

Advanced Heat Transfer and Surface Technologies (AHTST) Laboratory

Principal Investigator: André McDonald, PhD, BS Law, PEng, CEng, PE, FASM, FIMMM, FIMechE, FCSME

THERMAL SPRAY

Thermal spraying is a process in which a high-temperature heat source is used to melt and accelerate micron-sized metal, ceramic, or alloy particles to build thick protective coatings on industrial machine component substrates. Molten and semi-molten particles impact and spread on the component surfaces until several layers of the coating are fabricated. These coatings provide protection against degradation caused by corrosion, erosion, or high temperatures. .

CURRENT RESEARCH ACTIVITIES

Coatings as Heating Elements

 Wear and Erosion Resistant Coatings

Predictive Modelling

EMERGING RESEARCH PRIORITIES

- Critical Minerals
- Hydrogen Economy
- Autonomous Fabrication .
- Low-carbon Energy Generation

APPLICATIONS

Aerospace and Defence

Energy Generation

Natural Resources and Agriculture

COLD SPRAY

The high impact speeds of the particles promote rapid spreading, plastic deformation, and the deposition of a highly dense layer of particles. Bonding between the deposited particles is typically metallurgical, coupled with mechanical interlocking. The absence of high temperature particle heating during the deposition process eliminates oxidation, promotes retention of the properties of the original stock powder, induces low residual stresses in the coating, permits the deposition of thermally sensitive materials such as polymers, and facilitates the deposition of highly dissimilar materials.

Cold spray nozzle

Cross-sectional micrograph of wear resistant cold sprayed AlCoCrFeMoV high entropy alloy (HEA) coating.

FLAME SPRAY

With flame spraying, ,heat that is generated from the combustion of a mixture of oxygen and a fuel gas, commonly oxy/propane or oxy/acetylene is used to melt particles. The molten material is atomized and sprayed to build up a coating layer. The temperature of the flame can be higher than 3000 °C, making the process ideal for deposition of ceramic coatings.

Flame spray torch

Cross-sectional micrograph of wear resistant flame sprayed AlCoCrFeMoV high entropy alloy (HEA) coating.

