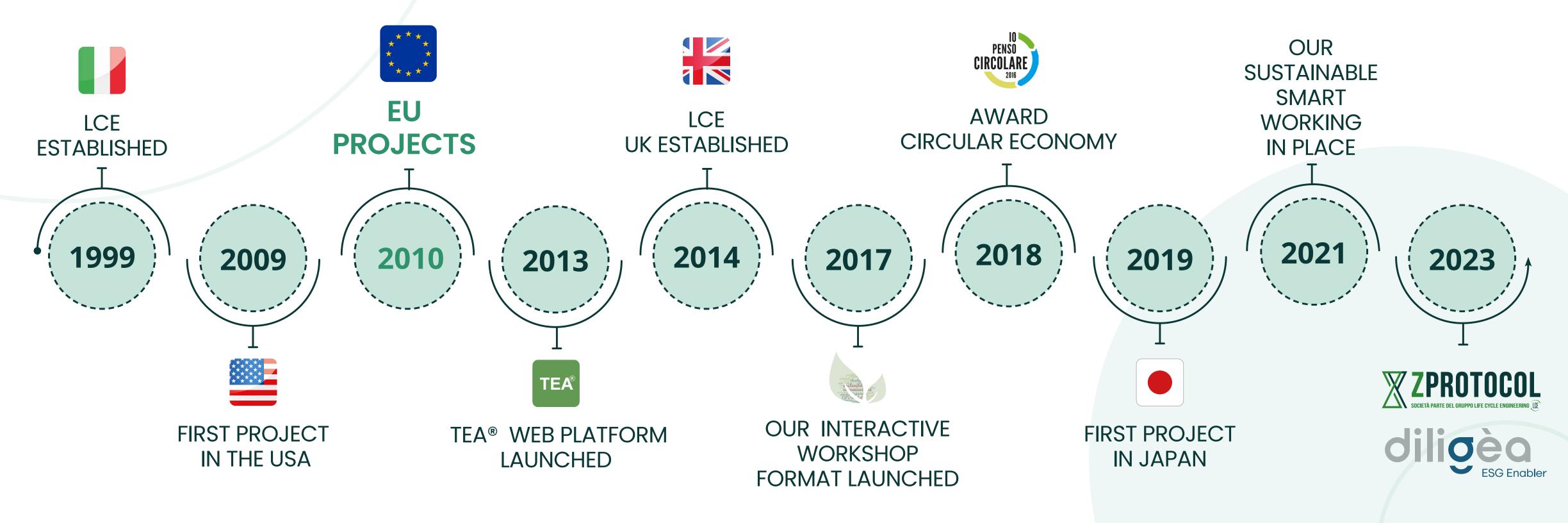

TOOL FOR ENVIRONMENTAL ANALYSIS

upgradeable with social, safety and quality assessment options

OUR WEB-BASED AND EXCEL-BASED PLATFORM FOR DEVELOPING CSR/LCA & EPD TOOLS

CSR/LCA & EPD


Corporate Social Responsibility Life Cycle Assessment & Environmental Product Declarations

LIFE CYCLE ENGINEERING

Our Milestone

Life Cycle Engineering (LCE) is an independent consulting firm, providing professional solutions and tools for Life Cycle Assessment (LCA), eco-design, environmental communication and regulatory compliance to private companies and business associations

ZPROTOCOL & DILIGEA

As a **team of experts** from different but complementary realities, **we tackle sustainability issues together** with an integrated, entrepreneurial approach.

ZPPROTOCOL is an **IT company** specialized in the development of **customized web or Excel based platforms** to support data collection and sustainability analyses of products and processes.

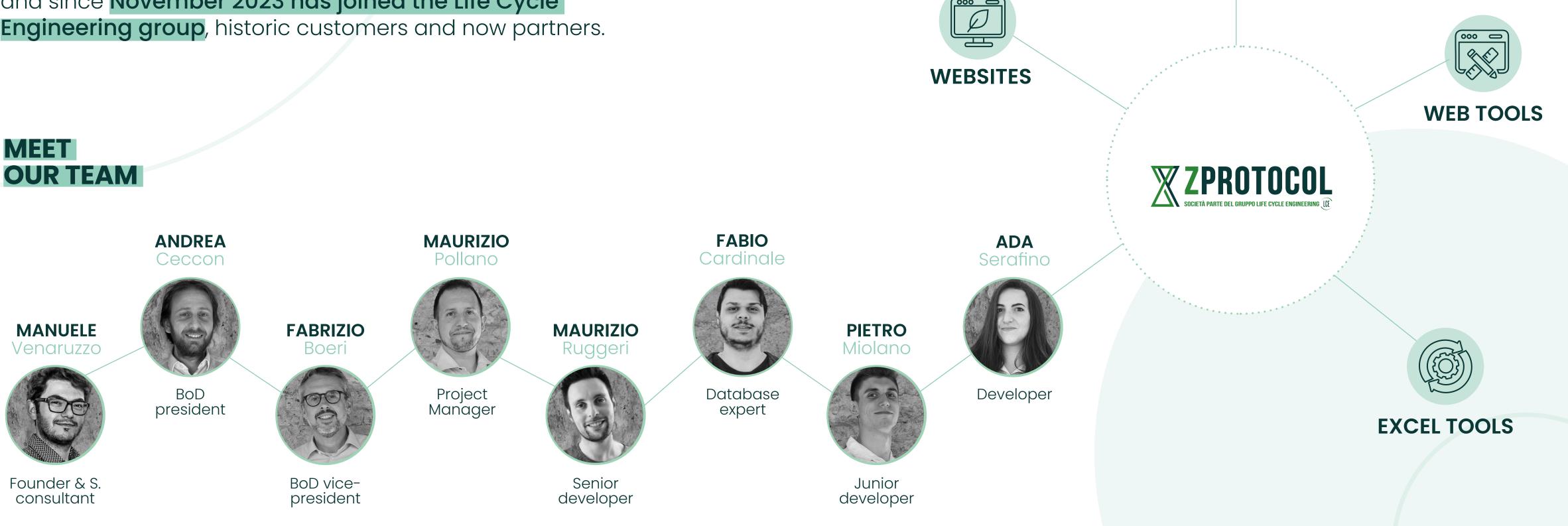
After about **ten years** of collaboration, ZP joined the LCE Group in 2023 to improve the development of **TEA platforms**.

Established in 2023 with BGR Tax & Legal, a tax consultancy firm with offices in Turin and other Italian cities, DILIGEA is a boutique consulting firm that offers integrated support and assistance services on environmental, social, and governance issues.

In response to the clear market demand for a single provider of **ESG services**, the existing collaboration between LCE and BGR has now been strengthened and enhanced.

www.diligea.com

LCE


ZPROTOCOL

Our Team

ZProtocol Srl was born on 1 March 2017 from the union of passions and IT and design skills.

In order to better follow increasingly large and structured customers and projects, the ZProtocol team has expanded and since November 2023 has joined the Life Cycle Engineering group, historic customers and now partners.

MEET

OUR

TECHNICAL

CONSULTANCY

SKILLS:

LIFE CYCLE ENGINEERING

Our Team

>25

YEARS OF EXPERIENCE

On specific fields

LCA/EPD/CSR analisys and webtool, eco-design, eco-labelling, carbon footprint, environmental communication, environmental law

Developed to support

companies sustainable business

Inter-disciplinary Skills

Management Engineer

ASSUNTA Environmental Engineer

STEFANO

Mechanical

Engineer

ELISA

Materials

Engineer

ELISABETTA

Environmental

GIULIO Environmental Economist

FABRIZIO Environmental Engineer

ALICE

Materials

Engineer

DAVIDE

Energy

Engineer

MAURIZIO

IT and Web

Developer

PAOLA Chemist

SIMONA Accountant Assistant

BARBARA Civil Engineer

ALESSIA Graphic Designer

MASSIMO Graphic Designer

GIAN LUCA LCA Engineer

SONIA Environmental Engineer

ANNA Chemical Engineer

Industrial Chemist

LUCA Energy Engineer

GIAMMARCO Environmental Scientist

RICCARDO

Environmental Engineer

MASSIMO

Energy

Engineer

PAOLA

Administration

and Human

Resources

CHIARA Chemical Engineer

SARA

Graphic

Designer Designer

MARTINA Environmental Scientist

MYRTA

Communication Assistant

FRANCESCA Industrial Ecologist

ELENA Communication Assistant

FRANCESCA

Communication

Assistant

LORENZO Environmental Scientist

EUROPEAN PROJECTS

Focus

HORIZON

LCE owns extensive and relevant experience in participating in European and International projects (i.e. H2020, LIFE, INCO, CRAFT, INTERREG, and GROWTH) and is currently involved in several Horizon 2020 as well as LIFE+ projects.

UTILE

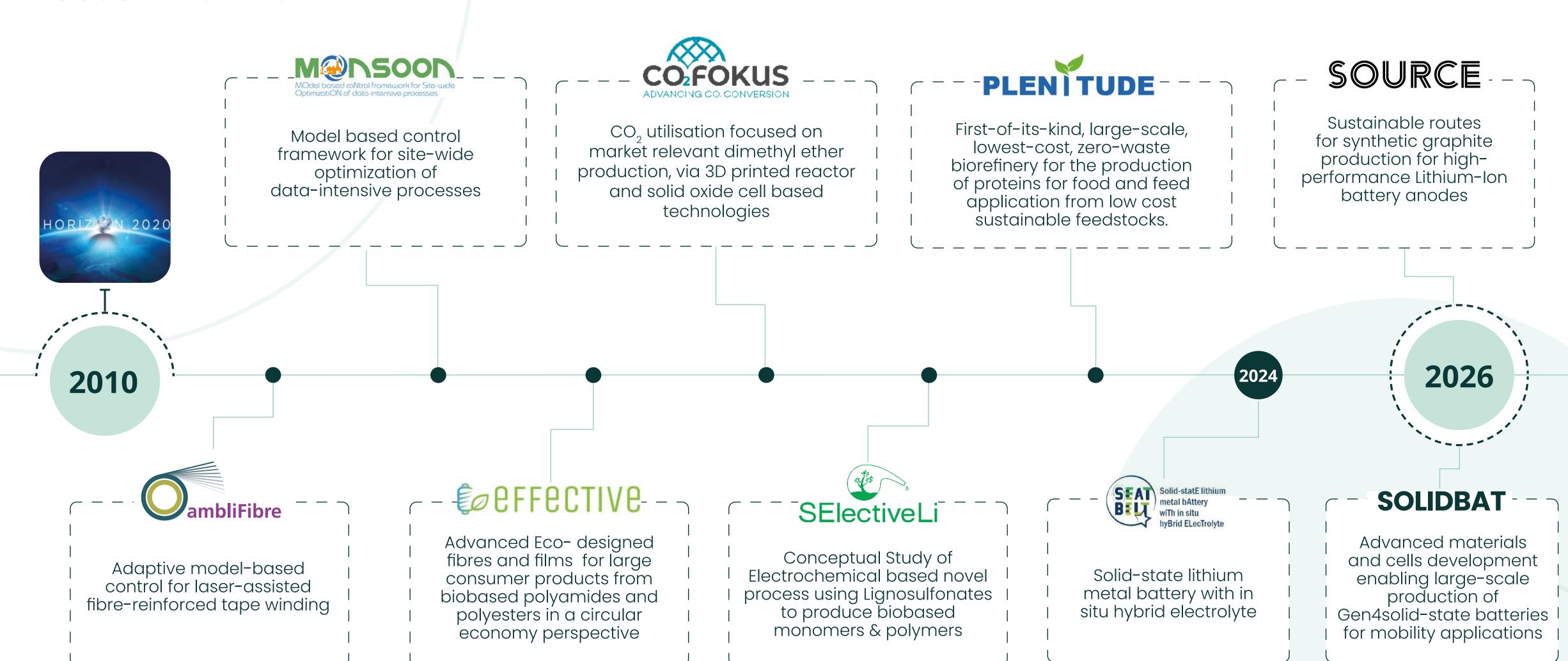
Ensuring Circularity of Soldier Personal Protection Equipment

