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A B S T R A C T

In this work, we propose a Machine Learning method to predict detailed wind fields over extensive, complex
terrains. The ability to predict local wind fields is becoming increasingly important for a range of applications,
including sports in Nature, large outdoors events, light-aircraft flying, or the management of natural disasters.
The intricate nature of wind dynamics, particularly in regions with complex orography such as a mountain
range, presents a major challenge to traditional forecasting models. This work presents an efficient way to
predict local wind conditions with a high resolution, similar to that of Computational Fluid Dynamics (CFD),
in large geographical areas with complex terrain, using the results from relatively coarse (and therefore
economical) data from Numerical Weather Prediction (NWP). To achieve this goal, we developed a conditional
Generative Adversarial Neural network model (cGAN) to convert NWP data into CFD-like simulations. We apply
the method to a rugged region in the Pyrenees mountain range in Spain. The results show that the proposed
model outperforms traditional Machine Learning methods, such as Support Vector Machines (SVM), in terms
of accuracy and computational efficiency. The method is four orders of magnitude faster than traditional CFD.
Mean Average Errors of 1.36 m∕s for wind speed and 18.73◦ for wind direction are obtained with the proposed
approach.
1. Introduction

Understanding and modelling wind local fields is becoming a matter
of increasing importance for various applications, especially for do-
mains with a complex terrain. Sediment transport is driven by local
wind patterns; Wakes et al. (2010) used numerical modelling of wind
over complex dune topography to predict the motion of sediments for
land planning purposes. Wind plays a crucial role in snow accumula-
tion in mountainous regions, as Gerber et al. (2017) show in a case
study in Switzerland using a multi-scale non-hydrostatic atmospheric
simulation and prediction tool. They concluded that a more detailed
simulation of the flow and of additional processes, such as avalanches,
are required to better match the experimental data. Later, Vionnet et al.
(2021) combined mesoscale simulations with down-scaling techniques
for snow redistribution modelling in the Canadian Rockies. Their study
showed mismatches between simulated results and validation data
on snow accumulation, especially in scenarios driven by wind fields
that did not capture lee-side flow recirculations. The propagation of
wildfires is also highly affected by wind. Sutherland et al. (2023)
implemented a spatial-dependent factor to better simulate wind speed
in fire situations with a diverse vegetation canopy. As the demand for
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energy rises around the world, and climate-change evidence mounts,
renewable energy sources are essential to ensure sustainable energy
production, and wind energy plays a substantial role in covering the
demand. Accurate, reliable, and fast tools are needed for wind field
modelling and wind turbine wake development assessment to improve
and optimise wind farm operation and design (Elgendi et al., 2023).

Computational Fluid Dynamics (CFD) provides the necessary local
detail for the wind field, with resolutions of meters or less. Blocken
et al. (2015) modelled with CFD the complex terrain of a northwest-
ern harbour in Spain for boat manoeuvring and pollution dispersion
applications. On the other hand, Numeric Weather Predictions (NWP)
are used to simulate atmospheric wind conditions over a relatively
large area, and has resolutions of up to a few hundred meters. Mughal
et al. (2017) assessed the sensitivity and validated the use of NWP
software to simulate the speed and direction of wind on complex
terrain in east Africa; Prósper et al. (2019) also applied NWP to wind
power forecasting in an onshore wind farm with complex topography
in northwestern Spain.

Both NWP and CFD can be used in a combined fashion; NWP
can model the general atmospheric situation and provide boundary
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conditions for the CFD prediction of the local wind field for real
cenarios (Temel et al., 2018). CFD produces highly detailed results
ut with a considerably greater computational cost than NWP, which
rovides lower resolution data. For fast, cheap, and accurate wind field
odelling applications, it would be ideal to obtain the finer resolution

esults of CFD with the computational speed of NWP. This can be
chieved with machine learning techniques and is the rationale of the
resent study.

2. Literature review

Deep neural networks and machine learning have a great poten-
ial to enhance wind simulation, particularly when combined with
FD (Vinuesa and Brunton, 2022). The main focus is to obtain CFD-

like results while reducing computational time. Yousif et al. (2023)
sed a combination of transformers and super-resolution networks for a
ynthetic-inflow generator to spatially developing turbulent boundary

layers; and Jiang et al. (2023a) presented a transformer-based decoder
or flow field prediction in airfoil design. In the context of wind energy
roduction, image recognition methods have been employed to iden-
ify and avert premature deterioration of wind turbine blades (Yang
t al., 2021). Fang et al. (2023) utilised a speech recognition technique
n their landslide prediction modelling for early warning systems in
urkey. For wind simulation and prediction in larger areas, a combi-
ation of linear regression models and multi-variable LSTM and NARX
etworks for short-term forecasting have been studied in the Andes
ountains (López and Arboleya, 2022); Chen et al. (2021) also used

n LSTM in combination with a CNN for short-term forecast of 2-D
egional wind speed.

