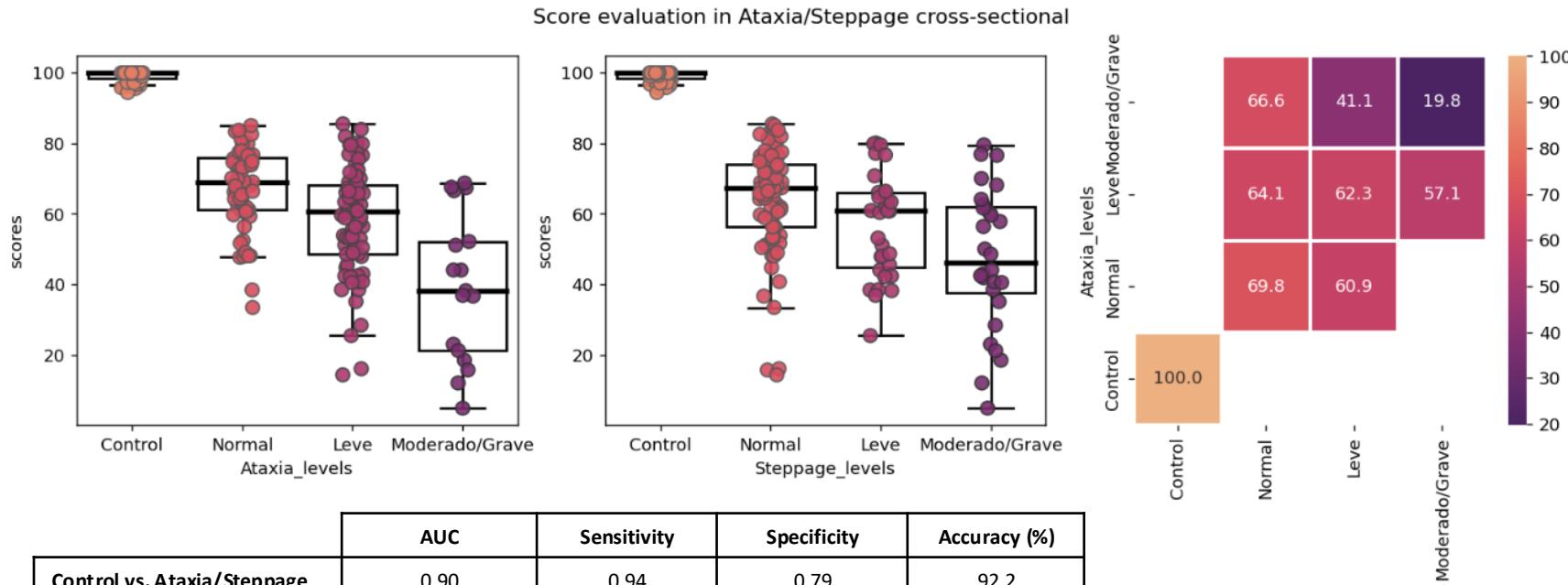
ACCURACY

↓ **36%***

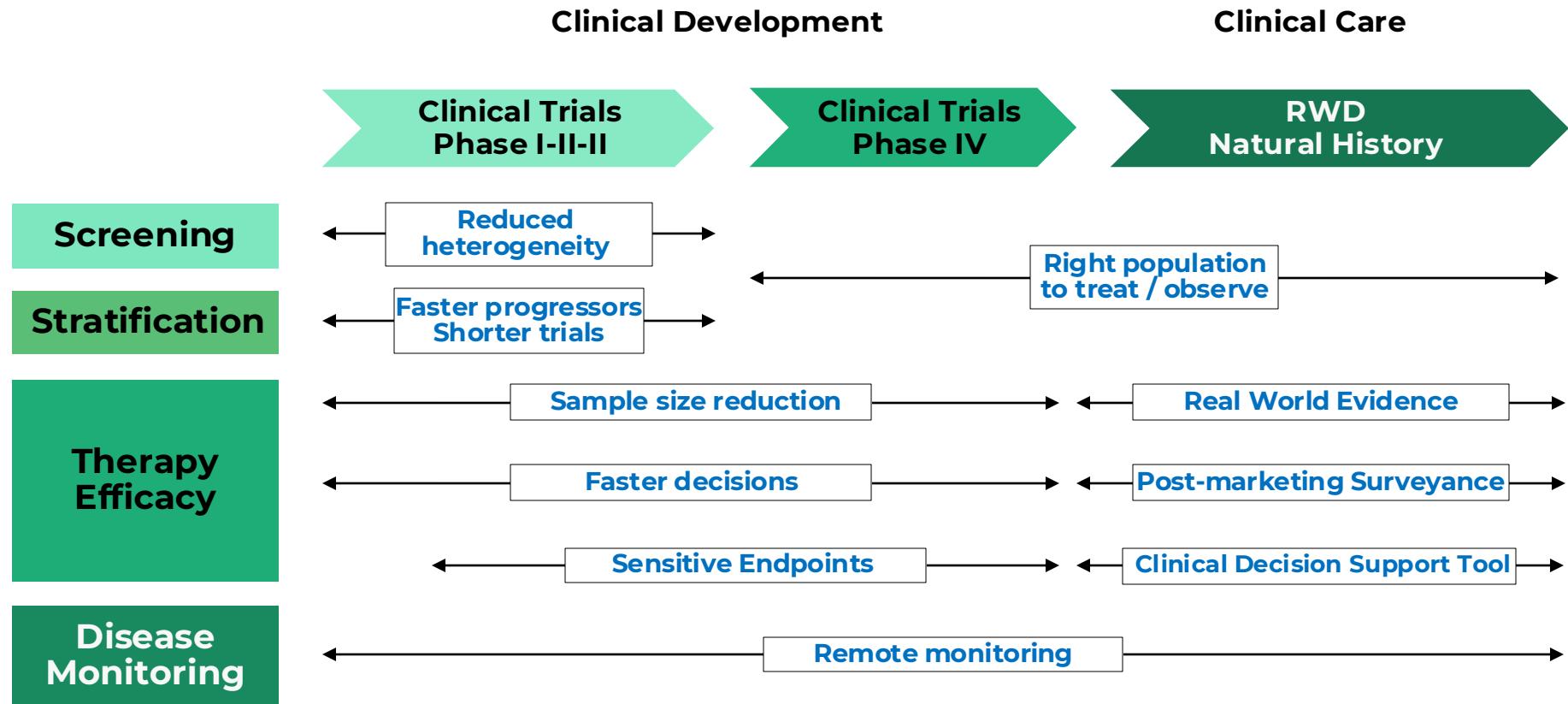
of sample size reduction
when using our biomarker

