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ABSTRACT
Objectives: Traumatic intracranial hematomas represent a critical clinical situation where early detection and management are of utmost importance. 
Machine learning has been recently used in the detection of neuroradiological findings. Hence, it can be used in the detection of intracranial hematomas 
and furtherly initiate a management cascade of patient transfer, diagnostics, admission, and emergency intervention. We aim, here, to develop a diagnostic 
tool based on artificial intelligence to detect hematomas instantaneously, and automatically start a cascade of actions that support the management 
protocol depending on the early diagnosis.

Materials and Methods: A plot was designed as a staged model: The first stage of initiating and training the machine with the provisional evaluation of its 
accuracy and the second stage of supervised use in a tertiary care hospital and a third stage of its generalization in primary and secondary care hospitals. 
Two datasets were used: CQ500, a public dataset, and our dataset collected retrospectively from our tertiary hospital.

Results: A mean dice score of 0.83 was achieved on the validation set of CQ500. Moreover, the detection of intracranial hemorrhage was successful in 94% 
of cases for the CQ500 test set and 93% for our local institute cases. Poor detection was present in only 6–7% of the total test set. Moderate false-positive 
results were encountered in 18% and major false positives reached 5% for the total test set.

Conclusion: The proposed approach for the early detection of acute intracranial hematomas provides a reliable outset for generating an automatically 
initiated management cascade in high-flow hospitals.

Keywords: Artificial intelligence, Deep learning, Automatic intracranial hematoma detection, Patient selection, Patient referral system.

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix, transform, and build upon the work 
non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. ©2024 Published by Scientific Scholar on behalf of Journal of Neurosciences in Rural Practice

*Corresponding author: Ahmed Al Menabbawy, Department of Neurosurgery, Cairo University, Cairo, Egypt. Ahmed.almenabbawy@med.uni-greifswald.de
Received: 23 February 2023 Accepted: 08 September 2023 Epub ahead of print: 16 December 2023 Published: 05 February 2024 DOI: 10.25259/JNRP_93_2023

INTRODUCTION
Timely management of intracerebral hematomas is 
very crucial in preventing secondary brain injury and 
the outcome. Application of an effective neurotrauma 
management system is a cardinal need in high-flow areas 
that warrant intensely demanding assignments.[1-3] During 
the conception of a primed management protocol, the 
formulation of low-cost tools for better communication 
and faster management is fundamental, together with real-
time registries of the number of patients, surgeries, and 
medical personnel.[4,5] Machine learning (ML) has been 
initially introduced and firstly accepted in the neurosurgical 
community. It mainly supports various objectives starting 
with the quantitative measurement of the radiological 
findings, reaching the outcome analysis.[6] Intracranial 

hematomas warrant critical clinical situations where early 
detection and management would be utterly essential.[7,8] 
In a wide range of health-care facilities in middle- and low-
income countries, the emergency management protocols 
need enhancements so that they can be routed toward a 
fast-track mainframe. Due to the retrenchment of a fully 
integrated information system, it might be needed to 
develop instantaneous detection tools that would initiate 
a management cascade of patient transfer, diagnostics, 
admission, and emergency intervention that might be in 
some instances lifesaving. This study aims to develop a new 
diagnostic tool depending on artificial intelligence (AI), 
where the machine can learn how to detect the hematomas 
instantaneously, and furtherly automatically start a cascade 
of actions that support the management protocol depending 
on the early diagnosis.
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MATERIALS AND METHODS
A team of medical researchers in the fields of Neurosurgery, 
Trauma, Radiology, and Biomedical Engineering designed 
the plot as a staged model to develop the early diagnostic 
model with direct clinical integration in three stages: The first 
stage of initiating and training the machine with provisional 
detection of its accuracy; the second stage is supervised use 
of this model at our local institute with more detection of 
fallacies and correcting them; and the third stage of using this 
model in other primary or secondary care referring hospitals 
where a computerized tomography (CT) is available with no 
neurosurgical team present ([Figure 1] which illustrates the 
management cascade of head trauma).

