

GREEN AMMONIA STORAGE IN SOLID STATE

PARTNERS

ATD, founded in 2013, is a Spanish technology group that began its activity through the development and manufacture of advanced ceramic products. As a result of an intense and constant R&D activity, with the institutional support of various European and National projects, ATD has developed cutting-edge catalysts for use in devices for the synthesis and dissociation of ammonia, H2 electrolysers and fuel cells. Recently, solid-state ammonia and hydrogen storage technologies.

Since its foundation, ATD held offices in Mexico and the United States.

www.atdevices.com

ADVANCED THERMAL DEVICES S.L.

PARTNER

Founded in 2000

Spanish company pioneer in renewable energies. Promotion, Engineering, EPC, O&M.

Financial Capacity 1,100,000€ of Share Capital

More than 700 installations carried out Satisfied customers

Works High qualification We have highly trained staff with many years of

experience

International company With projects on different continents

Certified Quality Company ISO 9001 💽 ISO14001 💽 HORIZON 2020 🔜

Social Enterprise

SA8000 🔇

FUNDACIÓN GFM RENOVABLES

www.gfmfotovoltaica.com

1° ISSUE

Traditional ammonia plants mean large investments due to minimum size required by Haber-Bosch process. Conclusions: a few players and 7 to 10 years for a new plant.

2° ISSUE

H2 very low energy density means problems for storage and transportation. Extra costs for containers. High pressures (700 bar) and extra safety issues.

3° ISSUE

Traditional "fears" about ammonia. Maritime transportation has to migrate to ammonia or methanol, both toxics. Special homologated facilities required.

SOLUTIONS

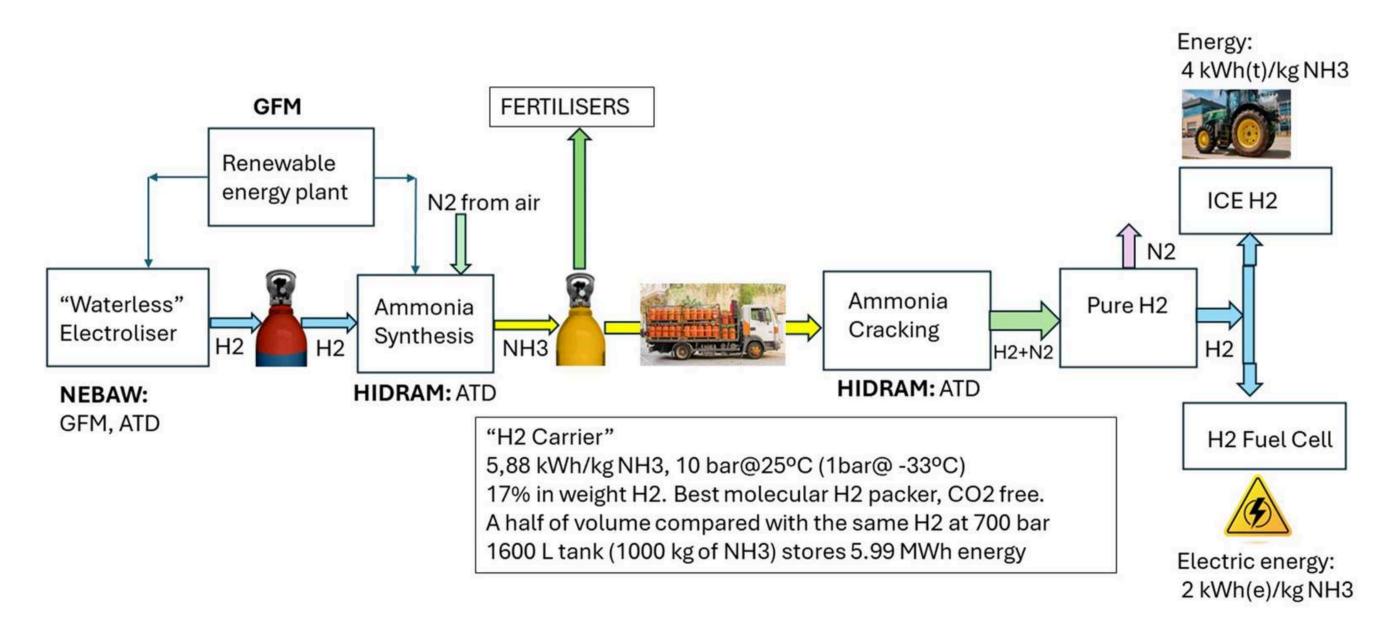
1° SOLUTION

Scalable Plants. Starting with less investments for small-medium scales and to growing to large scale according to the market demand.