Generative Adversarial Networks (GAN), along with their variants,
re powerful machine learning frameworks that have been used in
everal wind-related applications. Deep GAN were used for the design
f new aerofoils of vertical-axis wind turbines (Santos et al., 2023).

Another variant of GAN that uses a Wasserstein distance was employed
y Zhang et al. (2024) to generate stochastic scenarios of wind power

production. In fault diagnosis detection for wind turbine gearboxes,
where data are often difficult to obtain, Liang et al. (2023) used

AN for data augmentation. Along a similar line of research, a GAN
versampling method was applied by Yang et al. (2023), achieving

fault classification with small datasets. Ye et al. (2024) developed a
ay-ahead prediction model for wind power generation that combined

self-attention with TimeGAN for temporal forecast. Behara and Saha
(2024) proposed an incremental GAN model that introduces innova-
ive solutions to enhance the precision and reliability of wind-turbine

position analysis, providing wind characterisation to optimise wind
nergy generation. For single wind turbine wake prediction, Li et al.

(2024) developed a model combining transformers and conditional
Generative Adversarial Networks (cGAN) (Mirza and Osindero, 2014).
Zhang and Zhao (2022) used deep convolutional cGAN to model wake
development in wind farms.

One of the applications of cGAN is image-to-image translation. In
this work, we train a cGAN image-to-image model to obtain CFD results
from cheaper and coarser NWP simulations over complex terrains.
Image-to-image models are designed for tasks that involve transforming
an input image into an output image; converting images from one
domain to another, such as converting satellite images to maps or
turning sketches into realistic images (Isola et al., 2016). This allows
to obtain highly detailed wind field data without incurring the compu-
ational expenses of CFD, saving computer resources and time. We use
he Pix2Pix model proposed by Isola et al. (2016). It is an image-to-

image deep neural network, and it belongs to the family of conditional
Generative Adversarial Network (cGAN) (Mirza and Osindero, 2014).
We selected the Pix2Pix model for our study because our objective
is to translate NWP data (represented as images) into corresponding
CFD data (also represented as images), rather than generating arbitrary
CFD images. Pix2Pix, as a cGAN model, is well suited for this type
 o

2 
of image-to-image translation task, allowing us to condition the gen-
ration process on specific input data (i.e., meteorological conditions
rom NWP). Moreover, there exists a successful case study (for a façade
ataset Tyleček and Šára, 2013) with a similar amount of training
amples (400 versus our 193).

The use of other models was considered. Although StarGAN (Choi
t al., 2018) offers multi-domain image translation, it is more complex

and suited for style transfer and domain adaptation. Our focus was
on a straightforward translation task, and we found no clear evidence
of a superior performance of StarGAN for our specific purpose. The
tyleGAN (Karras et al., 2019) model is primarily focused on style

transfer and does not require paired images, which is not suitable
for our goal of translating specific NWP data to CFD images. While
iffusion models like Palette (Saharia et al., 2022) show promise, they

are generally harder to train and, critically, usually require larger
datasets for stability. Given our limited dataset, Pix2Pix was a more
practical choice. The suitability of Pix2Pix for conditional image-to-
image translation aligns well with the objectives of our study. From
the seminal papers of the other considered models (Isola et al., 2016;
Choi et al., 2018; Karras et al., 2019; Saharia et al., 2022), the tasks
escribed in the Pix2Pix paper were the most appropriate for the
bjective and rationale of our study.

Image-to-image translation has been used recently to tackle a range
of problems. Jiang et al. (2023b) used image-to-image translation, viz.
the StyleGAN model (Karras et al., 2019), to create anime scenes; Dalva
et al. (2023) for face editing; and Sun et al. (2023) to enhance under-
water images. Image-to-image translation models have been employed
also for applications involving unpaired medical physics images (Chen
et al., 2023). Romero et al. (2024) used an image-to-image model
hat uses wind farm layouts and undisturbed wind field as the input
o obtain the disturbed wind field caused by the wind farm for the
ptimisation of the wind farm layout. No recent works have been
ound that use image-to-image models to translate wind fields from the
esoscale into the highly detailed CFD scale; this study fills this gap.

Table 1 presents a chronological summary of the main relevant
literature.

One of the novelties of this approach is the convenient arrangement
of the CFD and NWP data as matrices that can be interpreted as
mages. Understanding the wind-field data as an image broadens the
pplicability of AI methods that have been developed in the field of
mage detection. A relevant difference from previous published works
s that we do not intend to predict or forecast wind; the main objective
s to train a deep learning model to translate NWP results to CFD results.
n additional challenge, compared with other applications of machine

earning in this field, which often use idealised test cases, is the need to
odel an actual, expansive, geographically complex domain, and real
eather conditions.

3. Methods

This piece of research seeks to find an economical way to use rela-
ively coarse data resulting from Numerical Weather Prediction (NWP)
imulations to predict local wind conditions with a high resolution
similar to that achieved with Computational Fluid Dynamics, CFD),
n large geographical areas with complex terrains.