Our system is designed to run with minimal cost in the 
emergency department for head trauma cases. Once a head 
CT is performed, digital imaging and communications in 
medicine (DICOM) images are pushed to the XNAT system 
and AI inference. XNAT is a research PACS system.[9,10] We 
used Clara Train AIAA inference server to run the AI models. 
The segmentation result is, then, pushed to XNAT for review. 
During the next phase, once intracranial hemorrhage is 
detected, an automatically generated message would be sent 
instantaneously to the neuroemergency team.

To get ahead, we started using the CQ500 public dataset. 
However, unlike their initial study, which created a neural 
network model to classify 2D slices,[11] we developed a 3D 
segmentation model here. Clara Train SDK was used to train 
a SegResNet model.[12] SegResNet architecture is an encoder-
decoder network. The encoding part increases the number of 
filters while decreasing the field of view, while the decoding 
uses upsampling to increase the resolution of the original 
input-sized image. Each block of the encoding and decoding 

blocks is a residual block. Output of the encoding blocks is 
appended to the decoding blocks creating a bypass. Multiple 
augmentation transformations were used from Clara 
Train SDK as resampling, cropping, rotation, and intensity 
variation. Weighted dice loss was used during training to 
accommodate for pixel class imbalance.

Study design

We used two datasets in this project: The CQ500 dataset 
which is publicly available, and the dataset retrospectively 
collected from the emergency department of our local 
institute. Our study got an ethical approval (N-123-2020) 
from the Faculty Local Ethical Committee. A consolidation 
of public dataset and randomized testing imaging samples 
from the institutional dataset was agreed to be ample for 
stage one. Images from our institution were obtained from 
the emergency department under the supervision of the 
Radiology, Neurosurgery, and Trauma surgery teams. The 
data were collected and experimented between December 
2020 and October 2021.

The CQ500 dataset contained almost 500 brain CTs with 
different diagnoses including brain fracture, hemorrhage, 
and subdural hematoma. A senior radiologist went through 
the dataset and identified 80  cases of hemorrhage. Only 58 
out of the 80 were annotated; therefore, the CQ500 dataset 
was split into three sets: 38 for training 20 for validation, 
and the remaining 22  cases were kept for testing. We also 
identified 11 cases without any hemorrhage to act as normal 
controls which will help identify the false positives alerts to 
the system. This increased the testing dataset to 33 cases.

The local institute dataset contained 42  patients acquired 
from a GE Medical System machine with the following 

Figure 1: Management cascade of head trauma. Victims of head trauma are transferred to a hospital 
where a computerized tomography scan is done. Being connected to the automated intelligence 
machine, intracranial hematomas are instantaneously detected with immediate notification of the 
oncall resident. This allows early surgery or transfer to the nearest neurosurgery center.
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specifications: FOV 512 × 512; peak kilovoltage of 140; 
exposure time of 791 ms; exposure of 5 mAs; X-ray tube 
current of 165  mA; focal spots of 0.7  mm; slice thickness 
ranging from 0.5 mm to 1.5 mm with space between slices 
from 0 to 7.5mm; and in-plan spacing of 0.5 mm to 1 mm. 
All patients from our local institute were collected from our 
neurosurgical emergency database. However, post-operative 
cases, those with chronic subdural hematomas, or cases with 
other pathologies (e.g., tumors) were excluded, reaching a 
number of 27 cases valid for testing.

Annotation

For annotation, we used the XNAT research PACS system.[9,10] 
XNAT was configured to convert DICOM images to Nifti 
format which would be used for training. The XNAT-open 
health imaging foundation (OHIF) plugin allowed clinicians 
to segment different regions of the brain. For each patient, 
multiple structures were annotated: Air outside the skull, 
skull bone, brain ventricles, and the hemorrhage. Since 
manual annotation is tedious and time-consuming, the 
air, bone, and ventricle were segmented by a trained non-
clinician with 15 years of experience in radiological imaging. 
Hemorrhage was segmented by a neurosurgeon with 
10 years of experience. XNAT-OHIF saved the annotation as 
DICOM-SEG objects which were automatically converted to 
nifit masks using XNAT.