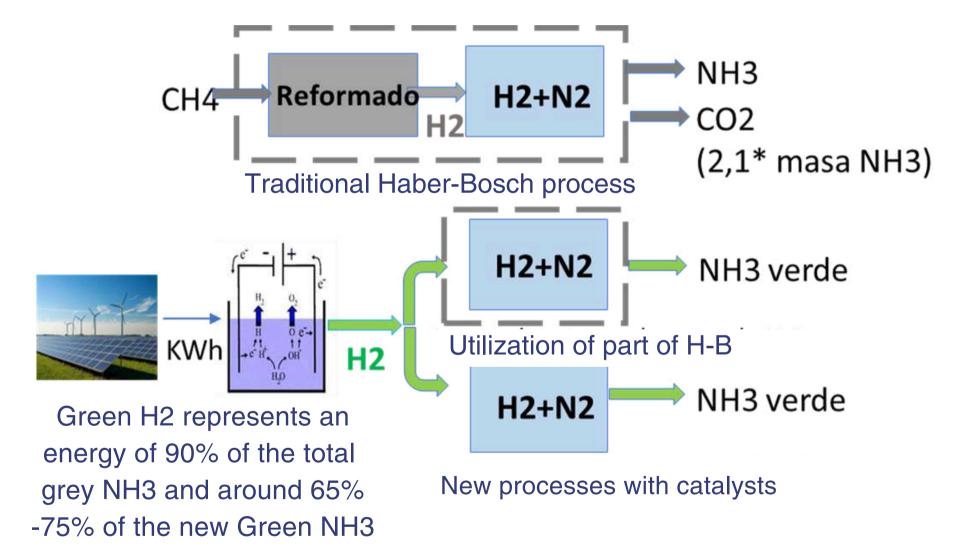
2° SOLUTION

H2 packing into NH3 (17,6% in weigh). Liquid NH3 (19 bar) contains 170 g of H2 (5.88 kWh). More energy density than liquefied H2. NH3 is a demanded product itself (fertilizers)-.

3° SOLUTION


NON TOXIC

Solid State Ammonia. SAFT: Safe Ammonia Fuel Technology. Up to 50% in weight stored in an inert and not toxic material. No ammonia release at ambient temperature and atmospheric pressure.


Green H2 and liquefied NH3 (10 bar) chain

AMMONIA TOXICITY ISSUE. HOMOLOGATED CONTAINERS AND INSTALATIONS NEEDED..

SYNTHESIS OF GREEN NH3 FROM **RENEWABLE H2**

It is necessary to replace the H2 production process (natural gas reforming, CH4) with green H2 (normally by electrolysis). This is known as **SECOND GENERATION H-B.**

The impact is considerable on current H-B systems, AND ALTERNATIVE PROCESSES MAY BE MADE VIABLE, especially those based on catalysts.

REPLACEMENT OF GREY H2 IN THE HABER-**BOSCH PROCESS WITH GREEN H2**

SAFT. SAFE AMMONIA FUEL TECHNOLOGY

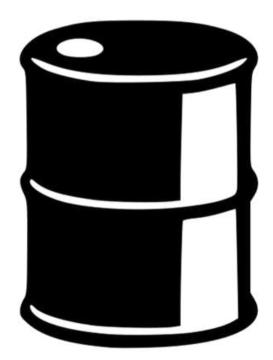
Material 'charged with ammonia'

VOLUME AND WEIGHT FOR 3 MWh ENERGY STORED USING DIFFERENT VECTORS

NH3-ASES (1 bar) 1.000 kg, 800 L (1.200 Kg^(*))

NH3 (10 bar) 510 kg, 816 L (2.000 Kg ^(*))