SOLIDBAT

Advanced materials and cells development enabling large-scale production of Gen4solid-state batteries for mobility applications

LCE

EUROPEAN PROJECTS


Focus - LIFE

LCE

EUROPEAN PROJECTS

Focus - HORIZON 2020

LCE

INTRODUCING TEA®

THE CONTEXT WHERE TEA® OPERATES

Tool for a **life cycle-thinking environmental analysis,** upgradeable with social, safety and quality assessment options.

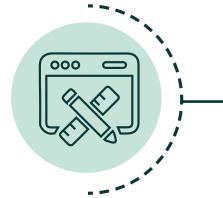
INTRODUCING TEA®

TOOL FOR A LIFE CYCLE-THINKING ENVIRONMENTAL ANALYSIS

TEA® is a web-based platform that support companies in process/product data collection and analysis and give back suitable assessments such as LCA/CSR reports and EPDs for management and communication purposes.

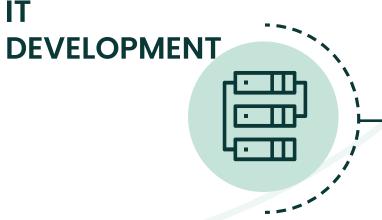
Tea® provides quick, easy and reliable answers to the stakeholder's requests regarding the environmental performance of your products and/or your organisation.

Tea® is addressed to multi-site companies, corporations and business associations that require an easy-to-use solution for data acquisition, cleansing and reporting to communicate their CSR or product environmental performances.


Tea® collects data
about environmental, economic and social
aspects. A customized database is shaped
to collect useful information and data to
elaborate performance Indicators for several
purposes: CSR, LCA, EPD, LCC, SLCA and circular
economy initiatives.

LCE

HOW TEA® WAS BORN AND WORKS


TO DEVELOP A CUSTOMISED VERSION OF TEA ≈ 6 MONTHS

DESIGN

THE WEB-TOOL IS DESIGNED IN CLOSE CONTACT WITH YOU IN ORDER TO BE ADAPTED TO YOUR SPECIFIC NEEDS. USERS AND ACCESS RIGHTS, ALGORITHMS, DATABASE AND EXPECTED REPORTS ARE CAREFULLY DEFINED AND DESIGNED AT THE BEGINNING OF THE ACTIVITIES.

2 17

OUR IT PARTNERS DEVELOP THE WEB-TOOL FOLLOWING THE CHARACTERISTICS DESCRIBED IN THE FUNCTIONAL ANALYSIS.

3 RELEASE AND USE

AFTER SHARING A PRELIMINARY VERSION (β VERSION) AND COMPLETING THE BUG-FIXING, THE WEBTOOL IS READY FOR USE. WE ORGANIZE TRAINING SESSIONS FOR USERS WHO HAVE TO USE THE TOOL.

4 CUSTOMER SERVICE

WE PROVIDE TECHNICAL AND IT SUPPORT BOTH DURING THE LEARNING AND THE USE PHASES

Data collection by

multi-sites companiers (on-line questionnaires)

Customized environmental

(LCA) data base by sector

Elaboration of indicators

and reports

Communication,

Green marketing, positioning also by means of suitable certification

LCE

INTRODUCING TEA®

EXCEL-BASED OR WEB-BASED TOOL

Spreadsheet with **optimized interface** through controls and buttons

LCA Results in **PDF format**

Manual data entry into the calculation form for each product

Suitable for an **expert user** who knows deeply the production process (e.g. product manager)

Web page with login information, company's brand identity customized

LCA Results on **web page**, exportable in various formats

Primary data **automatic update**, preloaded in the tool with predefined and verified procedures

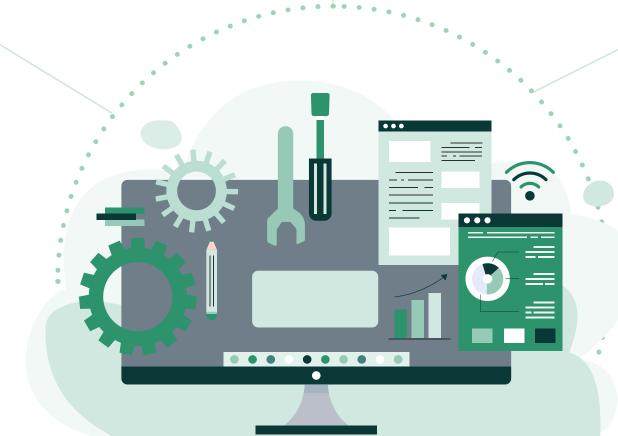
Suitable for a **less expert user** with basic knowledge of processes and products (e.g. sales)

LCE

INTRODUCING TEA®

THE TOOLS WE PROPOSE

Supply Chain


investigation and engagement

LCA

for product R&D and EPD

13

Safety management


Organizational

social andenvironmental impacts

EXCEL BASED TOOL

AT WORK

High Performance Liquid Colours & Additives.

Several ISO 14040-14044 compliant LCA studies have been developed as starting point for the Excel tool design and deployment.

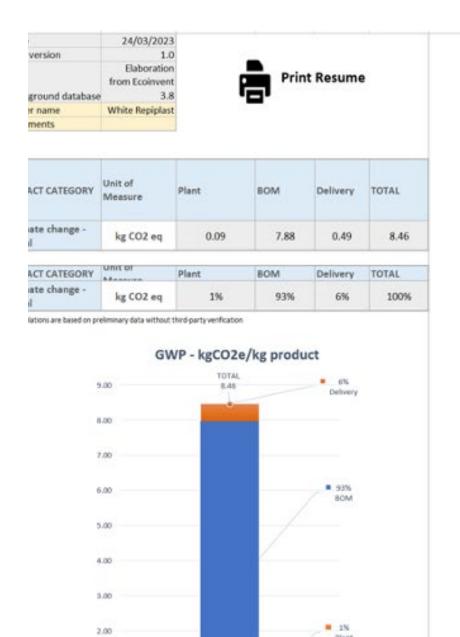
CUSTOMER

REPLITALIA

PLANTS

Italy

COUNTRIES


Italy

• Calculation of LCA results.
• Simulations available for different BOM options, packaging, etc.

OUTPUT

BOM impacts, cradle-to-gate with options

BOM	WEIGHT [kg]	TYPE OF PACKAGING	SUPPLIER	Km
Plaxter/palamoll	0.39	Tank (lorry)	CICIO	100.00
	-		4.	1.4
(5.			- 5.	
	+			
			20	- 3-
			- 8	
	-		-	-
				1.4
		1370	4.5	
-	-0			- 4
	7.1			1.5
2	-		-	-
	-		-	
-	-		23	
	-			
			- 0	-
-				
		4		
			-	
				-

PLANT DATA	
REF. PERIOD	
kg Total Products in ref period	4,062,103
kWh total electricity consumption	1,363,458
detailed energy consumpt	ons
Electricity from fossil (kWh)	400 027 40
Electricity from photovoltaic (kWh)	409,037.40
Electricity from wind (kWh)	681,729.00
Electricity from hydro (kWh)	272,691.60
Natural gas (Sm3)	85,066.00
Diesel (I)	25,937.90
other flows	
Water (m3)	6,980
waste	
HAZARDOUS (kg)	19,162.00
NON HAZARDOUS (kg)	28,180.00
Delivery	
From Lonate to China	2500
Packaging	Politaner 30I

LCE

EXCEL BASED TOOL

AT WORK

.

