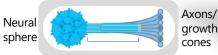


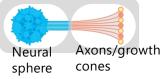
Introduction to Jiksak Organoid Chips

For in vitro Assays



Overview: Nerve OrganoidTM Culture Chip

A-chip



Jiksak culture chips:

- Forms Three-dimensional axon bundles
- Cell bodies and axon bundles are distinctly segregated
- Physically robust axon bundles, can be handled with tweezers
- Mass production and high throughput assay capabilities
- Several kinds of neurons can be cultured
- Mono-culturing and co-culturing options

Applications: Drug Discovery

- **New Target Molecule Discovery**
- **Target Molecule Validation**
- **Biomarker Discovery**

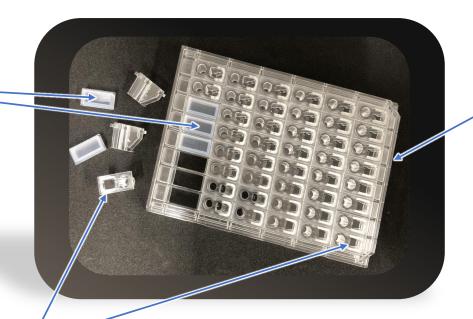
Applications: Pre-clinical Trial


- **Mechanism Analysis**
- **Safety Study**

A-chip and Accessories

Dummies replaces unused wells to prevent medium evaporation in A-chips

A-chip holder plate for 8 A-chips

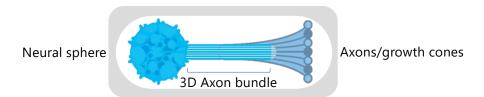

The **A-chip** is made from the following materials. **PDMS+Glass** - The chip is made of PDMS material and the bottom is made of glass. This is similar to the XONA company's product but this generates 3D axon bundles.

B-chip and Accessories

Dummies replaces unused wells to prevent medium evaporation in B-chips

B-chip holder plate for 48 B-chips in a 96 well plate size holder

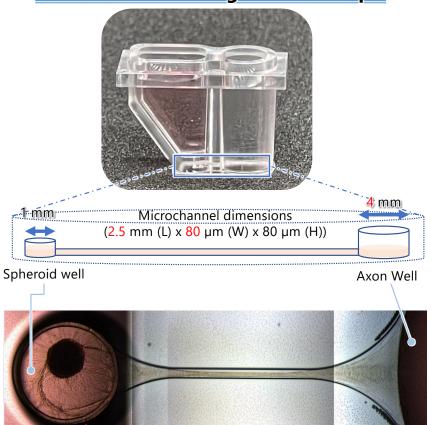
B-chip is made from the following materials.


COP: Cyclo-olefin polymer, manufactured by ZEON Corporation with high transparency, chemical resistance, high heat resistance, low protein adsorption and low elution (US Pharmacopeia Class VI compliant).

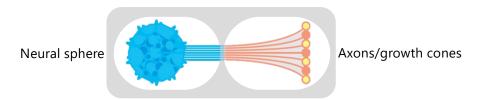
Details of A-chip

Cross sectional diagram of A-chip 2 mm Microchannel dimensions $(18.5 \text{ mm (L)} \times 100 \mu\text{m (W)} \times 80 \mu\text{m (H)})$ Spheroid well Axon Well

For long axon bundle production



- When a spheroid nerve cells is cultured in one of the wells, the axons outgrowth extends into the microchannel
- The axons elongates in the microchannel and form 3D bundles in an organized manner. After a few weeks of culture, the axon bundles extend towards the end of the microchannel
- Axon bundles can be isolated for proteins and RNA extraction



Details of B-chip

Cross sectional diagram of B-chip

Separate culture of spheroid and axon

- The design of B-chip enables uniform elongation of axon bundle in the microchannel and the axons are fanned out at the axon well.
- The spheroid and axons are separated by a barrier at the middle of the microchannel. Hence different mediums can be used for culturing at spheroid well and axon well. This also allows co-culture with different cell types in either wells on the B-chip.
- This system can be integrated to our synaptogenesis mcirobeads technology that mimics motor neuron and skeletal muscle co-culture system can be use to detect and quantify secreted neurotransmitters

Product Summary

Suitable for:	A chip	B Chip
Immunostaining	0	0
Calcium imaging	0	0
DNA/RNA extraction	0	
Western Blotting	0	
Neurotransmitter quantification		Ο
Co-culture with other cell types/medium/substances		Ο
Toxicity testing	0	0
Axon growth comparison	0	
TEM/SEM images (Nerve Organoid®)	0	
High-throughput screening		0
Co-culture	0	0

Download link

ALS research

- Akiyama, Tetsuya, et al. "Aberrant axon branching via Fos-B dysregulation in FUS-ALS motor neurons." EBioMedicine 45 (2019): 362-378. https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(19)30388-3/fulltext
- Mitsuzawa, Shio, et al. "Reduced PHOX2B stability causes axonal growth impairment in motor neurons with TARDBP mutations." Stem cell reports 16.6 (2021): 1527-1541. https://www.cell.com/stem-cell-reports/fulltext/S2213-6711(21)00216-2

Others

- Kawada, Jiro, et al. "Generation of a motor nerve organoid with human stem cell-derived neurons." Stem cell reports 9.5 (2017): 1441-1449. https://www.cell.com/stem-cell-reports/fulltext/S2213-6711(17)30428-9
- Nishijima, Takayuki, et al. "Novel artificial nerve transplantation of human iPSC-derived neurite bundles enhanced nerve regeneration after peripheral nerve injury." Inflammation and Regeneration 44.1 (2024): 6.
 - https://link.springer.com/article/10.1186/s41232-024-00319-4
- Osaki, Tatsuya, et al. "Complex activity and short-term plasticity of human cerebral organoids reciprocally connected with axons." Nature Communications 15.1 (2024): 2945. https://www.nature.com/articles/s41467-024-46787-7
- Martins-Costa, Catarina, et al. "ARID1B controls transcriptional programs of axon projection in an organoid model of the human corpus callosum." Cell Stem Cell 31.6 (2024): 866-885.
 - https://www.cell.com/cell-stem-cell/fulltext/S1934-5909(24)00141-3
- Takagi, Daigo, et al. "Generation of MBP-tdTomato reporter human induced pluripotent stem cell line for live myelin visualization." Stem Cell Research 79 (2024): 103493. https://www.sciencedirect.com/science/article/pii/S1873506124001910
- Ogawa, Takuma, et al. "Formation and Long-Term Culture of hiPSC-Derived Sensory Nerve Organoids Using Microfluidic Devices." Bioengineering 11.8 (2024): 794. https://www.mdpi.com/2306-5354/11/8/794
- Koyanagi, Madoka, et al. "Development of a 3-dimensional organotypic model with characteristics of peripheral sensory nerves." Cell Reports Methods 4.8 (2024). https://www.cell.com/cell-reports-methods/fulltext/S2667-2375(24)00208-X?elgTrackId=3c55c6d9834e4ae0a11f3f80b8c49f6e&elgTrack=true