In order to achieve CFD-like resolution from NWP-like input, we
propose the use of supervised neural network models. Specifically, the
proposed method uses the Pix2Pix (Isola et al., 2016) model, which
elongs to the class of conditional Generative Adversarial Networks
cGANs) (Mirza and Osindero, 2014). This model was originally de-

signed for image-to-image translation, and its ability to synthesise
pictures from label maps, reconstruct objects from edge maps, and
colourise images, among other capabilities, has been shown to be
effective (Isola et al., 2016). In this work, we aim for the Pix2Pix
model to perform a similar function to obtain a high-resolution CFD-
ike ‘‘image’’ of the wind field from the coarse NWP one, at a fraction
f the computational cost.
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Table 1
Literature review summary in chronological order.
Author Method Application

Yang et al. (2021) Image recognition Avert premature deterioration of wind turbine blades
Chen et al. (2021) LSTM + CNN Short-term forecast of 2-D regional wind speed
Zhang and Zhao (2022) cGAN Modelling wake development in wind farms
López and Arboleya (2022) LSTM + NARXF Short-term forecast of wind in the Andes Mountains
Yousif et al. (2023) Transformers Synthetic-inflow generator to spatially developing turbulent boundary layers
Jiang et al. (2023a) Transformers Flow field prediction in aerofoil design
Fang et al. (2023) Speech recognition Landslide prediction modelling for early warning systems in Turkey
Santos et al. (2023) GAN Aerofoils design of vertical-axis wind turbines
Liang et al. (2023) GAN Data augmentation in fault diagnosis detection for wind turbine gearboxes
Yang et al. (2023) GAN Data augmentation in fault diagnosis detection for wind turbine gearboxes
Jiang et al. (2023b) Image-to-image Create anime scenes
Dalva et al. (2023) Image-to-image Face editing
Sun et al. (2023) Image-to-image Enhance underwater images
Chen et al. (2023) Image-to-image Applications in unpaired medical physics images
Zhang et al. (2024) Wasserstein-GAN Generate stochastic scenarios of wind power production
Ye et al. (2024) TimeGAN Day-ahead prediction of wind power generation
Behara and Saha (2024) GAN Wind characterisation to optimise wind energy generation
Li et al. (2024) Transformers + cGAN Single wind turbine wake prediction
Romero et al. (2024) Image-to-image Optimisation of the wind farm layout
b

d

s
m
o

d

The present authors have in the past explored the use for this prob-
lem of more classic approaches (Milla-Val et al., 2024), such as Support

ector Machine (SVM) (Bishop, 2006), Random Forest (RF) (Breiman,
2001), K Nearest Neighbours (KNn) (Goldberger et al., 2004) or linear
regression with Stochastic Gradient Descendant (SGD) (Robbins and

onro, 1951). The two main advantages of using a cGAN over these
classic models previously explored are: improved scalability and dis-
pensing with the need for feature engineering. Scalability is improved
because cGANs can greatly benefit from the use of GPUs, which results
in reduced computational times and affords larger training datasets.
Feature engineering refers to transformations made to the original
dataset in order to present it in a certain advantageous manner to the
model; an example is the manipulation of the velocity components to
obtain the wind speed as the absolute value of the velocity vector.
With SVM, the information that is passed to the model has to be
carefully selected and its features properly designed; otherwise, there
is a risk of falling into the so-called Curse of Dimensionality (Bellman,
1966), resulting in a very high dimensional, and hence computationally
expensive, space. In contrast, feature engineering is not needed with
these convolutional models, as they take as input the whole domain at
once, and the model itself detects and identifies the areas of interest for
modelling.

Fig. 1 presents a flowchart with an overview of the proposed
ethod. We use reanalysis data for the year 2018 as input for the NWP

imulations and obtain 8760 hourly events. These 8760 hourly events
ndergo a data selection process, from which we choose 193 events that
re either frequent or significant (see Section 3.1 below). From the NWP
imulations of these selected events we obtain meteorological results

that are used both as boundary conditions for the CFD calculations and
as input for the cGAN model; terrain information is used in the CFD
model, but not passed to the cGAN model. We then process our NWP
and CFD results to present the data on a square grid of 128 × 128
points; this data grid can be interpreted as a typical digital image,
which is suitable for the proposed cGAN model. This cGAN model
is made of two independent AI models; the generator which consists
of a convolutional encoder–decoder tuple and the discriminator. The
generator and the discriminator are trained as a tandem in an adver-
sarial fashion via two different loss functions: the discriminator tries
to identify ground truth data (coming from CFD) as true and generated
ata (coming from the generator) as fake; the generator tries to make
he discriminator identify the generated data as true and make these
enerated data as close as possible to the ground truth data (via a Mean
bsolute Error metric).
3 
3.1. Data sources for the model

The methodology followed for data generation is briefly outlined
elow; it is the same as used in Milla-Val et al. (2024), where full

details can be found. Firstly, an NWP simulation is carried out with
WRF v4.1 (Skamarock et al., 2019), using the dataset ds090.0
(National Centers for Environmental Prediction et al., 1994) as input
for the year 2018. This results in 8760 hourly weather events being
simulated, from which the most frequent ones and those that are
deemed to be ‘‘representative’’ are selected. Representative events are
chosen in the manner described in Milla-Val et al. (2024); in essence,
hourly events for a whole year are classified into wind-speed and wind-
direction ‘‘bins’’ according to event wind speed and direction at a
central point in the domain. Then, representative events are chosen
at random from some of these bins, starting with the most populated
bins, so that the selected events span the complete range of weather
conditions.

