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ARTICLE INFO ABSTRACT

Keywords: Dye sensitization of semiconductor metal oxides aims to extend the light absorption range into the visible
Water splitting region, of particular interest for their use as photoanodes in photoelectrochemical (PEC) water splitting.
Photoelectrochemistry Organic dyes, however, suffer from limited chemical stability when they are exposed to constant potential

Semiconductor oxides
Dye-sensitizer
Pyrimidine

and irradiation in aqueous media. Thus, in this work, we evaluate a novel metal-free donor-n-acceptor (D-n-
A) dye (AT-Pyri), demonstrating significant sensitization of film photoanodes based on TiO, nanoparticles.
Among a series of tested sacrificial agents, the addition of triethanolamine (TEOA) to the sodium sulphate elec-
trolyte prevents the degradation of AT-Pyri even after several hours of operation. Combining two sacrificial
agents (methanol and TEOA) results in a synergetic improvement of the PEC water-splitting activity.
Notably, the stabilization of the AT-Pyri photoanode is accompanied by a substantial increase in the photocur-
rent over the reference TiO, photoanode, while the associated spikes in transient photocurrent measurements

disappear.

1. Introduction

Sensitization of TiO, with organic products has been largely stud-
ied as a method to improve its solar photocatalytic activity toward
water splitting [1]. Organic sensitizers include ruthenium-based com-
pounds, various types of metal complexes, carbon dots, and metal-free
organic dyes [2-4]. Organic dye sensitization has been studied in pho-
toanodes [5,6], photocathodes [7], and tandem cells [8]. One of the
most typical drawbacks of organic dyes is their low stability under con-
tinuous photoelectrochemical (PEC) operation and irradiation
conditions.

Donor-n-acceptor (D-n-A) dyes are versatile metal-free organic
compounds in which intramolecular charge transfer (ICT) between
donor and acceptor moieties takes place [9]. The adequate choice of
structural units (D, =, A) facilitates the optimization of the molecular
energy levels, providing a broad intense light absorption for photo-
chemical applications. Regarding donors, molecules such as coumarin,
phenothiazine, carbazole, triphenylamine (TPA) and indole have been
tested [9]. Also, N,N’-dialkylanilines offer suitable light absorption and
sensitization properties when used in dye-sensitized photovoltaic cells,
showing a red-shifted ICT band with respect to TPA derivatives
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[10,11]. Regarding n-spacers, thiophenes have been proven to stabilize
the oxidized form of certain dyes in water [12]. Finally, the most com-
monly used acceptor moiety is the cyanoacetic group due to the strong
electron-withdrawing ability of the cyano group, and its easy linkage
to TiO, through the carboxylic group [13]. However, the hydrolyza-
tion of the ester bond between the carboxylic anchoring group and
TiO,, in an aqueous environment or under alkaline conditions, leads
to the desorption of dye molecules, limiting the activity of the sensi-
tized photoanode. As an alternative, dyes bearing pyridine groups
have shown improved adsorption on TiO, compared to phosphonate
and carboxylate groups [14]. Similarly, pyrimidine has electron with-
drawing properties and can act as an acceptor group in D-n-A dyes.
Nitrogen atoms from the pyrimidine also allow chelation, protonation
and hydrogen-bond formation. Therefore, we designed a D-r-A system
with N,N’-dialkylaniline as a donor, thiophene as a n-spacer and pyrim-
idine as both, an anchoring and an acceptor group for PEC water
splitting.

Transient photocurrent measurements in D-n-A dye/TiO, elec-
trodes reveal photocurrent spikes and decays, which have been associ-
ated with charge trapping processes [15]. Specifically, it has been
suggested that the D-n-A dye evolves into an oxidized state [D-n-
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Al*, and might undergo chemical changes, most probably decomposi-
tion, depending on the stability of the [D-n-A]* state [15]. Improve-
ments in the charge transfer, which will likely lead to a decrease in
adverse effects of accumulation, can be achieved by incorporating
water oxidation catalysts on the electrode [16-18]. The response
and stability of D-n-A dyes have been also improved by the insertion
of an auxiliary acceptor group in the molecule [19]. Despite these con-
siderations, PEC experiments on D-n-A dye-sensitized electrodes are
typically performed in the presence of sacrificial agents: hydroquinone
[15], ascorbic acid [20], Na,S/Na,SO3 [21], triethanolamine (TEOA)
[22,23], etc.