Design and assembly of electromechanical equipment

CUSTOMER COL GROUP

PLANTS 3 with the possibility of adding others in case

of acquisitions

COUNTRIES Italy, USA

FEATURES/KPI Calculation of LCA results for internal

R&D purposes

OUTPUT • LCA

• EPD

CALCULATION OF LCA RESULTS SUITABLE FOR EPD GENERATIONS

						CALCULATION ST							
MPACT CATEGORY	Unit of Measure		ECM-Structural Raw	BOM-Structural	EOM-Electrical Raw	BOM-Electrical Transport		BOM-Packaging	y V A	M INSTALLATION		END-OF-UTE	_
Diviste change - Total	kg CO ₃ eq	0.006+00	1.17E+04	2.696+01	4.726+03	2.475+01	2.89E+02	2.456+01		1.509+02	0.006+00	1.925+02	Print Inputs Resu
Smate change - Fossil	kg 00 ₇ eq	0.00E+00	1.166+04	2,606+01	4.70E+03	2.476+01	2.88E.402	2.456-01		1.50E+02	0.00E+00	1.92E+02	
Timate change - Biogenic standard	kg CO ₃ eq	0.00E+00	2.46E+01	1.526-03	1.17F+01	1.40E-03	6.31E-01	1.396-03	191	1.07E-02	0.005+00	2.895-02	
Simate change - Biogenic stoned	kg CO ₁ eq	0.00E+00	0.000400	0.00E+00	0.006400	0.008+00	0.008400	0.00E+00	0.008400	0.008+00	0.008+00	0.008+00	Print Plant Resum
limate change - Land use and LU change	Rg CO ₂ eq	0.006+00	1.696-01	3.38E-04	9.096+00	3.10E-04	2.496-01	3.07E-04	1.176-04	9.166-04	0.005+00	2.286-02	Print Plant Resun
Jimate change - GWP GHG	kg CO ₃ eq	0.006+00	1.146+04	2.686+01	4.588.403	2.468+01	2.768+02	2.436+01	1.440+01	1.508+03	0.006+00	1.996+02	
Ozone depletion	ke OFC11 eq	0.00E+00	7.66E-04	5.97E-06	3.16E-04	5.48E-06	16.88E-06	5.426-05	3,436-06	5.026-07	0.00E+00	1.136-06	The second control of
kildiffication	mol H+eq	0.000+00	5.225401	5.500-01	1.666+01	5.050-01	1.166+00	5.000-01	5,026-02	1.600402	0.006+00	9.966-02	Print EPD Results
utnophication, freshwater	Rg P ex	0.00E+00	5,636-01	1.466-05	3.53E-01	1.346-05	8.83E-03	1.32E-05	7,40E-06	2.906-05	0.00E+00	5.17E-04	
utrophication, marine	kg N eq	0.006+00	1.246+01	1.396-01	5.47E+00	1.276-01	2.176-01	1.266-01	1.616-02	1.786-00	0.006+00	3.475-02	
utrophication, terrestrial	mol N eq	0.00E+00	9.735-01	1.546+00	6.146-01	1.416+00	2.86E+00	1.406-00	1.776-01	1.726-01	0.006+00	3.50E-01	
Photochemical oxone formation	kg NMVOC eq	0.006+00	5.425+01	3.945-01	2.616+01	3.626-01	1.136+00	3.586-01	4.825-02	4.206-02	0.005+00	8.905-02	Print R&D Result
Resource use, minerals and metals	kg Sb eq	0.00E+00	1.266.08	6.926-07	8,736,01	6.358-07	4,345,05	6.298 07	6.286.07	2.808.06	0.0001+00	2.828-06	
Resource use, fossils	MI	0.00E+00	1.55E+05	3.635+02	6.106+64	3.336+02	8.325-63	3.306+02	2.056+02	3.656+01	0.005+00	1.84E+02	
Mater use	m ³ depriv.	0.00E+00	4.088.403	-6.328-00	1.656+03	-5.816-02	2.518+02	-5.756-02	-3.438-02	6.888+00	0.008+00	4.438+00	Export Results
Particulate matter	disease inc.	0.00E+00	4.266-04	1.296-06	2.70E-04	1.19E-05	1.01E-05	1.186-06	1.086-06	2.02E-07	0.00E+00	7.21E-07	
ionising radiation	k8q U-255 eq	0.000+00	5.276402	1.588+00	2.276+02	1.458+00	9.790+00	1.448+00	8.900-01	9.328-02	0.006+00	7.268-01	
Dostenbilts, freshwater	CTUe	0.00E+00	2.106+05	1.356+02	3.066+05	1.206+02	2.26E+03	1.196+02	8.316+01	3.076+02	0.00E+00	1.116+03	
furnish toxicity, cancer	cruh	0.006+00	4.596-06	3.380-09	7.946-06	3.506-09	4.9TE-08	3.075-09	1.176-09	1.216-08	0.0000+000	2.646-08	
Human toxicity, non-senser	CTUh	0.00E+00	1.45E-04	1.65E-07	2.24E-04	1.516-07	1.46E-06	1.50E-07	1,366-07	5.04E-07	0.00E+00	4.64E-06	
Land use	Pt	0.000+00	1.376+04	9.616-01	2.106+04	A.82E-01	7.206+02	8.736-01	5.518-01	5.046+00	0.0000+000	1.996+01	
himany renewable energy (cernier)	MU	0.00E+00	1.40E+04	5.186-01	6.30E+03	4.766-01	3.25E+02	4.71E 01	3.146-01	8.566-01	0.005+00	1.396+01	
Primary renewable energy (feedstock)	MU	0.000+00	0.006+00	0.006+00	0.00F+00	0.005+00	0.006+00	0.000+00	0.006+00	0.006+00	0.005+00	0.006+00	
Primary renewable energy (total)	MJ	0.00E+00	1,406,404	5.186-01	6.306.403	4,766.01	3.256.402	4,715.01	3,148-01	8.566.01	0.006400	1.396+01	
Primary non-renewable energy (carrier)	MU	0.005+00	1.955-465	3.55E+02	7.335+04	3.265+02	4.225+69	3.225+02	2.00E+02	4.01E+01	0.005+00	2.256+02	Æ
Primary non-renewable energy (feedstock)	MU	0.008+00	0.008400	0.008+00	4.346.403	0.008+00	4.806.403	0.008-00	0.006400	0.006+00	0.006400	0.006400	
Primary non-renewable energy (total)	MI	0.00E+00	1.95E+05	3.55E+02	7.75E+04	3.26E+02	9.035+03	3.22E+02	2.00E+02	4.01E+01	0.005+00	2.25E+02	
Secondary materials	ke	0.000+00	5.636-01	0.000+00	0.006400	0.000+00	0.000400	0.000+00	0.006+00	0.006+00	0.006+00	0.008+00	
tenessable secondary fuels	MU	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
ion-renewable secondary fuels	MI	0.006+00	0.000-00	0.000+00	0.000-00	0.000+00	0.006400	0.000+00	0.000+000	0.000+00	0.0000+000	0.000+00	
Get use of fresh water (E13.6)	m ³	0.00E+00	1.45E+02	1.216-03	5.19E+01	1.11E-03	5.45E+00	1.106-03	5.62E-04	2.166-01	0.00E+00	1.666-01	
lacardous waste disposed	Ref	0.005+00	6.156-01	0.005+00	0.006+00	0.000+00	0.006+00	0.005+00	0.005+00	0.005+00	0.005+00	0.005+00	
ion hazardous waste disposed	No	0.00E+00	5.146-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.006+00	0.00E+00	1.096+01	0.005+00	2.00E+01	
The second second second second		Annual Market Property	The second second	and a state of the state of	and the Control of th		100000000000000000000000000000000000000	A 100 A 100 A 100 A		H-000000-1008	- CONTRACTORS	- CC - CC	

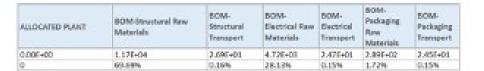
0.00E+00 0.00E+00 0.00E+00 0.00E+00

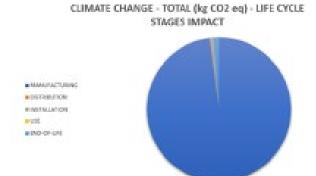
0.00E+00

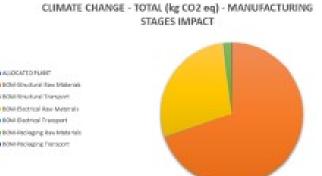
0.006400

MANUFACTURING	DISTRIBUTION	INSTALLATION	USE	END-OF-UFE	TOTAL
1.68E-04	1.456-01	1.506+02	0.005-00	1.925+02	1.715-04
97.92%	0.08%	0.88%	0.00%	1.12%	- BYVXX

0.00E+00 0.00E+00


0.00E+00


0.00E+00 0.00E+00


0.000E+00

Components for re-use

Materials for recycling Materials for energy receive

EXCEL BASED TOOL

AT WORK

Purchase and resale of steel pipes mainly for structural and oil & gas uses

CUSTOMER CTA

PLANTS 5 with the possibility of adding others in case

of acquisitions

COUNTRIES worldwide

OUTPUT CFO

ORGANISATION CARBON FOOTPRINT BY GHG PROTOCOL

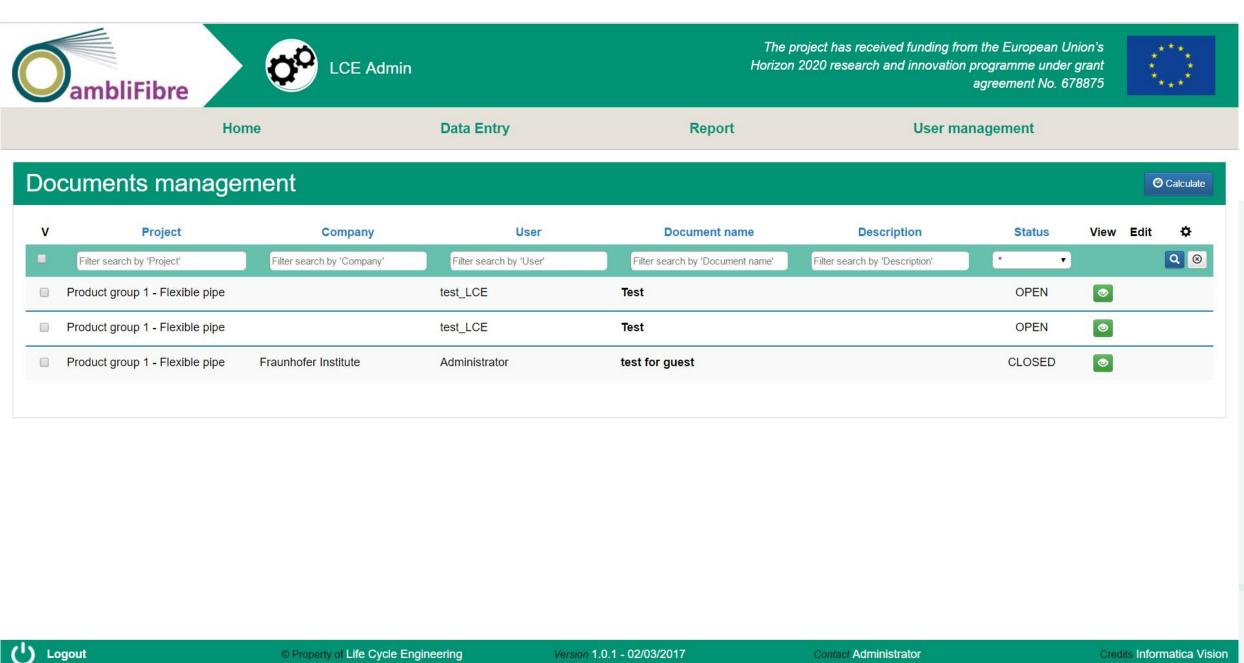
HORIZON 2020

AmbliFibre will develop and validate the first intelligent model-based controlled laser-assisted tape winding system for fibre-reinforced thermoplastic (FRP) components. The successful application of the AmbliFibre results will dramatically accelerate the replacement of metal components in these domains, reducing the carbon footprint thanks to the low weight and long life cycle of FRP components and provide new opportunities for European manufacturers. www.amblifibre.eu