Subsequently, these frequent and representative events are used as
boundary conditions to run detailed CFD simulations. We use Open-
FOAM v6 (Weller et al., 1998) for solving the flow in the domain of
interest. The flow is modelled as isothermal, and we solve the Reynolds-
Averaged Navier–Stokes equations of continuity and momentum using
the SIMPLE algorithm for pressure-velocity coupling. The CFD mesh
consists of approximately 250 thousand cells; it is made of octrees, and
octree refinement is successively used in the three cell layers closest to
the terrain. The mesh is pseudo-cylindrical, with the lateral boundary
consisting of 16 planar faces. A top view of the CFD domain is shown in
Fig. 3(b). As boundary conditions, OpenFOAM’s noSlip condition was
used on the terrain surface, zeroGradient for the top boundary, and
freeStream for the lateral boundaries; this latter condition selects
for the velocity components at the boundary cells, and depending on
the flow direction, either zeroGradient or a fixed value interpolated
from the NWP simulations. The OpenFOAM dictionaries which fully
efine the CFD problem are provided in Milla-Val (2024a).

NWP and CFD simulations calculate their results in different meshes.
To develop the cGAN model, both sets of results are interpolated onto
a common structured mesh, which we call the auxiliary mesh. This
auxiliary mesh consists of horizontally equidistant points arranged in a
quare grid pattern; vertically, both the CFD domain and the auxiliary
esh extend from the surface level up to 5000 m high. The data

btained from NWP and CFD for the same area and same time period
is used to train the cGAN-based model capable of reproducing CFD-like
ata from NWP predictions.

The modelled domain is a ridge in the Pyrenees mountain range in
Spain; in Fig. 2 a photograph of the actual landscape is presented; and
in Fig. 3(a), an image of its rendering in the CFD mesh. As an indication
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Fig. 1. Overview of the proposed method and the training process. Black arrows denote model training and blue arrows model usage.
Fig. 2. Photograph of the domain: ‘‘Sierra de la Partacua’’, Pyrenees mountain range, Spain.
of the orographic complexity, peak elevations are around 1300 m with
respect to the lowest altitude in the domain. We select this complex
terrain in order to make the study more exacting, intentionally avoiding
simpler domains which would result in simpler CFD simulations. The
ground layer of the auxiliary mesh (the shadowed square in Fig. 3(c))
is a 5 km-wide square grid of 128 × 128 points inside, and concentric
with, the cylindrical CFD domain (Fig. 3(b)).

The ground level is the most challenging one to model, and for
this reason it is the focus of the result analysis in this study. Also, the
velocity field at this lowest level is very relevant for numerous applica-
tions, including wind farm performance prediction, human comfort in
activities in Nature, and wind loads in structural analysis.

With this configuration for the auxiliary mesh, the data can be
interpreted as an ensemble of paired ‘‘images’’ with a 128 × 128
resolution; each pair corresponds to one of the simulated events, and
is composed of a coarse ‘‘image’’ from the NWP calculation and a fine
one from the CFD simulation. We suggest that the problem so stated
4 
can be treated as an image-to-image translation one, and therefore be
approached using Pix2Pix (Isola et al., 2016).

3.2. Interpreting data as an ‘‘image’’

Typically, a digital image is represented by a matrix with dimen-
sions 𝚛𝚎𝚜𝚇×𝚛𝚎𝚜𝚈×𝚌𝚑𝚊𝚗𝚗𝚎𝚕𝚜; 𝚛𝚎𝚜𝚇×𝚛𝚎𝚜𝚈 is the number of pixels along
each of the two dimensions of the picture, and 𝚌𝚑𝚊𝚗𝚗𝚎𝚕𝚜 represent the
pixel colour. This 𝚌𝚑𝚊𝚗𝚗𝚎𝚕𝚜 dimension typically stores three values; for
instance, in a RGB colour model, these three values are the levels of
Red, Green, and Blue in the pixel.