Sacrificial agents, which have been added for years to improve pho-
tocatalytic performance, are recurrent and can be well classified into a
few categories [24]. Methanol (MeOH) and amines rise the photocur-
rent in most types of photoelectrodes [25,26]. Iodide has been exten-
sively used in dye-sensitized photovoltaic cells and tried for
photocatalytic hydrogen production [27,28]. In particular, TEOA has
been often added to complex photocatalytic systems for hydrogen evo-
lution [29-32]. However, direct comparisons of the activity of those
common sacrificial agents are scarce [33].

In this work, we thus focus on the effect of adding sacrificial agents
(MeOH, glycerin, diethylenediamine, EDTA, hydroquinone, KI, TEOA)
on the activity and stability of both, a reference TiO, photoanode, and
another TiO, electrode that is sensitized by the AT-Pyri D-n-A dye. The
PH of the electrolyte is kept nearly neutral, avoiding strong acid and
alkaline environments. In addition, we consider the behaviour after
adding mixtures of MeOH and TEOA, and we observe a kind of syner-
getic interaction resulting in an improved PEC water splitting activity.
To the best of our knowledge, that synergetic effect has not been
reported before. Finally, we specifically observe a relationship
between the outcome of typical PEC characterization methods and
the stability of the dye in a 5 h experiment.

2. Experimental
2.1. Synthesis of AT-Pyri

The synthesis of the AT-Pyri dye, including the detailed experimen-
tal procedure and complete characterization, has been published else-
where [34]. Briefly, the aldehyde 5-(4-dimethylaminophenyl)
thiophenyl-2-carbaldehyde (AT-CHO) was prepared following a litera-
ture procedure [35]. The compound AT-Pyri was prepared by conden-
sation between AT-CHO and 4-methylpyrimidine. A phase-transfer
catalyst (Aliquat 336) was used at reflux in aqueous NaOH. This
method gives the AT-Pyri dye in a yield of 48 % [34]. The detailed
experimental method and the molecule characterization are included
in the Supporting Information.

2.2. TiO, deposition and sensitization

FTO-coated glass substrates (80 Q/sq., 80 nm,
25 x 10 x 1.1 mm®) were cleaned by the subsequent immersion in
ultra-pure water with Hellmamex III, ultra-pure water, and ethanol
for 15 min under sonication. Substrates were calcined at 500 °C in
air for 30 min and treated under ozone for 25 min. Once the cleaning
process was done, the deposition of the TiO, paste (GreatCell Solar, 18
NR-AO) was performed by screen printing. The paste was sintered in
an oven by the heating program: 5 min at 325 °C, 5 min at 375 °C,
5 min at 450 °C and 15 min at 500 °C. The covered surface and the
amount of paste were 1 cm? and 0.6 mg/cm?, respectively. The width
of the TiO, layer was approximately 4.5 pm, measured with the pro-
filometer Dektak XT.

For the adsorption of AT-Pyri, TiO, film substrates were immersed
in a 0.1 mM dichloromethane solution of AT-Pyri for 72 h in the dark.
They were subsequently cleaned with dichloromethane and dried with
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a N, stream. The quantity of loaded dye was determined to be
1.72:10~7 mol-cm ™2,

2.3. Characterization and photoelectrochemical techniques

UV-vis spectra were recorded with Cary 6000 spectrometer. Scan-
ning electron microscopy (SEM) was performed in an SEM-EDX Hita-
chi S-3400 N. Attenuated total reflection (ATR) FTIR spectra were
recorded in a Perkin-Elmer Spectrum 100 FT-IR spectrometer. Micro
Raman spectra were measured in a HORIBA Jobin Yvon Raman spec-
trometer HR 800UV, using a 532 nm laser.

The photoelectrochemical experiments were performed using an
Autolab PGSTAT302 from MetroOhm. The light source was a 150 W
xenon lamp in a laboratory solar simulator from LOT-Oriel. The lamp
was set at its maximum intensity, thus providing an incident power of
approximately 100 mW-cm ™2 AM1.5G at the distance of the target
electrode. The photoelectrochemical cell consisted of a glass container
with a quartz window and three electrodes, including the Ag/AgCl
electrode as the reference (3 M NaCl, E° = 0.210 V vs SHE) and a gra-
phite bar as the counter electrode. The supporting electrolyte was
always an aqueous 0.1 M Na,SO, solution, and it was purged with
N, for 10 min before the measurement. The cyclic voltammetry (CV)
experiments were performed at 20 mV-s~! in the range of —1.4 to
0.4V, starting at 0.4 V vs Ag/AgCl, both in the dark and under irradi-
ation conditions. The on/off transient photocurrent experiments were
performed at a constant voltage of 0 V (vs Ag/AgCl). On each working
electrode, we performed all the PEC experiments subsequently and in
the following order: CV in the dark, transient photocurrent, and CV
under irradiation. The monochromator (LOT Oriel MSH-300) is uti-
lized to study the photocurrent as a function of the incident wave-
length, and thus to corroborate the sensitization capability of AT-
Pyri within the TiO, photoanode.