Evaluation

To measure the accuracy of AI segmentation and ground 
truth annotation during training, the dice coefficient was 
used. The dice coefficient is defined as twice the intersection 
of the ground truth and the AI segmentation divided by the 
sum of the AI segmentation region and the ground truth 
region. For clinical evaluation, the XNAT system was used, 
the XNAT-OHIF viewer plugin was used to view the images 
while the rapid reader plugin was used to evaluate only the 
hemorrhage lesions. For each patient, the AI accuracy of 
hemorrhage lesions was evaluated on two dimensions: AI 
detection accuracy and false-positive errors according to 
[Table  1] which illustrates different grades of evaluation. 
Hemorrhage lesions were assessed by two neurosurgeons with 
10-  and 18-year experience, respectively. Any conflict was 
solved through consensus between the medical research team.

Experiments

Multiple Segrest models were trained using initial filter sizes 
of 32, 16, and 8. We tried different resampling resolutions of 
0.5 × 0.5 × 1 mm3, 1 × 1 × 1 mm3, as well as 1 × 1 × 2mm3. 
We also tried different crop sizes of 128 × 128 × 32, 256 × 
256 × 64, and 384 × 384 × 64 as well as different increment 
factors of 2 (standard practice) and 1.5. SegResNet model 
had an initial 16 filters and an increase factor of 1.5. Brain 
volumes were resampled to 0.5 × 0.5 × 1 mm3, and intensity 
clipping transformation was used to clip intestines outside 
the Hunsfild units of (−100.20) while mapping it to (0.1) 
intensities range. Training was performed on crops of 384 
× 384 × 64 pixels around foreground pixels. The following 
augmentation transformations were applied: Random flips 
around the sagittal directions with probability of 0.5; random 
rotation of −50° to +50° with probability of 0.6 in the axial 
direction; and random shift intensity with an offset of 0.1 
with probability of 0.5. Adam optimizer was used with a 
learning rate of 0.0001, batch size of 4. Loss function was 
weighted dice loss with weights of 0.03 for background, 0.61 
for hemorrhage, 0.06 for air, 0.15 for ventricles, and 0.15 
for bone. 300 epochs of training with validation every 20 
epochs were completed in 4 h on a single V100 32 GB GPU. 
The best model was selected based on the dice score of the 
hemorrhage label.

RESULTS
Models trained with small initial filters as 8 or small crop 
size of 128 × 128 × 32 compromised accuracy. Using a larger 
initial filter size of 16, 32 needed more memory than the 
6 GB available in our laptop system. The model with the 
initial filter size of 16 with a smaller increment factor of 1.5 
and crop size of 384 × 384 × 64 pixels resulted in acceptable 
results while keeping the model size small enough to fit into 
the 6 GB GPU memory. All the following results are specific 
to this model. The mean dice score was 0.83 evaluated over 
the validation dataset of CQ500. Dice per label was 0.95 
for background, 0.56 for hemorrhage, 0.98 for air, 0.76 for 
ventricles, and 0.93 for the bone. All images in the results 
section show AI prediction of hemorrhage in red, air in 
green, bone in blue, and ventricles in magenta.

Clinical evaluation for the CQ500 test set and local dataset 
is shown in Table  2. In the CQ500 test set, intracranial 
hemorrhage was detected in 31 of 33  cases (94%) with 

Table 1 : Evaluation criteria for hemorrhage detection (left) and false-positive errors (right).

Evaluation of lesion detection Detection percentage False-positive evaluation Number of FP regions

Excellent more than 80 No false-positive detected 0% FP
Good 50–80 Acceptable 1 small region
Fair 20–50 Moderate 2–3 small regions
Poor <20 Major >3 or large regions
FP: False positive.
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76% excellent and 18% good detection. Poor detection was 
present in only 2 cases (6%). Regarding positive results, the 
results were acceptable in 88% of the cases with moderate 
false positives reaching 12% (4/33) and no single major false-
positive result.