When our NWP and CFD simulations are processed, we obtain data
on a square grid of 128 × 128 points. Then, the data are arranged
as an ensemble (one instance for each simulated event) of 128 × 128
images with two channels, each channel corresponding to one of the
velocity components 𝑈 and 𝑉 . (We do not model with our cGAN the
vertical component of the velocity, 𝑊 , because it is small in magnitude
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Fig. 3. In Figs. 3(a) and 3(b) the CFD mesh surface is presented with annotations on the peaks shown in the real footage (Fig. 2). Fig. 3(c) shows how the auxiliary mesh
(shadowed square) lays within the CFD domain boundaries.
and of little relevance in practical applications.) This data arrangement
can be thought of as one from a conventional digital image with
dimensions 𝚛𝚎𝚜𝚇 × 𝚛𝚎𝚜𝚈 × 𝚌𝚑𝚊𝚗𝚗𝚎𝚕𝚜; now the ‘‘pixels’’ 𝚛𝚎𝚜𝚇 × 𝚛𝚎𝚜𝚈 =
128 × 128 are the points in the spatial domain in our simulations, and
the ‘‘colour’’ channels are the velocity components at each point.
Therefore cGANs, as proposed for this study, appears to be a suitable
paradigm as it was initially designed to work with images.

Fig. 4 exemplifies the interpretation of the data as an image. In the
first row, input data to the model (the NWP results) are presented;
in the second row, the targets (the CFD results) are shown. Column-
wise, we present from left to right: the RGB representation of an
event (the first and second channels corresponding to the U and V
velocity components; the third channel is assigned a constant value so
5 
that we can use libraries that assume that inputs and targets are 3-
colour-channel images); the corresponding wind speed; and the wind
direction. (Wind speed and wind direction are obtained from U and V
by post-processing.)

3.3. Training process

A full year (viz 2018) is simulated with an hourly time resolution
using an NWP model. Among the 8760 hourly data events available
from these simulations, 193 events are selected and simulated in CFD
to build the training dataset. Additionally, a test dataset is built by
randomly selecting another 80 hourly events in the same year. These
events are also simulated with CFD, but they are not seen by the model
during training.
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Fig. 4. Model inputs and targets. Top row: data input to our model (NWP results); bottom row: target data (CFD results). Columns from left to right: RGB representation of the
two horizontal wind components, wind-speed magnitude and wind direction.
3.4. AI model

This work uses the Pix2Pix model (Isola et al., 2016), with certain
modifications to make it suitable for our data. The Pix2Pix model is
a conditional Generative Adversarial Network (cGAN) used for image-
to-image translation, among other problems. This model is especially
useful for three main reasons: it was tested on a relatively small
dataset, the CMP facade database (Tyleček and Šára, 2013) (around
400 samples), which is similar to the one used in this work (around
200 samples); it is specifically designed to address image-to-image
translation problems, which is the approach we adopted to correlate
NWP results with CFD ones. The Pix2Pix model was selected for this
study to translate NWP data into corresponding CFD data because it
is well suited for conditional image-to-image translation tasks. Pix2Pix
leverages conditional GANs to use specific input data (meteorological
conditions from NWP) to generate CFD ‘‘images’’. Other models like
StarGAN (Choi et al., 2018), StyleGAN (Karras et al., 2019), and
Palette (Saharia et al., 2022) were considered, but found to be less
suitable due to their complexity, their focus on style transfer, their use
of unpaired images, or their need for larger datasets. Pix2Pix aligns well
with the objectives of the study and dataset constraints.

A Generative Adversarial Network (GAN) (Goodfellow et al., 2014)
is a type of artificial intelligence algorithm composed of two neural
networks, a generator and a discriminator, which compete against
each other to generate new data that are indistinguishable from the
real one. The generator produces fresh data, while the discriminator
evaluates them and decides whether they are genuine or artificial.
The generator and the discriminator are trained in tandem, with the
generator attempting to deceive the discriminator and the discriminator
attempting to identify the generated data as false. A Conditional Gener-
ative Adversarial Network (cGAN) (Mirza and Osindero, 2014), such as
6 
the one used in this work, is an extension of the GAN model, in which
the generation process is conditioned on additional information. This
conditioning is accomplished in this work by feeding the discriminator
the target data, that is, the CFD results.

The generator has a U-net-based architecture (Ronneberger et al.,
2015), composed of an encoder (downsampler) and a decoder (up-
sampler) with skip connections between them. The downsampler block
consists of a convolution operation and an activation function; in this
work, the LeakyReLU (Maas et al., 2013) is replaced by a PReLU (He
et al., 2015) and the filter size is increased to 5 (from the original
4). The upsampler block consists of a transposed convolution, dropout
(applied to the first three blocks), and an activation function; the
ReLU (Nair and Hinton, 2010) activation is replaced by a PReLU and
the filter size is also increased to 5. The batch normalisation layers of
these blocks that were present in the original model are removed. The
original Pix2Pix model is designed for 256 × 256 images; however, it
is adapted for 128 × 128 data by having 7 downsampler blocks and
6 upsampler blocks in the generator instead of the original 8 and 7,
respectively.

The discriminator is a convolutional PatchGAN classifier (proposed
in Isola et al. (2016)). This means that the discriminator output is
not just a single value that indicates whether an image is real or not;
instead, it produces a 7 × 7 matrix that reveals which parts of the
generated image are more likely to be fabricated. The only change
made to the discriminator is the increase of the filter size of the first
three downsampler blocks to 7 (from the original 4). The generator
and discriminator losses are similar to those proposed in the original
work (Isola et al., 2016).

