Assessing Hydrogen Embrittlement

- Advanced Material Testing Methods -

2024/5/13

KOBE MATERIAL TESTING LABORATORY GROUP

Saburo Okazaki, Masami Nakamura, Michio Yoshikawa

Aiming for realizing a hydrogen-based energy society

Transport Utilization Production Storage

Design-related issue

- Is it appropriate to apply conventional design criteria?
- Is design consideration for hydrogen impact necessary?

Concern in structural design

Hydrogen embrittlement

Solute hydrogen diffuses into metallic materials, leading to a decrease in various strength properties.

- Delayed fracture
- Ductility loss
- Degradation of fatigue life and fatigue limit
- Acceleration of fatigue crack growth
- Decrease in fracture toughness

To evaluate the hydrogen compatibility of metallic materials, material testing in hydrogen environments is essential and indispensable.

Technical obstacles

- Handling hydrogen gas, which is flammable, requires knowledge and strict adherence to scientific safety measures.
- Material testing in hydrogen gas environments necessitates extensive explosion-proof facilities, resulting in significant costs.
- High expenses for outsourcing material testing services also pose obstacles to the development of a hydrogen energy society.

Hydrogen-gas sealed hollow type specimen

- Conventional material test in hydrogen-gas-environments
 - ⇒ Testing conducted using a testing machine equipped with a large-capacity pressure vessel

- Principle of conventional basic testing
 - ⇒ Creating hydrogen environment surrounding a solid specimen.

→ Testing with a hollow type specimen enables the creation of a testing environment with a small amount of hydrogen.

Solid sepcimen

Hollow type specimen

Surface condition of specimen exposed to hydrogen gas

Strength testing using hydrogen-gas sealed hollow specimen

Strength testing while exposing the material's surface to hydrogen gas.

Minimal amount of hydrogen gas, ensuring safety even if gas diffuses outside the test specimen.

Budget-friendly solutions integrated with KMTL's core testing technology for various testing needs.

>>> Our lineup for hydrogen material testing services

Specimen	Tost	Pressure (MPa)		Temperature (°C)	
	Test	Min.	Max.	Min.	Max.
Hollow -	SSRT (Slow strain-rate test)	0.1	13.5	23	200
	Creep	0.1	13.5	23	200
	LCF (Low-cycle fatigue)	0.1	13.5	23	500
	HCF (High-cycle fatigue)	0.1	13.5	23	500

SSRT Test using hydrogen-gas sealed hollow type specimen

G.L. = 24 mm Inner diameter = 2 mm Outer diameter = 6 mm CHS: 0.002 mm/sec

	Tensile strength (MPa)	RTS	Elongation (%)	REL	Reduction of area (%)	RRA
Air	695	0.95	78	0.62	71	0.65
Gaseous hydrogen	663		48		46	

> Test result

SUS304 exhibited reduced tensile strength, elongation at fracture, and reduction of area due to hydrogen effect.

Fracture surface obtained in 13.3 MPa hydrogen gas

Low-cycle fatigue (LCF) test in 9.3 MPa hydrogen gas at 500°C

- Type 304 stainless steel Outer diameter 12 mm Inner diameter 6 mm
- Temperature 500°C

- External atmosphere 0.1 MPa N₂
- Stress ratio R=-1
- Waveform Triangle
- Total strain $\Delta \varepsilon_{t} = 1.0 \%$
- Test speed 0.1%/sec
- Number of cycles to failure $N_f = 7,289$ cycles

Miniature testing technique | 120MPa-class ultra-high-pressure hydrogen gas environment testing machine

- Max. operating pressure **120MPa**
- Pressurized volume <u>30cc</u>

Miniature testing technique | 120MPa-class ultra-high-pressure hydrogen gas environment testing machine

Hermatic connector for wiring extraction

- Max. operating pressure **120MPa**
- Pressurized volume <u>30cc</u>

SSRT and fatigue crack growth testing using miniature specimen

Result of SSRT testing in high-pressure hydrogen gas at room temperature

	σ _в (MPa)	Elongation (%)	REL (%)	Reduction of area (%)	RRA (%)
Air	793	20	-	66	-
60 MPa H ₂	786	15	0.78	46	0.70

Result of fatigue crack growth testing at room temperature

Material: SUS304

Fatigue crack growth rate increased approximately ten times in 60 MPa hydrogen gas at room temperature.

Thank you for your time

KmT Kobe Material Testing Laboratory Co., Ltd.

HP https://en.kmtl.co.jp/ TEL +81-79-435-5010

Contact