AMBLIFIBRE H2020 N.678875

PERIOD: 2015-2018

USERS Project's CONSORTIUM


COUNTRIES Europe

• Data collection for LCA

- Guided LCA model assembly
- Impact indicators calculation

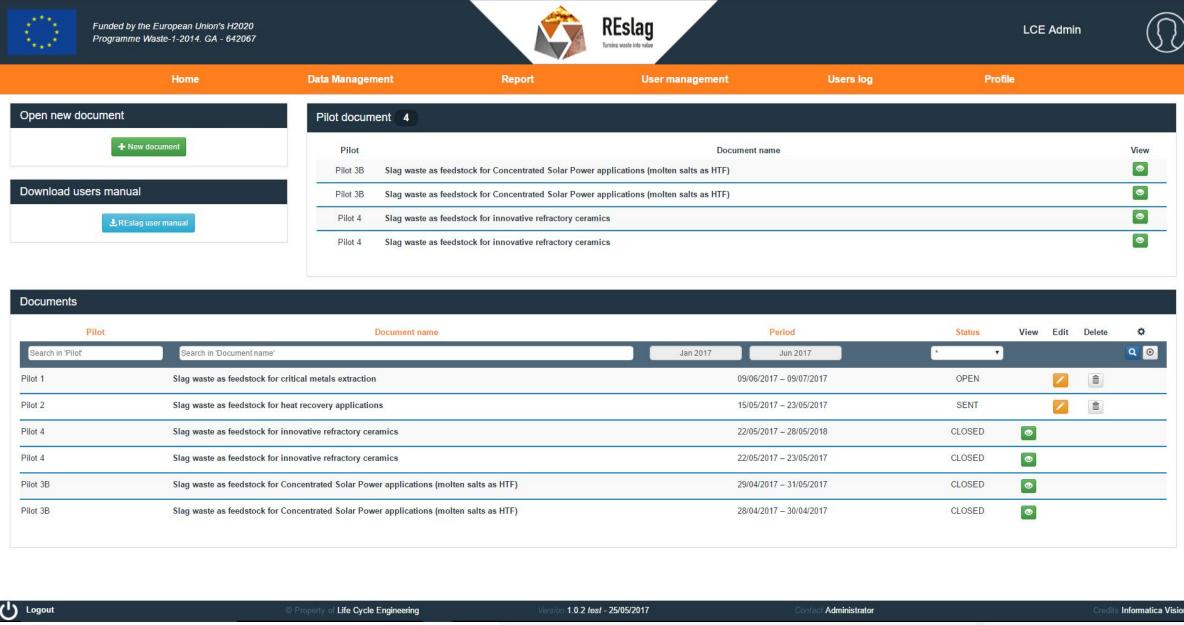
HORIZON 2020

RESLAG project aims to turn waste from steel industry into a valuable low cost feedstock for energy intensive industry. Thi project seeks to develop an innovative organizational steel by-products management model, based on a life cycle perspective, which is able to reach high levels of resource and energy efficiency. The project will demonstrate that there are industrial sectors able to valorize steel slag that are currently landfilled, if properly supported by the right technologies. To this aim, four innovative applications for recycling steel slag will be developed and tested on large-scale demonstrations. dev.enzimdigital.com/reslag/

RESLAG H2020 N.642067

PERIOD: 2015-2019

Project's CONSORTIUM **USERS**


COUNTRIES Europe

DEVELOPMENT

- Data collection for LCA
- Guided LCA model assembly
- Impact indicators calculation

HORIZON 2020

SElectiveLI is an European project, funded by the BBI JU under the Horizon 2020 program. The project's aim is to provide proof of concept of the potential for converting low cost lignosulfonate feedstock into high value bio-sustainable chemicals through the development and optimization of electrochemical processes and downstream separation and purification.

SELECTIVELI H2020 N. 837276

PERIOD: 2019-2023

USERS Project's CONSORTIUM

COUNTRIES Europe

DEVELOPMENT • Data collection for LCA studies

Guided LCA model assembly

Impact indicators calculation

• R&D simulations

HORIZON 2020

EFFECTIVE is an European project, funded by the BBI JU under the Horizon 2020 program, and a multi-company collaboration. The project's overarching objective is to demonstrate innovative and economically viable routes for the production of bio-based polyamides and polyesters from renewable feedstocks to obtain fibres and films with enhanced properties, market competitiveness and increased sustainability.

www.effective-project.eu

EFFECTIVE H2020 N. 792195

PERIOD: 2018-2022

USERS Project's CONSORTIUM

COUNTRIES Europe and USA

DEVELOPMENT

 Data collection for LCA/LCC and S-LCA studies

Guided LCA model assembly

• Impact indicators calculation

GROWING RESILIENCE AGRICULTURE

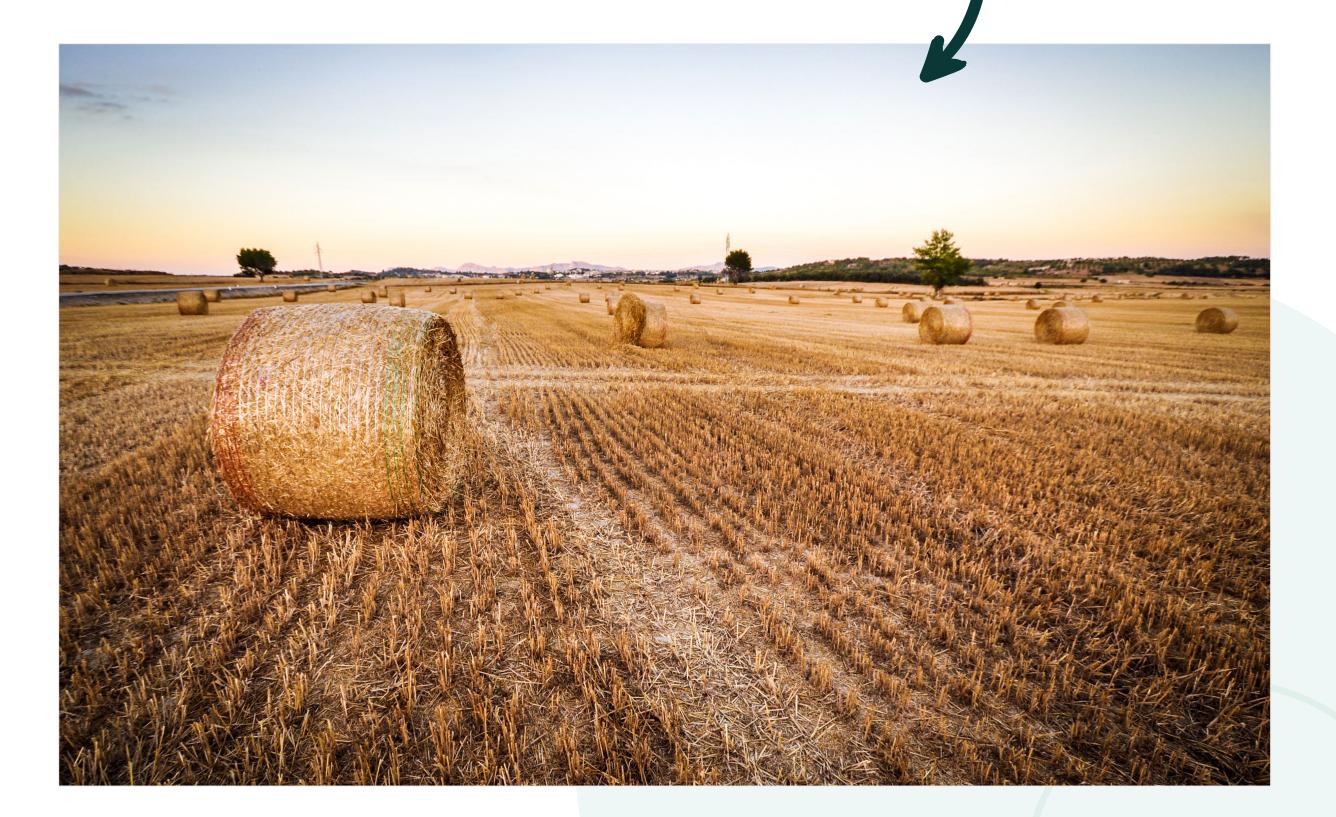
With the contribution of the LIFE financial instrument of the European community

GREAT is the European project led by the Department of Agro-Alimentary Sciences and Technologies, of the University of Bologna.

From agricultural production, to processing, to consumers, the goal is to experiment with new resilient crops in order to reduce climate change impact on agricultural activities in the Po Valley, as well as in Italy as a whole, thereby helping to sustain farmers' income, reducing water consumption and producing quality foods for the final market. https://great-life.eu/

USERS Project's CONSORTIUM (LCE, University of

Bologna, Alce Nero, Kilowatt, Cento Municipality)