The loss for the generator is composed of two parts: a cross-entropy
element that attempts to deceive the discriminator; and an L1 distance,
which is the mean absolute error between the target data (CFD results)
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Table 2
Summary of model hyperparameters.

Model agent Element Value

Generator Downsampler-block: activation function PReLU
Downsampler-block: filter size 5
Downsampler-block: batch normalisation No
Upsampler-block: activation function PReLU
Upsampler-block: filter size 5
Upsampler-block: batch normalisation No

Discriminator Downsampler-block: activation function PReLU
Downsampler-block: filter size 7
Downsampler-block: batch normalisation Yes

General 𝜆 100
Learning rate 2 ⋅ 10−4

Batch size 32

and the generated product. Similarly as in Isola et al. (2016), the
parameter 𝜆, which balances the L1 loss and the cross-entropy term,
is set to 100 as decided by the original authors. The loss for the
discriminator consists of two cross-entropy elements: one that prevents
it from being tricked by the generator; and another that teaches it what
a real image looks like. To build the models, the TensorFlow 2 suite
(v2.8) is used (Abadi et al., 2015). An Adam optimiser (Kingma and

a, 2014) with a constant learning rate of 2 ⋅ 10−4 and a batch size of
32 is used. No hyperparameter tuning is performed.

Table 2 summarises all the model hyperparameters; and a GitHub
epository is provided with the full model coding and full details of the
odel architecture (Milla-Val, 2024a).

3.5. Metrics

In order to evaluate the accuracy of our approach, two metrics are
calculated: the Mean Absolute Error (MAE) and the Structural Simi-
arity Index Measure (SSIM) (Wang et al., 2004); several studies use
he same metrics to evaluate their results; for instance, Stefenon et al.

(2021) for forecasting electric grid insulator contamination; and Qian
et al. (2014) to develop a multi-scale SSIM weighted metric.

MAE is computed, from the results produced by the trained genera-
or and the ground truth given by the CFD simulation for the following
ariables: wind speed, MAEspeed, direction, MAEdir, and the 𝑈 and 𝑉
elocity components, MAEUV. The definition of MAE is:

MAE = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − 𝑦̂𝑖| (1)

where 𝑛 is the total number of observations, 𝑦𝑖 is the actual value for the
𝑖th observation and 𝑦̂𝑖 is the predicted value for the 𝑖th observation. For
each predicted event, the points with a low wind speed (below 2 m/s)
re excluded from the MAE calculations. Low wind speeds are not of
reat relevance for practical applications: they do not pose a threat

to structures or buildings, are not strong enough to power most wind
turbines, and they are often not noticed by, or annoying to, people.
Furthermore, at these low speeds slight variations in the 𝑈 or 𝑉 wind
components may lead to large errors in wind direction, the significance
of which would not be commensurate with the small importance the
low speed itself.

The Structural Similarity Index (SSIM) is calculated for a pair of
mages; in this case, the one produced by the generator and the one that

corresponds to the CFD field. The SSIM definition for single channel
images is given by:

SSIM(𝑥, 𝑦) = (2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇2
𝑥 + 𝜇2

𝑦 + 𝐶1)(𝜎2𝑥 + 𝜎2𝑦 + 𝐶2)
(2)

where:

• 𝑥 and 𝑦 are the two images to be compared.
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• 𝜇𝑥 and 𝜇𝑦 are the mean intensities of 𝑥 and 𝑦, respectively.

𝜇𝑥 = 1
𝑁

𝑁
∑

𝑖=1
𝑥𝑖 𝜇𝑦 =

1
𝑁

𝑁
∑

𝑖=1
𝑦𝑖

where 𝑖 represents a pixel and 𝑁 is the total number of pixels.
• 𝜎2𝑥 and 𝜎2𝑦 are the variances of 𝑥 and 𝑦, respectively.

𝜎2𝑥 = 1
𝑁 − 1

𝑁
∑

𝑖=1
(𝑥𝑖 − 𝜇𝑥)2 𝜎2𝑦 = 1

𝑁 − 1
𝑁
∑

𝑖=1
(𝑦𝑖 − 𝜇𝑦)2

• 𝜎𝑥𝑦 is the covariance of 𝑥 and 𝑦.

𝜎𝑥𝑦 =
1

𝑁 − 1
𝑁
∑

𝑖=1
(𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)

• 𝐶1 and 𝐶2 are small constants to stabilise the division with a weak
denominator:

𝐶1 = (𝐾1𝐿)2 and 𝐶2 = (𝐾2𝐿)2

where 𝐿 is the dynamic range of the pixel values and 𝐾1 = 0.01
and 𝐾2 = 0.03.