3. Results and discussion

The AT-Pyri dye molecule consists of aniline as the electron-donat-
ing group, thiophene as a n-spacer, and pyrimidine as the electron
withdrawing and anchoring group (Fig. 1.a). The optical and electro-
chemical characteristics of the AT-Pyri molecule are summarized in
Fig. 1 and in the Supporting Information. Fig. 1 also shows the spectro-
scopic and SEM characterization of TiO, and AT-Pyri/TiO, electrodes.
The UV-vis spectrum of the AT-Pyri molecule in CH,Cl, solution
(Fig. 1.b) shows a band in the range of 350-500 nm, which is attribu-
ted to the ICT between the electron-donating and the electron-with-
drawing part of the dye molecule [34]. The spectrum of the AT-
Pyri/TiO; film exhibits a hypsochromic shift of the ICT band compared
to the measurement in solution, which can be associated with the link-
age of the dye on the TiO, film [35] and to an H-aggregation effect.
SEM images of TiO, (Fig. 1.c) and AT-Pyri/TiO, (Fig. 1.d) show that
the dye was adsorbed on the granular TiO, film, resulting in surface
smoothing.

The ATR-FTIR spectrum (Fig. 1.e) of the AT-Pyri dye powder dis-
plays several peaks, including the stretching vibration of C=C at ca.
1600 cm ™' and C=N at 1573 and 1439 cm ™~ '. For comparison, the
ATR-FTIR spectrum of AT-Pyri/TiO, was measured on powder mate-
rial from scratched electrodes. Some of the main vibration bands of
the AT-Pyri molecule are upshifted upon the interaction with TiO,.
Specifically, the C=N bands appear at 1602 and 1450 cm™?, indicat-
ing the coordination between the nitrogen of pyrimidine rings and
the acid Ti"" sites on TiO, [36-39]. Raman spectra (Fig. 1.f) show sig-
nals at around 140, 400, 520 and 640 cm ™, which are due to modes
of TiO, anatase phase, Eg, B1g, B1g + A;g and Eg respectively [40]. In
the AT-Pyri/TiO, spectrum, additional signals are observed in the
range of 1000-1600 cm ™}, which can be attributed to the AT-Pyri sys-
tem. In particular, the stretching mode of the thiophene ring at



A. Ansén-Casaos et al.

S =

)
-
(=2
(=)

J

Journal of Electroanalytical Chemistry 929 (2023) 117114

0.5
b ——AT-Pyri/TiO,
3 - )
TiO, L 0.4
o 1 ——AT-Pyri
c
© 2 A - 0.3
2
o
w J
.2 - 0.2
1 -
- 0.1
0 . : : y 0

400
Wavelength [nm]

450 500 550

—

Intensity [Arb. units]

TiO,

—TiOy

—— TiOy/AT-Pyri
— 98- ;

—AT-P
) "
@
o
c
S
£
7]
e
o
'—

1573
% 1602 1450
1700 1600 1500 1400

Wavenumber [cm™]

T T T T T T T

500

T T T T T T TT

1300 0 1000 1500 2000

Raman shift [cm™]

Fig. 1. Characterization of the AT-Pyri dye and AT-Pyri/TiO, electrodes: a) Molecular D-n-A structure of the AT-Pyri dye; b) UV-vis absorption spectra of a
0.02 mM AT-Pyri solution in CH,Cl,, and the AT-Pyri/TiO, electrode prepared by 72 h of immersion in a 0.1 mM solution; ¢) SEM image of a TiO electrode (top
view); d) SEM image of the AT-Pyri/TiO, electrode; €) ATR-FTIR spectra; and f) Micro-Raman spectra at 532 nm on TiO, and AT-Pyri/TiO, electrodes.

1380 cm ! underlines the molecule aromatic character [41]. It is note-
worthy that the shoulder at around 1400 cm ™! and peaks at 1452 and
1608 cm™! are analogous to the main bands of the ATR-FTIR
spectrum.