H2 (liquid) 90 kg, 1.270 L (3.500 Kg^(*))


(*) Estimado con depósito incluido

H2 (700 bar) 90 kg, 1,440 L (3,100 Kg^(*))

H2 (350 bar) 90 kg, 2,880 L (5.000 Kg^(*))

Li-ion batts 12.000 kg, 6,700 L

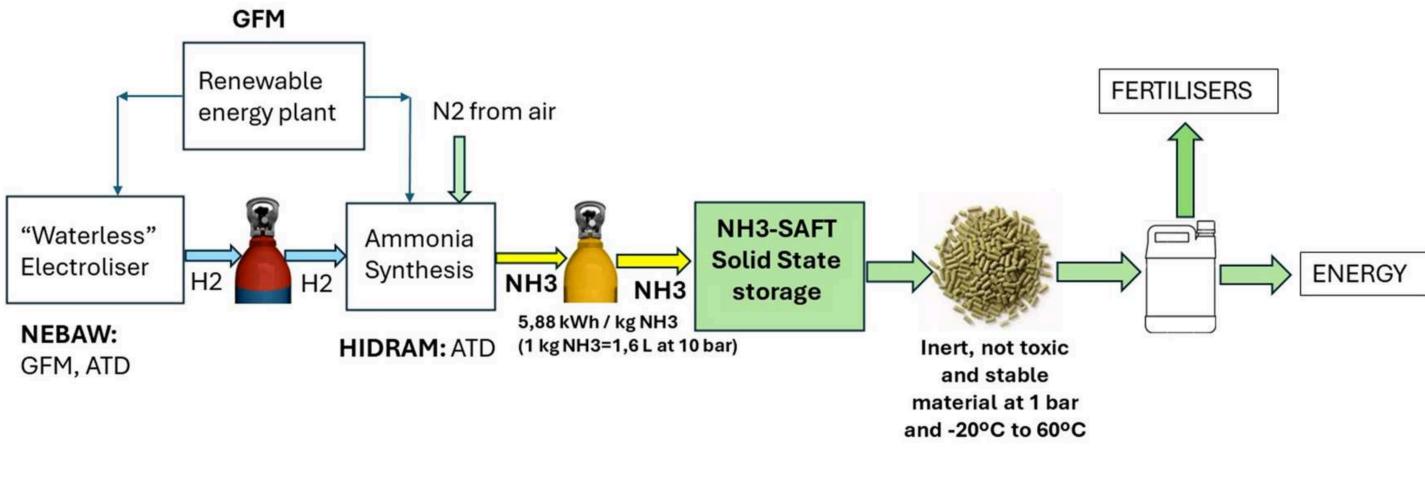
TRANSPORT OF NH3 IN SOLID STATE

(SAFT: Solid Ammonia Fuel Technology)

KNOWN FACT: AMINES OF THE M(NH3)xAy TYPE with M metal and A halogen. Problems:

Increase in volume x2 or more. Destruction of material shapes and problems in the loading tank. High energy for the extraction of NH3 from the amine.