COUNTRIES Italy, with possible future developments and

use in other European countries

DEVELOPMENT • data collection for LCA/LCC analysis

• Impact indicators calculation and reporting

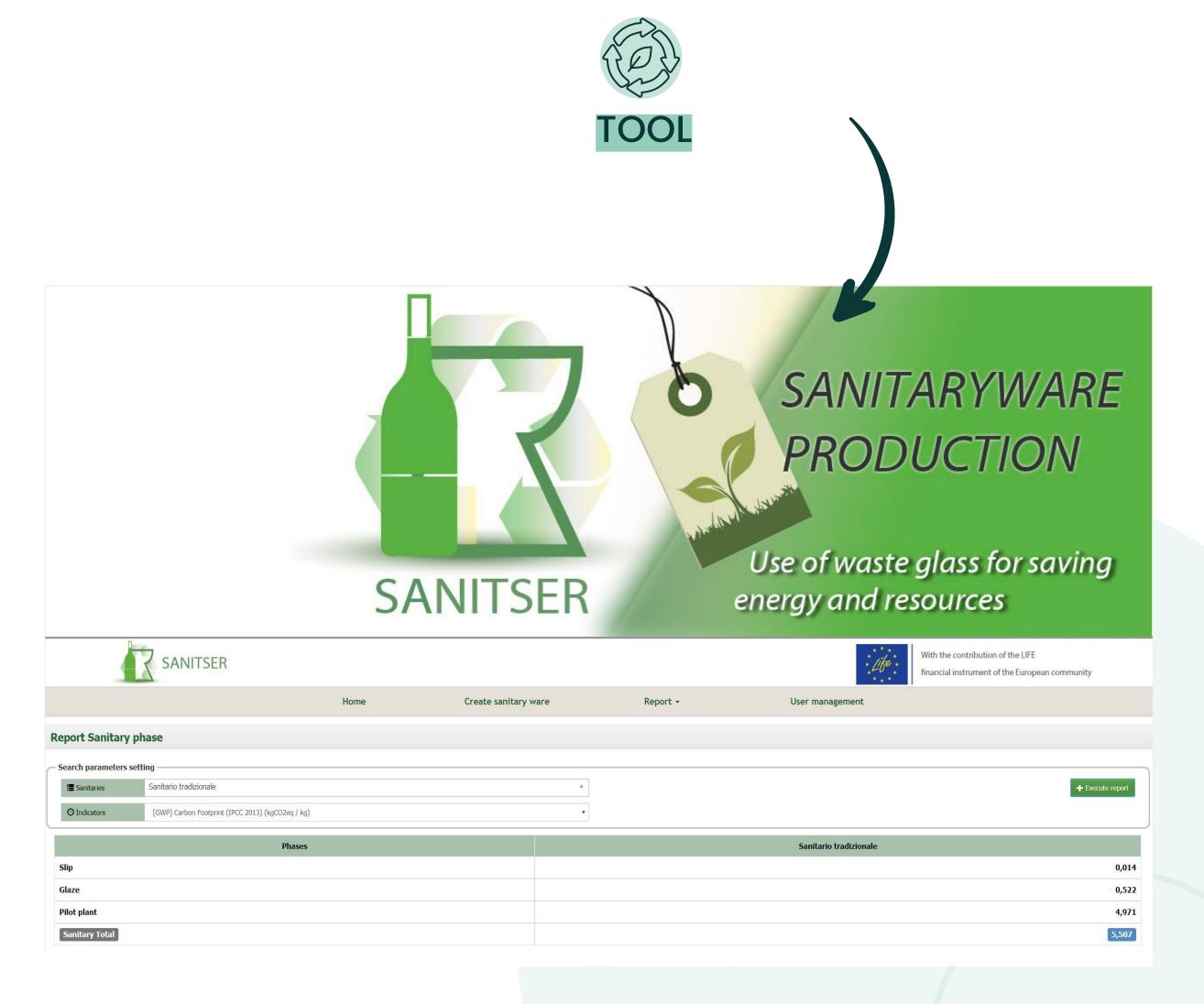
GLASS RECYCLING FOR SANITARYWARE

With the contribution of the LIFE financial instrument of the European community

Sanitser is a European project that aims to revise the production process in the Vitreous Sanitary Ware (VSW) ceramic sector by introducing relevant amounts of glass cullet waste from urban waste disposal in the ceramic blends formulations.

The project focuses process innovations designed to:

- a) provide a sustainable management, in terms of recovery of large amounts of glass cullet waste (soda lime glass: SLG);
- b) improve environmental performances of the ceramic sector by reducing CO₂ emissions;
- c) enhance sustainability by energy saving and natural resources preservation.


www.sanitser.eu

USERS
Project's CONSORTIUM

COUNTRIES
Europe

DEVELOPMENT

Data elaboration for LCA/LCC & SLCA studies
Impact indicators for EPD purposes
R&D simulations

FOOD

Barilla is one of today's top Italian food groups. Barilla leads in the global pasta business, the pasta sauces business in continental Europe, the bakery products business in Italy and the crispbread business in Scandinavia. The Group exports to more than 100 countries, delivering every year about 1,700,000 tons of food products, with the brands Barilla, Mulino Bianco, Voiello, Pavesi, Academia Barilla, Wasa, Harry's (France and Russia), Misko (Greece), Filiz (Turkey), Yemina and Vesta (Mexico).

www.barillagroup.com

CUSTOMER

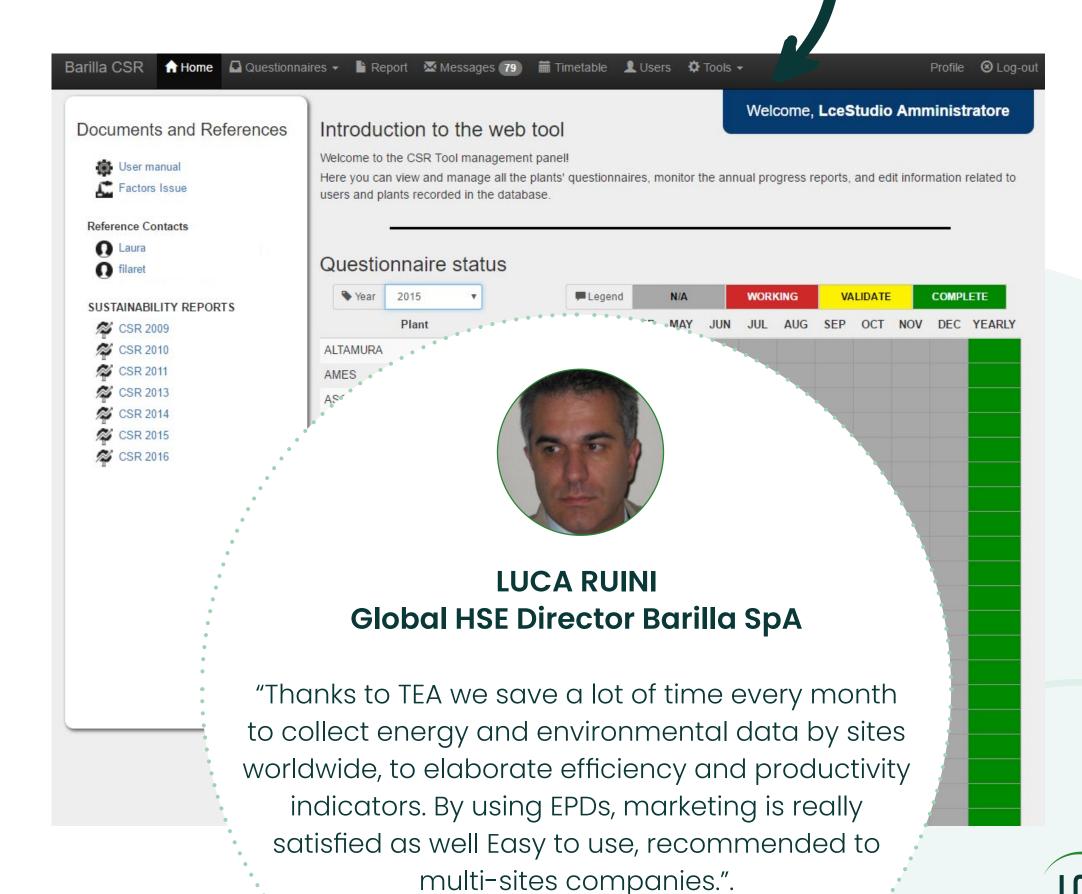
BARILLA

PLANTS

26

COUNTRIES

France, Greece, Italy, Mexico, Russia, Sweden, Turkey, USA


FEATURES/KPI

CSR reporting

OUTPUT

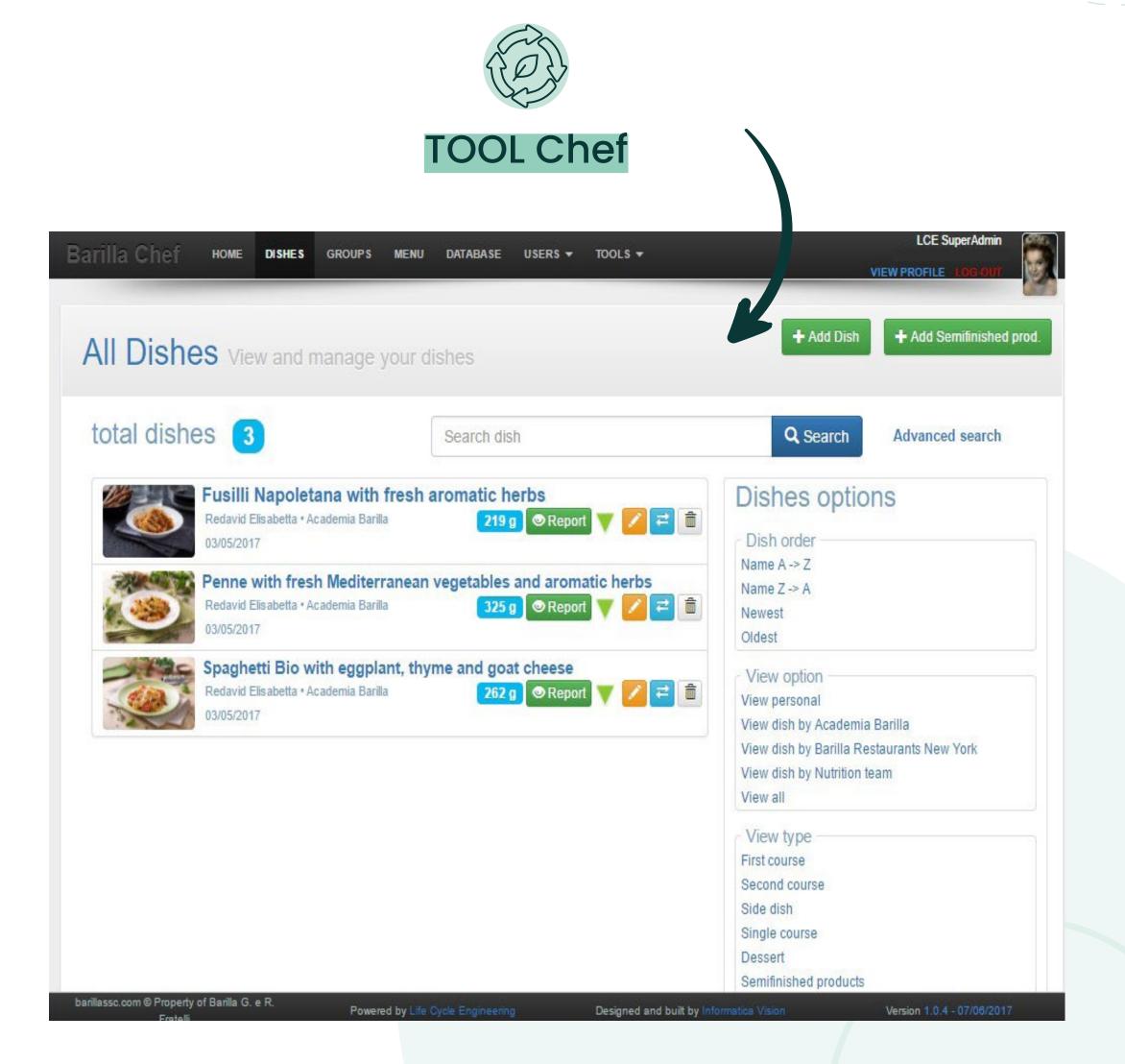
CSR indicators at company and plant level

FOOD

.