*in DMD Clinical Trials as
compared to 6MWT

2.7%


of change is considered
clinically significant MCID

Concurrent validity:
correlations coefficients (Spearman)


	NSAA	6MWD	AGE
Ephion Biomarker	0.72	0.68	-0.60
SYDE (SV95C)	0.676	0.678	-0.488

Use case: Neuropathies composite biomarker

The score differentiates **perfectly** controls from pathology

	AUC	Sensitivity	Specificity	Accuracy (%)
Control vs. Ataxia/Steppage	0.90	0.94	0.79	92.2
Control vs. Ataxia	0.91	0.92	0.83	90.4
Control vs. Steppage	0.93	0.98	0.83	93.9

Currently used by KOL to monitor patients with NEUROMUSCULAR DISEASES

Hospital Sant Joan de Déu (Barcelona)
Duchenne Muscular Dystrophy
[Link to publication](#)

Dr. Julita Medina

"Thanks to Ephion we have been able to follow-up patients with higher accuracy"

RigsHospitalet (Copenhagen, DK)
Becker Muscular Dystrophy
Myotonic Muscular Dystrophy

Dr. John Vissing

"Ephion is a highly relevant system to be used in the clinic as well as in research"

Hospital Sant Pau (Barcelona)
CIDP
Peripheral Neuropathies
[Link to publication](#)

Dr. Luis Querol

"Ephion's tool could have great applicability in all Neurological diseases"

Newcastle University (UK)
POMPE
[Link to publication](#)

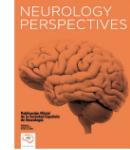
Dr. Jordi Diaz-Manera

"I believe Ephion's tool could be of great value in Clinical Trials"

Article

Multidimensional Biomechanics-Based Score to Assess Disease Progression in Duchenne Muscular Dystrophy

Carolina Migliorelli ^{1,*}, Meritxell Gómez-Martínez ¹, Paula Subías-Beltrán ¹, Mireia Claramunt-Molet ^{1,2}, Sebastian Idelsohn-Zielonka ^{1,2}, Eudald Mas-Hurtado ¹, Felip Miralles ^{1,2}, Marisol Montolio ^{3,4}, Marina Roselló-Ruano ^{3,4} and Julita Medina-Cantillo ^{5,6}


Analysis of gait patterns in patients with peripheral neuropathies using a novel wearable system

Clara Tejada Illa, Mireia Claramunt-Molet, Ariadna Pi-Cervera, Sebastian Idelsohn-Zielonka, Nuria Vidal, Lorena Martín-Aguilar, Marta Caballero-Ávila, Cinta Lleixà, Ricardo Rojas-García, Luis Querol, Elba Pascual-Goñi

