

Decarbonizing Transport -AVL Heavy Duty Fuel Cell Demonstrator Truck

International Mobility Days 2023 #imdays2023

Josef Macherhammer

AVL Fuel Cell and Electrolysis Solutions H₂ Ecosystem Implementation

PEM FC ... Polymer Electrolyte Membrane Fuel Cell

SOFC ... Solid Oxide Fuel Cell

PEM EL ... Polymer Electrolyte Membrane Electrolysis

SOEC ... Solid Oxide Electrolysis Cell

PEM FC

#Mobility and **Power Generation**

- **Automotive**
- Marine
- Rail
- Aviation

SOFC

#Combined Heat and Power

- Decentral Power
- **BEV Charging** stations
- Marine APUs

PEM EL

#Hydrogen Production

- Renewable Power **Plants**
- Decentral Hydrogen Production

SOEC

#Hydrogen, Syngas and Power-to-X

- Industry
- Refining
- **Synthesis**
- Waste Heat Usage

AVL Fuel Cell Demo Truck **Systems Integration**

Predictive ENERGY MANAGEMENT

El. AUXILIARIES

incl. brake choppers

High-performance BATTERY

Compact

E-AXLE

Highly efficient E/E Architecture

Systems Integration

High-performance VEHICLE COOLING

Integrated H₂ TANK SYSTEM

- + Functional Safety
- + H₂ Safety
- + HV Safety
- + EMC

Public

+ Energy Efficiency & Predictive Controls

Durable FUEL CELL SYSTEM

Development Approach

Vehicle & Powertrain

- Define of desired **functionalities** (function-based approach)
- Define packaging boundaries based on existing vehicle platforms, safety considerations, weight distribution, etc.
 - Identify the common denominator
- Analyze real-world driving needs
 - Define the requirements for powertrain and its elements
- Optimize vehicle energy management and hybridization strategy considering TCO and durability

European 4x2 semitrailer tractor w/ sleeping cabin and a wheelbase of 3.8 m - the ultimate challenge?

Public

Development Approach

Requirements and System Engineering

Fuel Cell Stack

Note: AVL offers only stack engineering services, AVL will <u>not produce</u> and sell stacks

Power (modular): 30 – 150 kW

Power Density: 4.1 kW/L

Lifetime: >15,000 h

Efficiency: 48% (@0.6V)

Freeze Start Up: > -30 °C

Single cell row, carbon plates

Development Approach

Fuel Cell System

Rated Power (per module): 156 kW

Power Density: 0.33 kW/L

Lifetime: >15,000 h

Efficiency: 45% (@ Rated Power)

■ Freeze Start Up: > -30 °C

/ 6

Public

Development Approach

Fuel Cell Truck Integration

AVL Thermal Management System

- 3 optimized cooling circuits (LT, MT, HT)
- Integrated in standard assembly space

AVL Thermal Management System

- Cooling package frontal area remained unchanged
- Total front radiator surface was increased to 1.8 m² (180% of initial radiator size)

Development Approach

Fuel Cell Truck Integration

AVL Predictive Energy Management

- Optimizer based strategy
- Long range optimizer to maximize efficiency while maintaining system performance and state-of-health of FCS and battery
- Short range power split optimization considering short term events (e.g. traffic, temporary speed limits)

Durability

Availability