The photoelectrochemical characterization of the TiO, and AT-
Pyri/TiO, electrodes in aqueous Na,SO, at nearly neutral pH is pre-
sented in Fig. 2. In the dark (Fig. 2.a), the CV measurement of bare
TiO, shows a quite reversible cycle, except for certain features in the
1st cathodic scan, which are related to reduction reactions of the
TiO, surface, probably with a loss of oxygen. The first CV scan for
the AT/Pyri/TiO, electrode evidences an irreversible reduction feature
due to AT-Pyri at —0.6 and —0.4 V. Tentatively, this signal might be
assigned to an interaction between nitrogen of the pyrimidine ring and
hydrogen atoms or ions from the electrolyte. For subsequent CV scans
in the dark, the AT-Pyri/TiO, electrode is quite stable. Only a small
reduction feature at ca. —0.35 V, which might be assigned to some
electron trapping effect in the AT-Pyri/TiO, interface, remains in the
27 cycle.

Under light irradiation (Fig. 2.b), the CV plot shows the rise of a
photocurrent (j,,) at E > —0.6 V vs Ag/AgCl The 1" and 2™ cycles
for the bare TiO, electrode are nearly identical, so we only represent
the 2% cycle in Fig. 2.b. On the contrary, the AT-Pyri/TiO, electrode
unveils a photocurrent activation from the 1% to the 2™ cycle. The

final jp,p, value of the AT-Pyri/TiO, electrode is notably higher than that
of blank TiO,. In addition, a redox couple at E = —0.1 and
E = —0.5 V can be related to the appearance of the oxidized form
AT-Pyri* [15]. The AT-Pyri™ form is relatively stable under CV cycles,
in agreement with previous observations on other chemically related
dyes [15].

Transient photocurrent measurements (Fig. 2.c and 2.d) unveils
prominent spikes in AT-Pyri/TiO, electrodes. These spikes are much
more intense than in blank TiO,, and they increase as the applied
potential decreases, in agreement with previous reports [42]. The
decline in the peak current density during the on position is particu-
larly pronounced in the initial irradiation pulse and at the beginning
of each pulse. After that, the decrease in j,, continues steadily within
each pulse and during the whole 5 min experiment. In the above men-
tioned reference, the pulse shape was simulated by a double exponen-
tial decay, and it was associated with at least two capacitive processes
involving local electron trapping and de-trapping [42]. More specifi-
cally, the spikes might arise from electron recombination with pho-
tooxidation intermediates [43], which would be associated with the
above-mentioned AT-Pyri redox couple in the CV range of —0.1 to
—0.5V (Fig. 2.b). Therefore, the presence of spikes is linked to a lack
of stability. In fact, the dye is severely degraded after five minutes
under those operation conditions, losing its starting orange color.
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Fig. 2. Electrochemical and photoelectrochemical studies in 0.1 M Na,SO4: a) CV scans in the dark, starting at 0.4 V vs Ag/AgCl; b) CV scans under AM1.5G light
irradiation; ¢) on-off transient photocurrent measurements at E = —0.1 V; and d) transient photocurrent at E = 0 V vs Ag/AgCl.

Fig. 3 shows the effect of sacrificial agents on the photoelectro-
chemical response of the AT-Pyri/TiO, electrode. In CV scans under
irradiation (Fig. 3.a), the onset potential at which a photocurrent is
observed is maintained in the presence of MeOH, but it clearly
decreases from —0.6 to —0.8 V when TEOA is used. This fact points
out that the presence of TEOA facilitates charge transfer. Transient
photocurrent experiments (Fig. 3.b) also reveal changes with respect
to measurements in the Na,SO, electrolyte without any sacrificial
agent (Fig. 2.d): current spikes decrease, and even totally disappear
upon the addition of TEOA. Moreover, the “on-part” of the transient
profile in TEOA keeps rising in the measurement time scale. Although
MeOH and particularly ethylenediaminetetraacetate (EDTA) produce
high j,, values, the decrease at the end of the 5 min measurement
and the color change indicates the degradation of AT-Pyri, just as in
the case when no sacrificial agent is added. In contrast, the j,, value
in TEOA remains stable after the 5 min experiment.

The addition of certain sacrificial agents such as hydroquinone
(H,Q), potassium iodide (KI), and diethylenediamine (DEDA) may
increase the current at the beginning of the 5 min experiment, but it
decays afterwards. Other reactants, including MeOH, EDTA, and TEOA
result in an increase in the j;, value even after 5 min of experiment
(Fig. 3.c). However, the real stability of AT-Pyri is only achieved in
TEOA and a minimum concentration of 0.01 M TEOA is required to
stabilize the dye (Fig. 3.d). Additionally, we observed that TEOA
retains its stabilizing effect even in the presence of another sacrificial

agent such as MeOH. Importantly, mixtures of MeOH and TEOA lead
to increased j,, values with a decrease in the relative concentration
of TEOA (Fig. 3.d). Even so, it is confirmed for the mixtures that the
original colour of AT-Pyri is only kept if at least 0.01 M of TEOA is
added to the electrolyte. While TEOA has been widely used by other
research groups with dye-sensitized electrodes, its particular stabiliz-
ing effect has not been compared to other sacrificial agents
[22,23,44,45].