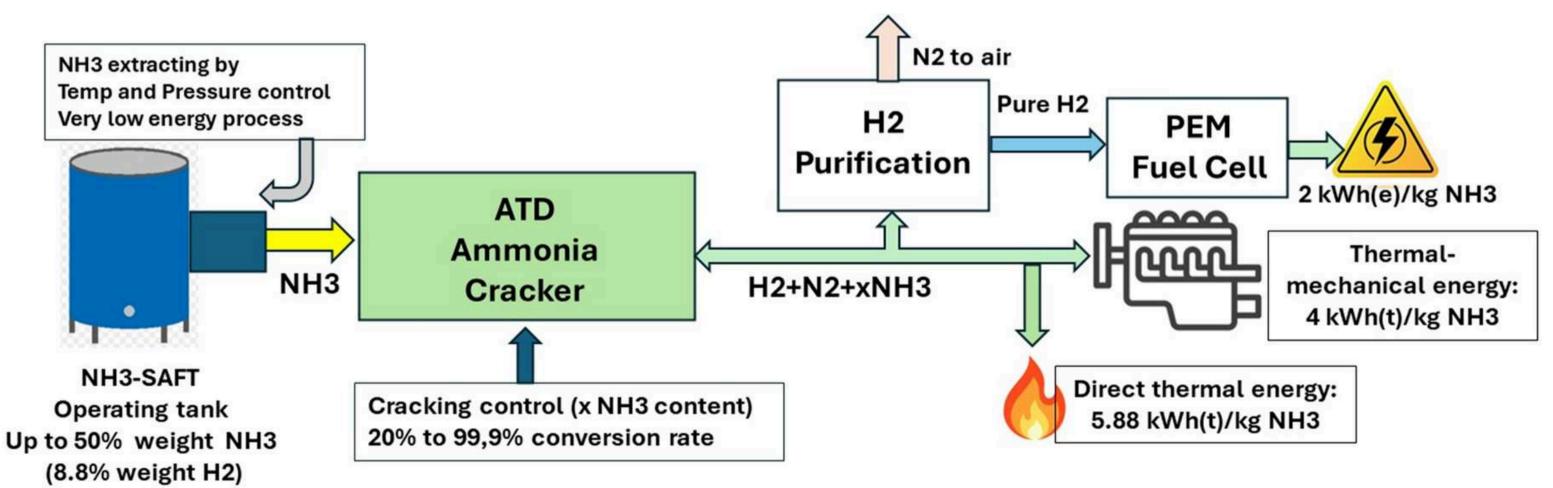
SOLUTIONS:


- A non-toxic amine is designed, compatible with the environment, even with water (discharges into the sea).
- A compound is configured so that it does not release NH3 at least up to 60°C
- A compound and processes are configured to minimize the extraction energy, resulting in:
- Energy optimization mode: <3% of the energy contained in the processed NH3 and up to 33% of storage by weight. (Less than what is lost in storing and transporting H2).
- Storage optimization mode: <8.5% of the energy contained in the processed NH3 and up to 51% of storage by weight.
- From the powdered material, shapes can be manufactured: pellets (the most convenient for transport and even "pumping"), discs, cylinders, etc.
- Tested: non-flammable and fireproof against direct flame, not soluble in water (no contamination in spills) and can even be useful as a direct slow-release fertilizer. (Tests at ICV-CSIC).

SPANISH PATENT.

GREEN H2 AND LIQUEFIED NH3 (10 BAR) CHAIN WITH: SAFT, SAFE AMMONIA FUEL TECHNOLOGY

Inert and safe material can be stored and transported in any container, even Sacks.



Green H2 and liquefied NH3 (10 bar) chain WITH: SAFT, Safe Ammonia Fuel Technology

Ammonia is stored in an inert, no toxic material. Then ammonia is extracted and cracked for free CO2 energy applications based on green H2.

SYNTHESIS OF GREEN NH3 FROM RENEWABLE H2

TARGET MARKET 1

Fertilizers Energy in farms

TARGET MARKET 2

Maritime transportation Decarbonization Fuel

TARGET MARKET 3 Industry. Thermal energy intensive users and

chemical users

COMPETITIVE ADVANTAGES


ADVANTAGE 1

THESIS PLANT BY PDMS

Small and medium scale plants starting investments. Scalable to large plants

ADVANTAGE 2

Patented technology. Protected know-how. No third dependences

ADVANTAGE 3

Safe Ammonia for storage and transport (solid state). SAFT: Safe Ammonia Fuel Technology

All the chain elements included: production, transport and applications

COMPARATIVE STUDIES AND REFERENCES

SYNTHESIS OF AMMONIA -Tsubame-Mitsubishi (Japón) - Starfire (EEUU)

CRACKER OF AMMONIA -Amogy (EEUU) -Starfie (EEUU) -H2Site (España)

REFERENCE -Proyecto Europeo (NEMESIS) -Proyectos Nacionales

OUR TIMELINE

2024

Agreements ATD and GFM

2025

First SAFT AMMONIA plant in Castilla-La Mancha, (Saft Solidification)

Synthesizing Green Ammonia

2026

100,000 € **Own Investment**

9,000,000 € 9,000,000 €

New funding round

CONTACT