CUSTOMER

BARILLA


Nutrition Team, HSE&E Team, Academia
Barilla's Chefs, Barilla Restaurant's Chefs

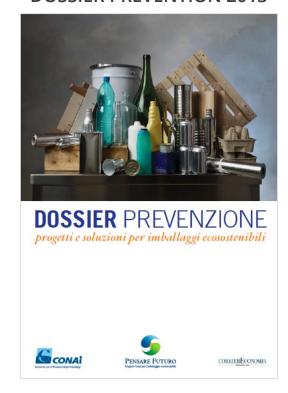
COUNTRIES

Italy, USA

Nutritional and Environmental Values of Dishes and Menus

EU and US Nutrizional Labels for Dishes and Menus Carbon, Water and Ecological Footprint for Dishes and Menus

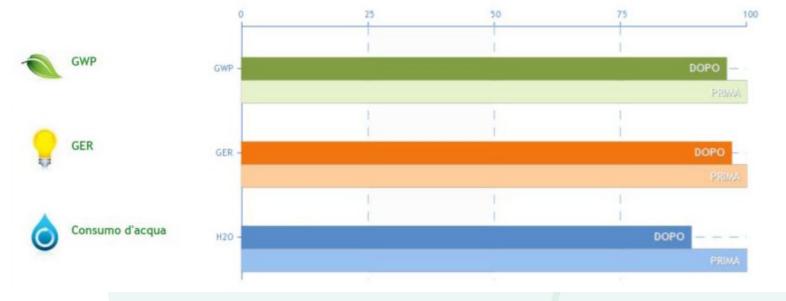
PACKAGING


www.lcengineering.eu

The Italian National Packaging Consortium (CONAI) has the scope to recovery and recycling the packaging in Italy, coordinating the work of the six italian consortia of materials: steel (Ricrea), aluminium (CiaI), paper and paperboard (Comieco), wood (Rilegno), plastics (Corepla), and glass (Coreve). With more than IM member companies, CONAI is one of the largest systems in Europe. CONAI adopts TEA to evaluate the eco-compatibility of new packaging solutions of its member companies. CONAI promotes the adoption of eco-sustainable packaging at source. www.conai.org

CUSTOMER	CONAI
USERS	CONAI member companies (associates) >1M
DEVELOPMENT	Evaluation of eco-design solutions
FEATURES/KPI	Comprehensive DB by materials and processes Possibility to use plant (primary) data
OUTPUT	Variation of the three selected impact indicators (carbon, water, energy) former vs new solution

DOSSIER PREVENTION 2013


FUTURO COMUNE 2016

Risultati

25

BUILDING & CONSTRUCTION

The European Waterproofing Association (EWA) was created to provide an authoritative voice for the Bitumen roofing and waterproofing membrane manufacturing industry across Europe. The EWA is Europe's central source of advice and information on all Bitumen membrane roofing and waterproofing matters, both to the industry and to its user groups.

www.bwa-europe.com

CUSTOMER	European Waterproofing Association
USERS	EWA member companies (associated) >30
COUNTRIES	Austria, Belgium, Denmark, Finland, France, Germany, Italy, Netherlands, Norway, Spain and Sweden
FEATURES/KPI	Collection and data elaboration for the pan-European Environmental Product Declaration (First certified EPD for a trade association) Plant user R&D elaboration
OUTPUT	24 impact indicators based on the EN 15804 standard

0.00E00 0.00E00 0.00E00 0.00E00 0.00E00

	The table sales of the intalsactors to see the semi-								
	Sum Amounts KWh:	0							
Documents Details Recipe									
Output transport	IndicatorName	udm	A1	A2	A3	A4	TotalImpact		
Emissions Waste	ODP	kgCFC11	1.08E-08	3.19E-09	1.43E-10	0.00E00	1.42E-08		
EPD profile I EPD profile II	AP	KgSO2	1.28E-03	1.01E-04	2.52E-05	0.00E00	1.41E-03		
Logout	POCP	KgC2H4	4.26E-04	1.53E-05	4.50E-06	0.00E00	4.46E-04		
	EP	KgPO43	1.22E-04	2.32E-05	6.66E-06	0.00E00	1.52E-04		
Document name:	ADPForNFR	kgSbeq	2.55E-09	1.34E-11	3.60E-11	0.00E00	2.60E-09		
Membranes roofing: Single layer fully torched Recipe mass:	ADPForFR	kgOileq	5.35E01	3.01E-01	1.88E-02	0.00E00	5.38E01		
1.1	Exported_Energy	МЈ	0.00E00	0.00E00	0.00E00	0.00E00	0.00E00		

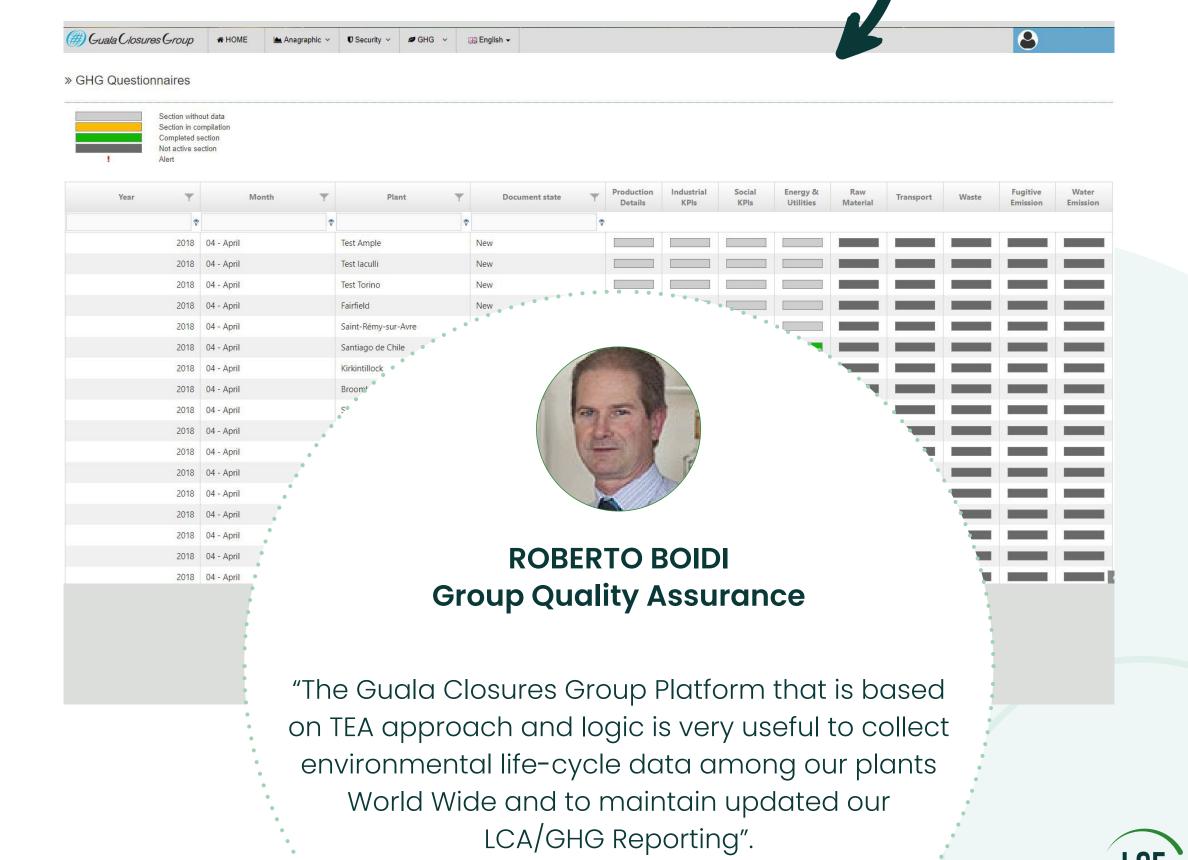
REN_Feedstock MJ

Characteristics of product:

IndicatorName	udm	A5
GWP100	KgCO2eq	-4.61E-
ODP	kgCFC11	-4.42E-
AP	KgSO2	-1.02E-
POCP	KgC2H4	-1.27E-
EP	KgPO43	-1.35E-
ADPForNFR	kgSbeq	-5.29E-
ADPForFR	kgOileq	-6.86E-
Exported_Energy	МЈ	5.12E-(

TotalImpact

PACKAGING



Guala Closures Group is world leader in the production of non-refillable closures for spirits and in the production of aluminium closures for spirits, wine, oil and vinegar, water and beverages, food and pharmaceuticals. It operates in 5 continents through 29 production plants and a sales network covering over 100 countries. The Group is also active in the design and manufacture of PET bottles.

www.gualaclosures.com

CUSTOMER	Guala Closures Group
PLANTS	29
COUNTRIES	Argentina, Australia, Brazil, Bulgaria, Chile, China, Colombia, France, India, Italy, Mexico, New Zealand, Poland, South, Africa, Spain, Ukraine, United Kingdom, USA
FEATURES/KPI	Comprehensive DB by materials and processes Possibility to use plant (primary) data
OUTPUT	LCI data from 25 plants over 5 continents. LCA for different closures

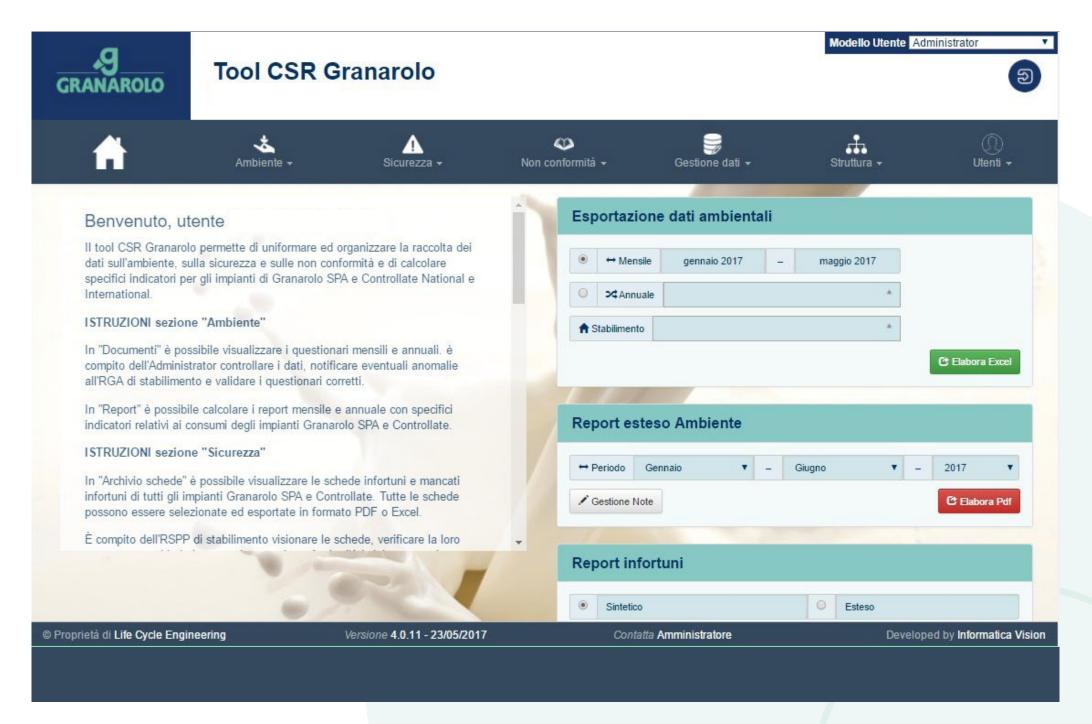
YARNS AND TEXTILES

For almost 50 years Aquafil has been generating and distributing value in the Nylon 6 market, by developing manufacturing processes and producing innovative products with the best environmental performance. Aquafil has always been committed to taking concrete actions to protect the environment and aims to maintain its leadership in the sector by implementing an innovative resource-efficient business model that delivers quality products while safeguarding the environment and yielding value for all those involved in the business activities. ECONYL® regenerated nylon is a product of Aquafil.

www.aquafil.com - www.econyl.com

CUSTOMER	Aquafil
USERS	R&D, HSE Manager, Quality assurance, Plant manager
PLANTS	15
COUNTRIES	China, Croatia, Germany, Italy, Slovenia, Thailand, UK, USA
OUTPUT	Environmental burden, including carbon footprint KPI report for CSR analysis

FOOD



.