SSIM gives a better understanding of whether the results produced by
the machine learning model are similar to those that a CFD model

ould produce, and how close the generated ‘‘image’’ is to being CFD-
ike. SSIM is determined by three factors: luminance, contrast, and
tructure. Originally, it was designed for grayscale images, but can be
asily extended to more channels by averaging the results from Eq. (2)

for each channel. The SSIM is in the range ∈ [0, 1], with values closer
to 1 meaning a better match between the two images.

4. Results

The model is trained using 193 events (80% for actual training and
20% for validation) and tested on 80 additional events not used for
training. The input data consist of NWP results, while the targets are
CFD simulations, both in the aforementioned mountainous region in the
yrenees range. Fig. 5 shows the results from a CFD simulation in this
omplex terrain; the image depicts the flow field on a surface above
he terrain level, through glyphs that show the direction and speed
f the local wind. The impact of the terrain complexity on the wind
ield can be observed; the wind blowing West to East (right to left in
he image) creates an unique pattern. Bigger glyphs and more reddish
olours indicate a strong local wind. For these weather conditions,
ome mountain peaks to the West (to the right in the image) exhibit

strong winds; downstream of the peaks, wakes are developed as the
air flows to the plains, where relatively open free flow can be seen.
Other mountain peaks in the middle of the domain and the canyon,
however, exhibit weaker winds. This reflects how the interaction be-
tween the complex terrain and the real weather conditions generates
n intricate and unique wind pattern; this is the kind of pattern that
e try to replicate with the cGAN model as an alternative to CFD. The
utput from the model is a 128 × 128 matrix with values for the two
orizontal wind components, 𝑈 and 𝑉 , which can also be interpreted
lgorithmically as an image with two channels. The results of a previous
odel by Milla-Val et al. (2024) are presented for comparison. This

previous model is a Support Vector Machine (SVM) that was trained
ointwise (with very little information from the surrounding area) on
 grid of 30 × 30 points, which is then re-scaled to 128 × 128 by linear
nterpolation to ease the comparison. The code for training the Pix2Pix
odel and the OpenFOAM dictionaries for the CFD simulations can be

ccessed in Milla-Val (2024a); training and test datasets are provided
n Milla-Val (2024b).

In Table 3 the metrics for the test set for both models are presented:
the mean absolute errors for speed, direction and both horizontal
components and the SSIM are shown for the previous SVM model and
for the Pix2Pix one.
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Fig. 5. CFD simulation of one of the weather events, showing the complex terrain and velocity field. The flow field is on a surface above the terrain level, and is a typical
‘‘targets’’ for the cGAN model.

Fig. 6. Typical results for two events from the test dataset. First row, input data (NWP results); second row, the target values (CFD results); third row, results from the present
Pix2Pix model; fourth row, results from previous SVM model for comparison. First column: RGB representation of U and V velocity components; second column, wind speed; third
column, wind direction (0◦ is North, 90◦ is East, −90◦ is West and −180◦ and 180◦ are South).

Engineering Applications of Artiϧcial Intelligence 139 (2025) 109533 

8 



J. Milla-Val et al. Engineering Applications of Artiϧcial Intelligence 139 (2025) 109533 
Fig. 7. Spatial MAEspeed and MAEdir values for SVM and Pix2Pix models averaged over the 80 test events. Colour scales clipped to values in the Pix2Pix model.
Table 3
MAE and SSIM metrics for the Pix2Pix and SVM models.

Metric SVM Pix2Pix

MAE𝑈 [m/s] 1.55 1.35
MAE𝑉 [m/s] 1.56 1.36
MAEspeed [m/s] 1.55 1.36
MAEdir [◦] 20.91 18.73
SSIM 0.68 0.78

Fig. 6 shows that the Pix2Pix model is able to generate, downstream
of the peaks, wakes that are also observed in the ground-truth CFD
results, but do not appear so clearly in the SVM results. In Appendix A,
additional test events generated by the Pix2Pix model are presented as
supplementary material (Fig. 9).

Fig. 7 presents the spatial distribution of MAEspeed and MAEdir
values for the SVM and Pix2Pix models averaged over all 80 events
in the test set.
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To study a possible correlation between the CFD events and the
errors obtained by the Pix2Pix model, the errors, MAEspeed and MAEdir,
for the Pix2Pix model and the CFD speed and direction are averaged for
each event of the test dataset and presented in Fig. 8; here MAEspeed,
scaled with the CFD speed of the test events, and MAEdir are shown
versus the wind speed and direction for the CFD.

Table 4 presents the computational times associated with model
building (including NWP simulations, CFD simulations, and model
training) as well as model utilisation.

5. Discussion

The improved SSIM (Table 3) indicates that the predicted results
have a more CFD-like structure in the new Pix2Pix model than they had
in the SVM one. Therefore, the present Pix2Pix model is a major step
forward in improving the accuracy of the machine learning predictions.