Neurology Perspectives. 2023;3(S1):197

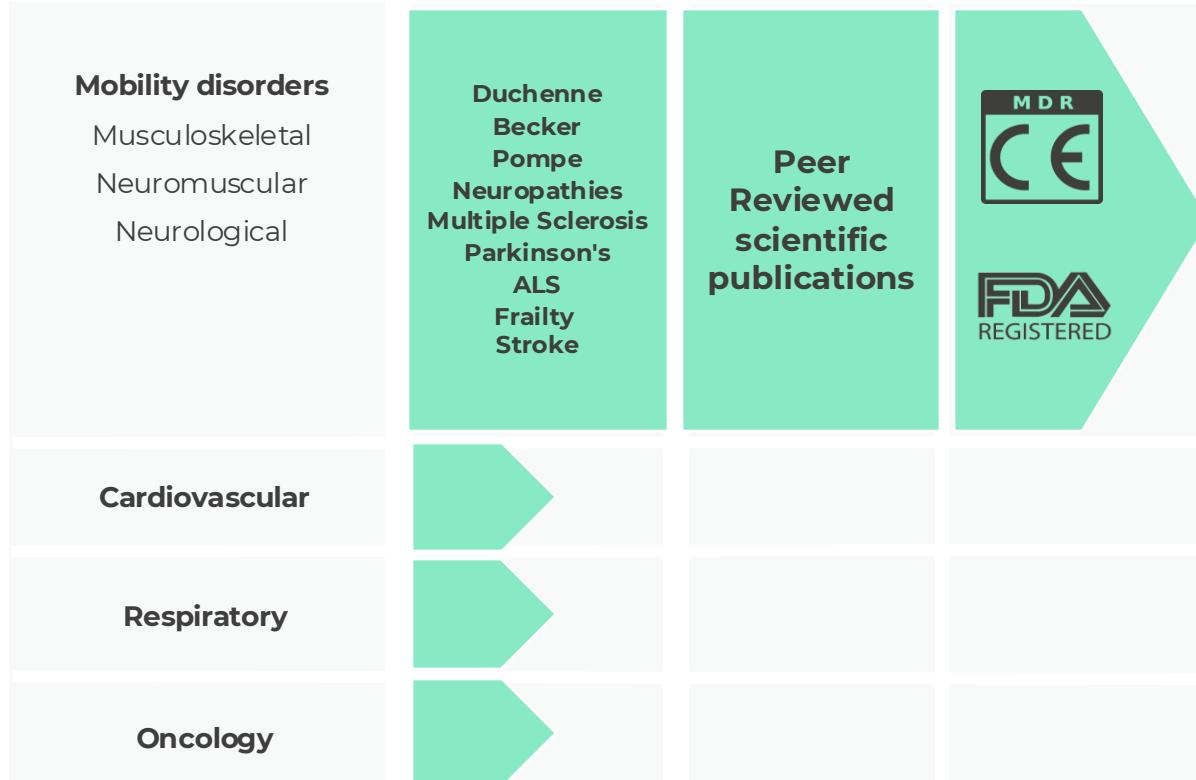
Neurology perspectives

19044 - ANÁLISIS DEL PATRÓN DE LA MARCHA EN PACIENTES CON NEUROPATÍAS PERIFÉRICAS MEDIANTE SENSORES BIOMECÁNICOS PORTÁTILES

Tejada Illa, C.¹; Claramunt Molet, M.²; Pi Cervera, A.²; Idelsohn Zielonka, S.³; Vidal, N.⁴; Martín Aguilar, L.⁴; Caballero Ávila, M.⁴; Lleixà, C.⁴; Rojas García, R.⁴; Olivé, M.⁴; Querol, L.⁴; Pascual Goñi, E.⁴

¹Unidad de Enfermedades Neuromusculares. Institut de Recerca Hospital de la Santa Creu i Sant Pau; ²Salud digital. Ephion Health; ³Salud Digital. Ephion Health y EURECAT; ⁴Unidad de Enfermedades Neuromusculares. Hospital de la Santa Creu i Sant Pau.

Neuromuscular Disorders


Volume 32, Supplement 1, October 2022, Page S76

P.84 Gait analysis of patients with Pompe disease using a portable system

M. Claramunt¹, S. Idelssonhn¹, M. James², M. Corti³, V. Anton⁴, B. Byrne³, J. Díaz Manera²

Discovery Validation Commercial

We are not just different, we are better

Our AI can work with any wearable from any vendor and generate composite biomarkers

	Ephion Health	Koneksa	Sysnav	Aparito	BioSensics	Clario
Multi-modal Data	Yes	No	No	No	Yes	Yes
Hardware Agnostic	Yes	Yes	No	Yes	No	No
Composite Biomarker	Yes	No	No	No	No	No
AI Analysis	Yes	No	No	No	No	No

Joint Go-To-Market strategy with IQVIA

Ephion Health was selected for the **2023 Accelerator Program by IQVIA**.

Joint Go-to-Market strategy: **Real World Evidence studies for new drugs in Neuromuscular Diseases.**

Second product in development: **MONITORING of frail elderly patients**

New product in collaboration with **Quirón Salud**

A digital solution to objectively **monitor frail elderly patients and predict risk of falling**
250 elderly patients will be monitored with Ephion Health platform **in the hospital and remotely at home**

Patent Filed

PCT Patent

Application

Positive International Search Report

Favorable Written Opinion of the International Searching Authority

National phases in **November 2024**

Certification as a medical device

Software as a Medical Device under MDR (EU) 2017/745: **Type IIa**

FDA Registered

Software as a Medical Device **Type II (510k exempt)**

We are entrepreneurs, engineers and doctors joined by a common vision

Mireia Claramunt

CTO

Sebas Idelsohn

CSO

Quique Llaudet

CEO

Dr. Julita Medina

SJD

Sant Joan de Déu
Barcelona · Hospital

Dr. Luis Querol

Institut
de Recerca
Sant Pau

Dr. Jordi Diaz

Alumni 2024

quique@ephion.health