In our local institute dataset, detection was present in 25 of 
27  cases (93%) with 70% excellent, 15% good, and 7% fair 
detection. Poor detection was present in 2 cases (7%). Positive 
results were satisfactory and acceptable in 63% (17/27) while 
moderate false positives reached 12% (7/27) and major false-
positive results of 11% (3/37).

Our AI model has adequately recognized acute intracranial 
hematomas with different sizes [Figure  2], ranging from 
small punctate lobar hemorrhage [Figure  2a], large-sized 
hemorrhage [Figure 2b], and medium-sized ones [Figure 2c]. 
Furthermore, it managed in detection of both supratentorial 
[Figure  2a, c and d] and infratentorial hemorrhage 
[Figure  2b]. Figure  3 shows the complete detection of 
different types of hematomas (Extradural – subdural – 
intraparenchymal – intraventricular) from our local hospital 
data.

Although the detection was not optimal in some cases 
[Figure 4], the hematoma was partially detected and would 
be valid for further steps.

However, the model faced difficulties detecting older 
hematomas, as shown in Figure  5, where a calcified left 
frontal extradural hematoma [Figure 5a] or a subacute right 
frontal and occipital subdural hematoma [Figure  5b] were 
missed.

False-positive results [Figure  6] were mostly in dural folds 
including the tentorium, falx cerebri, or in cerebral venous 
sinuses, as shown in Figure  6a and b. Other minor false-
positive results were found in a minority of cases, as shown 
in Figure 6c.

DISCUSSION
Despite the heterogeneity of the CT findings in neurotrauma, 
the introduction of ML might be pivotal in certain situations 
as it saves precious time from hematoma detection to 
intervention.[13] Several studies inspected the competence 

of the machine to measure the volume of the intracranial 
hemorrhage,[14,15] together with special concerns to demarcate 
the brain edema after intracranial insults.[13,16,17] However, our 
concern was directed toward implementing the ML tools to 
settle the current challenges and therefore, early detection 
of intracranial hemorrhage was the first target. Integration 
of machine detection in clinical workflow would accelerate 
decision-making; however, accurate results would be crucial 
for competent clinical arrangements.[18] Instantaneous 
machine detection of intracranial hemorrhage can initiate 
an important cascade that serves in the early and effective 
management of critical cases.

This initiative started with supervised deep learning steps 
to prepare the machine to detect the early intracranial 

Table 2: Results for CQ500 dataset and local dataset.

Detection CQ500 Local dataset Total False positive CQ500 Local dataset Total
Count (%) Count (%) Count (%) Count (%) Count (%) Count (%)

Excellent 25 (76) 19 (70) 44 (73) No false positive detected 16 (48) 10 (37) 26 (43)
Good 6 (18) 4 (15) 10 (16) Acceptable 13 (39) 7 (26) 20 (33)
Fair 0 (0) 2 (7) 2 (3) Moderate 4 (12) 7 (26) 11 (18)
Poor 2 (6) 2 (7) 4 (6) Major 0 (0) 3 (11) 3 (5)
Left shows detection accuracy while the right shows false-positive detection evaluation

Figure 2: Examples from the CQ500 test dataset showing complete 
detection of different hematoma locations and sizes. (a) Left 
parieto-occipital punctate hematoma. (b) Bilateral cerebellar large 
hematoma. (c) Left thalamic hematoma. (d) Left basal ganglia 
hematoma. Red arrows pointing to the hematomas.

dc

ba
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hematomas depending on the public data set and samples 
from our local university hospital (being a tertiary referral 
center) as a first stage. For accurate evaluation of the accuracy 
of various pathologies, a further step on local cases is 
warranted. We believe that this should proceed in 3 stages: 
The first stage of initiating and training the machine with the 

provisional evaluation of its accuracy (which we have already 
done), the second stage of supervised use of this model in our 
local university hospital (human check to validate the machine 
detection) with more detection of fallacies and correcting 
them, and a third stage of using this model in other primary 
or secondary care referring hospitals where a CT is available 
with no neurosurgical team present. Afterward creation of a 
network between the CT machines in tertiary care hospitals 
and referring hospitals from one side, and the neurosurgical 
team from the other side is planned. This network will lead 
to early detection and notification to the neurosurgical team 
in the tertiary hospital; hence, early transfer and management 
can be initiated which is crucial in head trauma cases.