Most of the photocurrent values that are reported in the literature
for D-n-A dye/TiO, electrodes fall in the range of 100 pA-cm™?2
[6,8,16,17,21,22,44], while a few reach 1 mA-cm~2 [15,19,20]. The
value of photocurrent might depend on cell configuration; in any case,
the improvement of AT-Pyri/TiO, above the commercial TiO, is
remarkable, according to the above mentioned literature. To defini-
tively confirm the stability of the AT-Pyri/TiO electrode in the TEOA
electrolyte, we performed a series of experiments applying a constant
potential (0 or 0.4 V) for 5 h (Fig. 4). The AT-Pyri/TiO, electrode in
0.1 M Na,SOy4 lost the initial jp, level, and its characteristic orange col-
our as well, at both 0.4 and 0 V of working potential. In the presence of
TEOA, the j;, value increases with time during 2 h, and then it decays
slightly (Fig. 4.b). This initial activation has to be associated with the
effect of TEOA reaction products on the dye-sensitized interface. The
decay after 3 h seems analogous to that occurring in the bare TiO,
electrode (Fig. 4.b), so it might take place by blocking of photoactive
sites on TiO,. Overall, the AT-Pyri/TiO, electrode keeps a high j,,
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value after 5 h of experiment in TEOA, without any visual evidence of
degradation.

Finally, we performed additional experiments intending to clarify
the working mechanism of the AT-Pyri/TiO, electrode. Measurements
with the monochromator (Fig. 5) prove that AT-Pyri has an impressive

sensitizing effect on the electrode, yielding a photocurrent in most of
the visible region. The action spectra (Fig. 5) can be intuitively related
to the absorption spectrum of AT-Pyri (Fig. 1.b). Therefore, electrons
from the AT-Pyri HOMO are excited to the LUMO level by light irradi-
ation and then transferred to the FTO collector through the TiO, layer
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Fig. 5. Action spectra at a constant potential of 0 V vs Ag/AgCl in 0.1 M
Na,SO4 as the base electrolyte.

(Fig. 6). Since the AT-Pyri HOMO level is higher in energy than the
0,/H,0 reduction potential, the AT-Pyri molecule cannot recover its
electron from water, and eventually suffers degradation.

Sacrificial agents typically have redox potentials above that of O,/
H,0. The potential for CO, reduction to MeOH (E CO,/CH3;0H) has
been located as high as 0.02 V vs the standard hydrogen electrode
(SHE), close to the potential of H* reduction to H,. However, the pro-
cess kinetics of MeOH oxidation is complex due to the formation of
surface intermediates, resulting in high overpotentials [46,47]. This
fact might explain the inability of MeOH to preserve AT-Pyri from
oxidative degradation. The potential for the reduction of TEOA™ has
been located in the range of 0.82-0.84 V vs SHE [22,23], which agrees
with the preservation of AT-Pyri in our experiments. More signifi-
cantly, this fact indicates a highly efficient electron transfer from
TEOA to AT-Pyri™ to keep the chemical integrity of the dye molecule.

4. Conclusions

A new metal-free D-n-A dye (AT-Pyri) was synthesized and
adsorbed on nanoparticle TiO,/FTO electrodes for their application
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in water splitting. The AT-Pyri/TiO, photoanode shows increased pho-
tocurrent compared to the TiO, blank in the Na,SO, electrolyte at neu-
tral pH. Transient photocurrent measurements on AT-Pyri/TiO», show
spikes and a progressive decrease in photocurrent. Spikes depend on
voltage and the presence of sacrificial agents. Among various tested
sacrificial agents (MeOH, glycerin, EDTA, hydroquinone, KI), the AT-
Pyri/TiO, electrode is completely stabilized only in the presence of a
certain concentration of TEOA (minimum 0.01 M). The TEOA provides
higher stability to the AT-Pyri dye in the presence of other additives
such as MeOH. The stabilization in TEOA solutions is associated with
the elimination of transient photocurrent spikes, together with the per-
sistence of both the photocurrent level and the electrode orange colour
after the 5 h chronoamperometry experiments. Finally, the photocur-
rent action spectrum clearly demonstrates the sensitization effect of
AT-Pyri on TiO,. The AT-Pyri dye as a photosensitizer in the TiO, pho-
toanode provides a remarkable and maintained photocurrent in the
presence of TEOA, encouraging further research in highly efficient
stable dye-sensitized photoelectrodes for the application to water
splitting.
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