The **Granarolo Group** is one of the first Italian owned agro-industrial group in the country and the largest Italian milk supply chain directly owned by producers operating as a co-operative. Granarolo comprises a consortium of milk producers – Granlatte – which operates in the agricultural sector and collects raw milk – and a joint-stock company – Granarolo S.p.A. – which processes and sells the finished product, with 18 production sites throuth the country and 7 abroad. **www.granarolo.com**

CUSTOMER	Granarolo
USERS	HSE Manager, Plant Manager
PLANTS	+15
COUNTRIES	Italy
OUTPUT	KPI report for CSR analysis Track accidents, near-accidents and occupational diseases Report on safety at work Report on NC management

FOOD

Granarolo **CUSTOMER**

USERS R&D, HSE Manager, marketing

FEATURES/KPI Extensive DB with materials and processes

LCA indicators to benchmark different solutions **OUTPUT**

Glossario Logout Gestione Documenti Pannello Utente

TOOL PACK GRANAROLO per l'analisi LCA semplificata

Il TOOL PACK GRANAROLO è lo strumento che permette di valutare la sostenibilità dei propri imballaggi attraverso un confronto, in termini di impatto ambientale, tra l'imballaggio PRIMA e DOPO l'intervento migliorativo adottato.

Tale strumento, realizzato con il supporto della società Life Cycle Engineering, si basa sull'approccio "dalla culla alla culla" e consente di calcolare, attraverso un'analisi LCA semplificata (o "spedita"), gli effetti delle azioni di prevenzione attuate dalle aziende sui propri imballaggi.

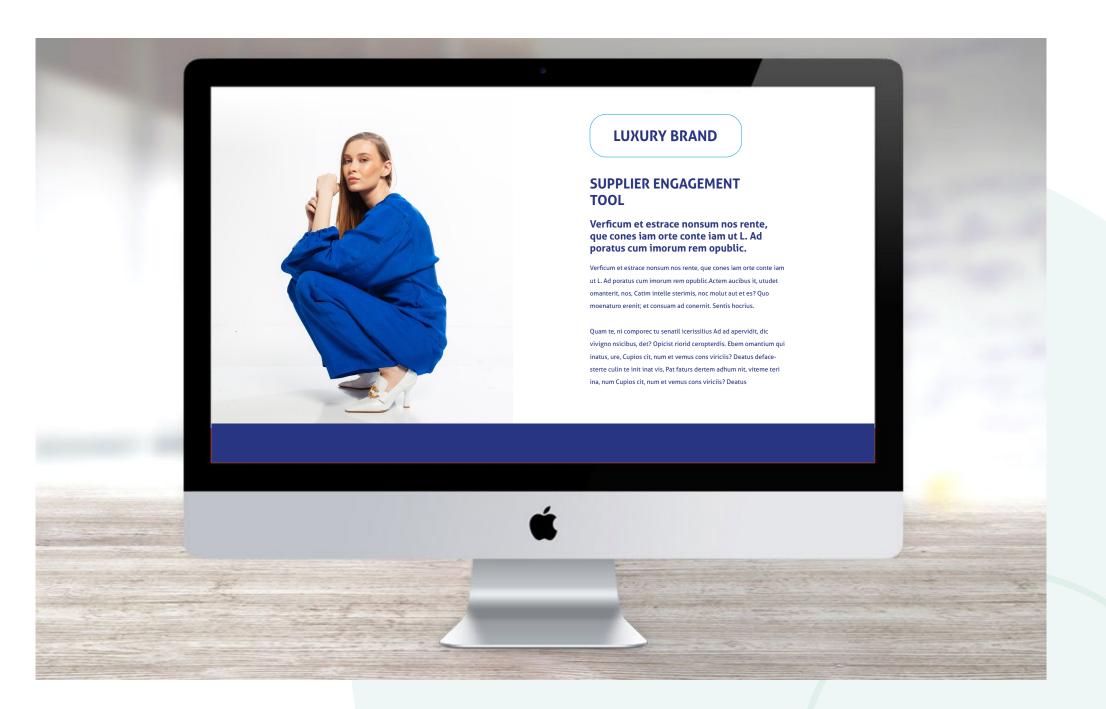
FASHION

Web-tool developed for one of the most famous Italian Luxury brand. Its aim is to support the supplier engagement and the qualification process.

CUSTOMER LUXURY ITALIAN BRAND

USERS Suppliers (>500)

COUNTRIES All over the world


DEVELOPMENTSuppliers map

Self-assessment on environmental, social

and health and safety issues.

OUTPUT Supplier qualification report

BUILDING & CONSTRUCTION

European General Galvanizers Association (EGGA) is the industry organisation for Europe's general galvanizing sector, representing about 600 general galvanizing plats in Europe. EGGA monitors and responds to issues affecting the general galvanizing industry in Europe, in particular environmental, technical and regulatory matters. EGGA also provides a platform for coordination of marketing and other initiatives for the industry. **www.egga.com**

CUSTOMER EGGA

USERS EGGA member companies (associates) >50

COUNTRIES Europe

DEVELOPMENT LCA Reporting R&D elaboration

RAIL TRANSPORT

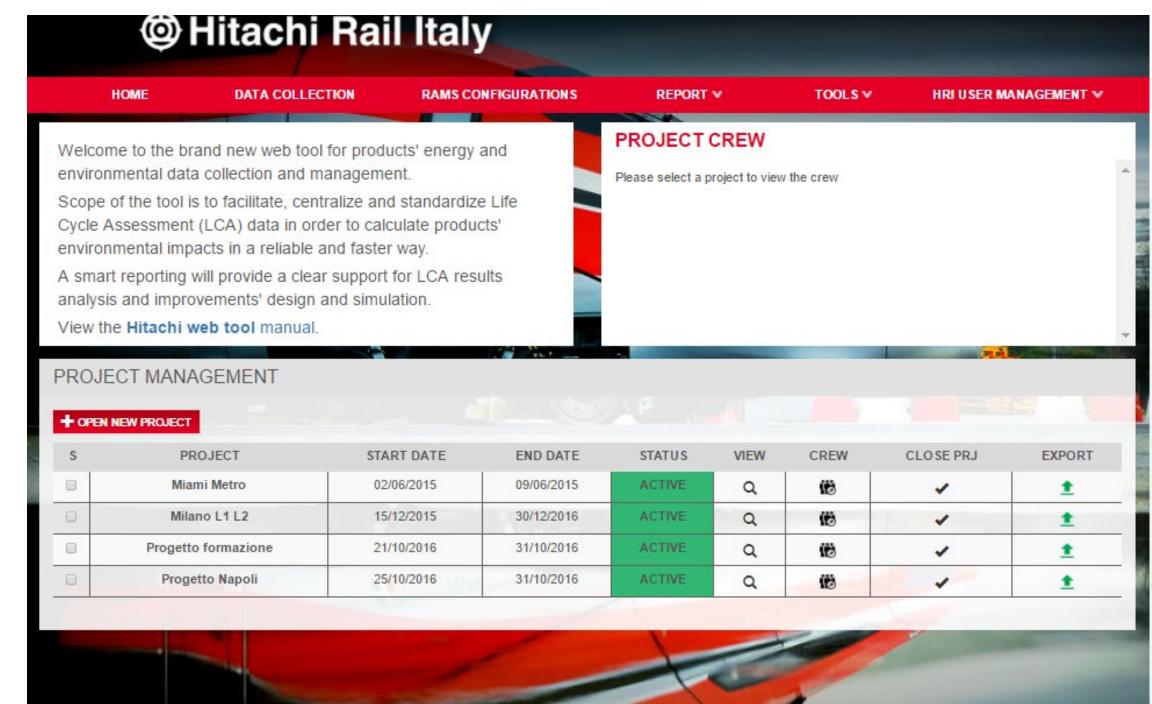
Hitachi Rail Italy is specialized in the manufacture of technologically advanced rolling stock. Created by the evolution of AnsaldoBreda, the most important Italian brand with more than 160 years of history in the rail and metro sector, Hitachi Rail Italy has a wide range of products, ranging from high speed to driverless metros. In the segment of local public transport Hitachi Rail Italy is the world leader for the driverless metros, holding about the 30% of the world market. italy.hitachirail.com

CUSTOMER Hitachi rail italy

USERS Designers, HSE manager, ISO 14001 manager, R&D,

suppliers

COUNTRIES Europe, USA


OUTPUT Data elaboration for LCA studies

Impact indicators for EPD purposes

R&D simulations R&D elaboration

BUILDING & CONSTRUCTION

Buzzi Unicem is an international multi-regional, "heavyside" group, focused on cement, readymix concrete and aggregates. Buzzi Unicem records over 100 years of industrial activities: founded in 1907, the company currently operates in 12 countries with 9,700 employees. **Unical**, a company belonging to the Buzzi Unicem group, produces readymixed concrete in Italy. **www.buzziunicem.it**

CUSTOMER BUZZI UNICEM and UNICAL

PLANTS BUZZI UNICEM: 12

UNICAL: +100

COUNTRIES Italy

FEATURES / KPI Collection and data elaboration for the Environmental

Product Declaration (EPD)

Plant user R&D elaboration


OUTPUT EPD Report ready for publication

LEED/CAM Report with the calculation of recycled content

Synthetic reports for the managers office

BUILDING & CONSTRUCTION

.