In an analysis of the current stage and results, a valid outcome 
was encountered in most cases as previously mentioned before, 
where the machine detected the presence of an intracranial 
hematoma in most (93–94%) of the cases tested with a variable 
range of the volumetric measurements that were detected which 
is quite satisfactory.[4] It is worth noting that the false-positive 

Figure 5: Undetected hematomas from CQ500 dataset. (a) Left frontal old 
calcified extradural hematoma. Red arrows pointing to the hematomas. 
(b) Right frontal and occipital subacute subdural hematomas. Red arrows 
pointing to bleeding sites that were not detected.

Figure 3: Examples from our local hospital test dataset showing complete 
detection of different hematoma locations and sizes. (a) Bilateral acute 
subdural hematomas (b) Right thalamic hematoma with intraventricular 
extension. (c) Bilateral parietal extradural hematomas. (d) Left large 
deep intracerebral hematoma with small intraventricular extension.
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ba

Figure  4: Examples of partial detection of hematomas from 
the local hospital. (a) Large right temporoparietal hyperacute 
extradural hematoma. (b) Subarachnoid hemorrhage in the right 
Sylvian fissure. Note the bony artifacts present. Arrows poiting to 
hematoma sites. Red arrows referring to successfully detected areas 
of the hematoma while the black arrows refer to the missed areas.

ba
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Figure 6: (a) Showing minor false-positive results from CQ500 dataset 
in the sigmoid sinus, (b) falx cerebri, and (c) basal ganglia calcification. 
Red arrows pointing to areas falsely detected as hematomas.
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results were encountered mostly with dural folds (tentorium 
and falx cerebri), cerebral venous sinuses (transverse and 
sigmoid sinuses), and basal ganglia calcifications. False-positive 
results were also more encountered in our local healthcare 
facility CT scans than the public dataset due to the lower image 
quality and the bony artifacts present. False-negative results 
were encountered only in older hematomas including subacute, 
chronic, or calcified hematomas. These false-negative results 
are non-significant when putting into consideration that we are 
primarily targeting recent head trauma cases (that may develop 
acute hematomas).

Therefore, the current results are considered supportive to 
proceed to the second stage of supervised use of this model 
in our local university hospital. In this second stage, all head 
trauma cases undergoing CT brain will be used, false-positive 
and  -negative results can be corrected by the available 
neurosurgical team and improvement of the training process 
can be performed. This will lead to the enhancement of 
the accuracy of this model and will, then, encourage going 
on with the third stage of its generalization to primary and 
secondary healthcare centers. We believe that using this 
model would be of maximum benefit in low-middle-income 
countries where many health-care centers dealing with 
trauma lack a neurosurgical team.

Study limitations

In the frame of the current accomplishments during the initial 
phase, the sample size was constrained to assess the chance of 
the current procedure to touch a prospective that would allow 
it to step toward further phases. The total number of patient 
images was split to train, validate, and test the model. Normal 
controls were only available from the public dataset however 
with favorable outcomes. Therefore, the current results are 
worthwhile in comparison to the limited sample size. In 
all the tested samples, no single false-negative result was 
encountered in acute head trauma cases which validate the 
current investigation to be transferred to stage two without a 
risk to miss cases with acute intracranial hematomas and no 
major false positives. The main limitation is the relatively high 
number of minor false-positive results that would improve 
with more training of the model in the near future.

CONCLUSION
The proposed approach for integrating the machine in the 
early detection of acute intracranial hematomas provides 
a reliable outset for generating an automatically-initiated 
management cascade in high-flow hospitals.
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