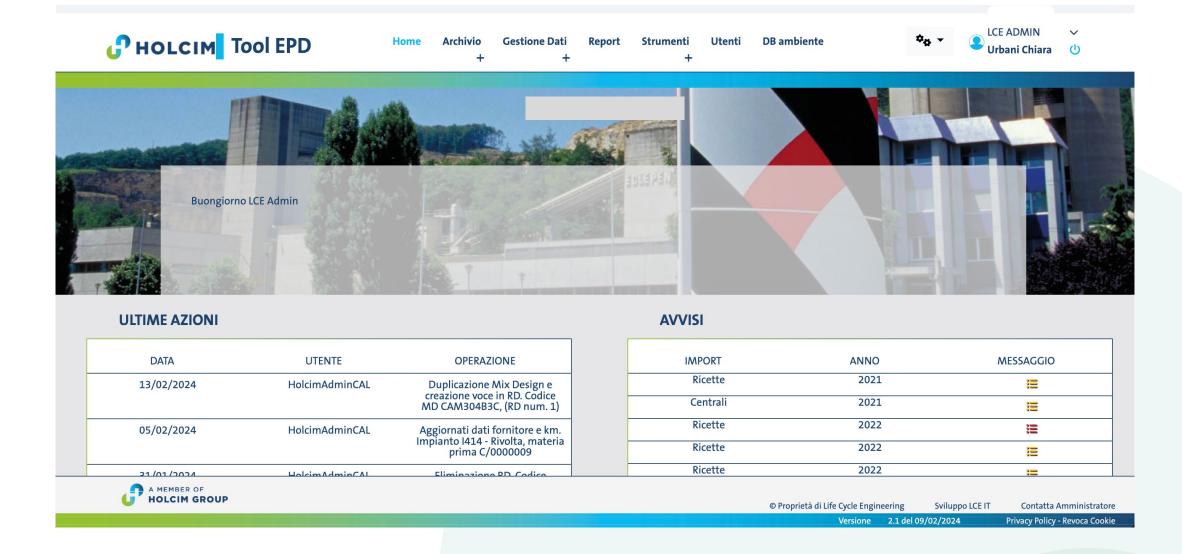
Holcim – Lafarge is a leader company in concrete, cement, aggregates production. The Italian branch, founded in 1928, is part of Holderbank Group since 2001. **www.holcim.it**

CUSTOMER HOLCIM ITALIA

PLANTS]]

COUNTRIES Italy

FEATURES / KPI Importing and processing data for third-party certified


EPDs for concrete products

OUTPUT EPD document ready for publication

- Recycled content

PACKAGING

Coopbox Group is leader in Italy and Europe in the production of food packaging and packaging systems for fresh products, with a wide range of products spanning from the basic tray in expanded polystyrene, to draining versions able to absorb liquids, to the most advanced gas barrier trays for modified atmosphere packaging. With a 130-million euro turnover, the Coopbox Group has factories, sales offices and subsidiaries in Italy, Spain, Slovakia and France. **www.coopbox.it**

CUSTOMER

COOPBOX

R&D, Marketing

Italy, Morocco, Spain, Slovakia

DEVELOPMENT

LCA Reporting
R&D elaboration

OUTPUT

Product' Carbon Footprint:
- Worksheet Export for R&D elaboration
(single unit, comparison of multiple products)
- PDF Template for marketing purposes

coopax.

AER

TECNOLOGI/

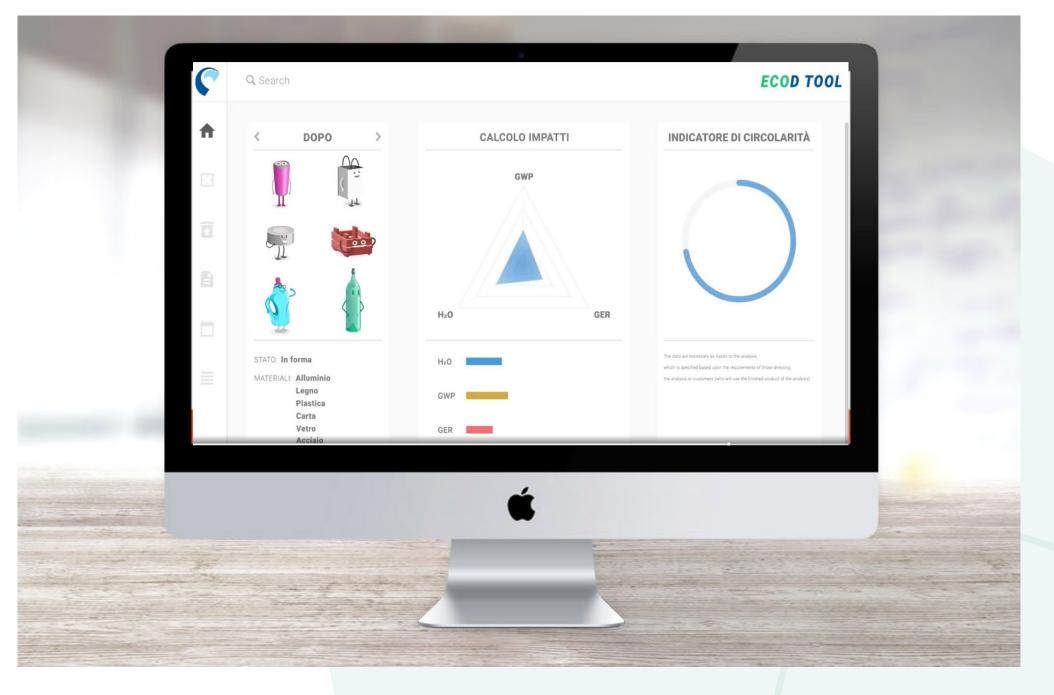
I vassoi barriera AERpack nascono per essere utilizzati nel processo di confezionamento in atmosfera protettiva che assicura agli alimenti un'elevata shelf life. Aerpack System abbina i vassoi barriera AERpack al film di chiusura AERtop garantendo prestazioni eccellenti in termini di impermeabilità, durata, tenuta, indeformabilità e trasparenza.

"COOPBOX Carbon Footprint Tool based on TEA has become an important step in our new packaging development process and provides important information to improve existing packaging, in the view of reduction of the environmental footprint of our products and production processes".

MATERIE

86%

PACKAGING



After the successful development of the Ecotool, still in use to participate to the yearly tender to award successful packaging innovations, the **Italian National Packaging Consortium (CONAI)** wanted to go a step further and made available a new area of the webtool a quantitative, scientific-based extension of the online platform to both rapidly assess the sustainability of existing packaging products, as well as to guide the companies with accurate suggestions and Eco-design tips on how to decrease the environmental impacts across the life cycle and provides a wider set of indicators regarding the eco design effectiveness and the recyclability potential. **www.conai.org**

CUSTOMER	CONAI
USERS	CONAI member companies (associates)
DEVELOPMENT	Evaluations of eco-design solutions and tailor-made suggestions
FEATURES/KPI	Comprehensive DB with materials, processes, specific indications on qualitative and formal packaging features. Possibility to use primary data.
OUTPUT	Environmental indicators (carbon, water, energy), potential of recyclable material (MPS), Conai circularity index (ICC), and Eco-design effectiveness indexes.

PACKAGING

Web-tool developed for one of the most famous Italian large scale retailer. Its aim is to support the decision-making process behind the selection of alternative packaging materials and their evironmental improvement.

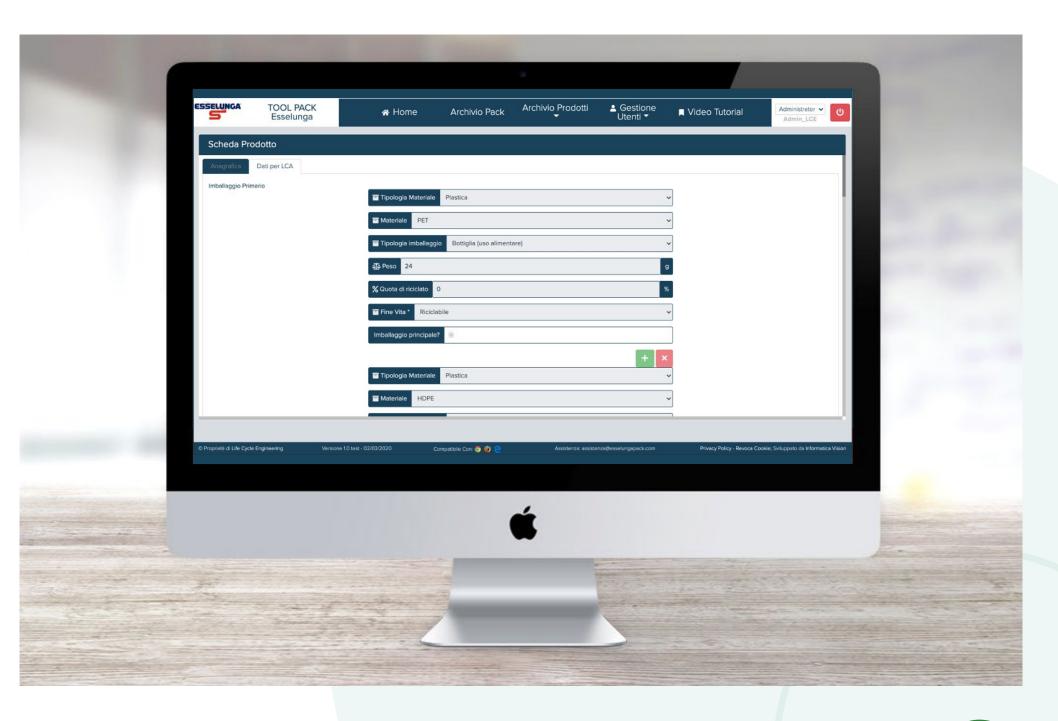
Large scale retailer **CUSTOMER**

USERS Customer's buyers and suppliers

Europe **COUNTRIES**

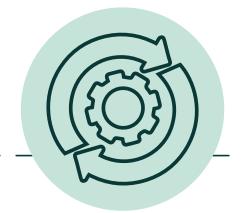
Simplified LCA to monitor and compare different packaging solutions **DEVELOPMENT**

FEATURES/KPI


Company's centralized packaging repository.
Comprehensive DB with materials, processes and end-of-

life scenarios.

Specific results of Global Warming Potential, Water consumption, circularity index, Plastic consumption and their variations between different solutions **OUTPUT**



TEA® ADDED VALUE

TEA® IS NOT SOMETHING NEW, IT IS SOMETHING EASIER

EFFICIENT

TO COLLECT DATA REDUCING COSTS AND TIME;

TO ACCELERATE THE INVOLVEMENT OF INTERESTED PARTIES.

RELIABLE

TO SUPPORT A CREDIBLE
COMMUNICATION, PERFORMANCE
TRENDS AND BENCHMARKING
(I.E. AVOID GREENWASHING)

MODERN

USE UNIVERSAL LANGUAGE
THROUGH THE WEB TECHNOLOGY

For more information: info@lcengineering.eu

Via Livorno 60 - Environment Park 10144 Torino, ITALY Tel: +39 331.44.55.052

Via 28 Aprile 2/A 31021 Mogliano Veneto (TV), ITALY Tel: +39 347.47.68.953

Icengineering.eu

Empowering your **positive** impact