The patterns that the Pix2Pix model generates (Fig. 6) are more
similar to those expected from a CFD simulation compared to the SVM
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Fig. 8. MAE from the Pix2Pix model and CFD wind speed and direction averaged for each test event. The grey vertical lines indicate that there is a training event for such CFD
wind speed or direction.
Table 4
Computational times for model building and model usage: Times for the simulation of
the 273 CFD events, for a whole year of NWP hourly events and for training and data
retrieval with the Pix2Pix model. CPU indicates a 6-core Intel i7-6800k; GPU indicates
an NVIDIA GeForce RTX 4060 Ti.

Per event Total

CFD (CPU) 4 h 1092 h (273 events)
NWP (CPU) 0.25 h 2190 h (8760 events)
Pix2Pix training (GPU) – 0.5 h
Pix2Pix retrieval (GPU) <1 s –

output, as confirmed by the larger SSIM value (Table 3). The SVM
model is trained on individual points, without using their neighbouring
points. This may be the reason why it performs poorly in preserv-
ing spatial correlation and coherence. In contrast, the convolution
operations of Pix2Pix are specifically designed to consider surround-
ing information, which is why it is so successful in capturing spatial
dependencies.

It is evident from Fig. 7 that the Pix2Pix model does not accurately
match the CFD results in certain areas of the domain; for instance,
wind speed errors are generally larger windward of the orographic
features, and smaller leeward. Also, a north-central area can be seen
where the wind direction errors are significantly larger. This is likely
to be caused by the lack of orographic constraints in this open region of
the domain, which increases the number of possible outputs from the
CFD simulations starting from similar boundary conditions, making it
10 
harder for the model to predict the wind direction. Examples of this
behaviour can be seen in wake development in this area in Fig. 6.

In Fig. 8 the MAE values for the Pix2Pix model are presented versus
the CFD wind speed and direction averaged for the test events. An
outlier is spotted for MAEdir ∼ 100◦ (Figs. 8(b) and 8(d)) but no
counterpart is observed in the MAEspeed plots (Figs. 8(a), 8(c)); paying
special attention to Fig. 8(d), it can be seen that there are almost no
training data with the CFD wind direction of ∼100◦ and the lack of
training points in this specific area is making this result so adverse.
As a future work, with more available computer resources, more CFD
simulations could be conducted, increasing the training dataset and
solving this scarce populated regions, improving the overall model
performance. Despite of this outlier event, there are several more test
events in the unpopulated training event region whose performance
is in concordance with the rest of test events. This indicates that the
Pix2Pix model is able to some extent to performance Apart from that,
there is no strong observation that indicates somehow a correlation
between CFD wind speed or direction and the outcome of the Pix2Pix
model may exist.

Next, we report the computational times for model building (NWP
simulations, CFD simulations, and model training) and model usage
(Table 4). CPU times are reported as core-hours on a 6-core Intel
i7-6800k CPU, while the GPU times (reported for the training and
data retrieval operations of the Pix2Pix model) are on an NVIDIA
GeForce RTX 4060 Ti. The NWP mesoscale model (which consists of
four nested domains) takes 0.25 core-hours for each hourly event and
a total of 2190 core-hours (or 91 days) for a full year of 8760 events.
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Approximately 4 core-hours are needed to simulate each CFD event,
resulting in a total of 1092 h (or 45 days) to complete the simulations
or all 273 events in the training and test datasets. The Pix2Pix model

takes 30 GPU-min and 1500 epochs for training, and data retrieval
akes under 1 s. Compared to the 40 min (on a 6-core machine) required

for each CFD simulation the Pix2Pix model has a speed-up factor of four
rders of magnitude.

6. Limitations

CFD simulations on this very large scale are computational ex-
pensive, and this has had an impact on the amount of training and
est events that could be generated with reasonable computational
esources. While the results are overall satisfactory, it has been shown
hat improving the dataset with the addition of events may be beneficial
or model performance (Milla-Val et al., 2024); the enlargement of the

data set is foreseen as a future activity.
The current rationale of this research line is to translate NWP images

nto CFD images. These images are 2D surfaces close to the domain
errain and that is why conventional image-to-image models using 2D
onvolution operations are used. Therefore, only wind information at
 given height level is used to train the model; using higher order con-

volution operations (3D, 4D...), as adopted by video analysis models,
would allow to benefit from wind field information at different heights.
This in turn would make the model heavier, more expensive to train,
and slower at retrieval time but could potentially provide better results.

In this study, the usage of an image-to-image model has been proven
uccessful in a region with complex orography. However, the model is

specifically trained with paired data from NWP and CFD simulations of
his specific mountainous region. Although more research is needed in
his regard, it is unlikely that transfer learning (i.e.: a model trained in
 mountainous region working in an urban area) can be applied to this

paradigm. As seen in the process of generating the model, some outliers
appear when the training dataset does not adequately encompass all
possible weather conditions; the same may be true when the effect
in the flow field of the terrain features is not properly represented in
the training dataset. For a new geographical region, there might be
means of using a pre-existing model for another region to speed up
model building, such as a warm start-up for the training (i.e. starting
the training from previous model weights instead of random initial
values); nevertheless, it is likely that a new model and a region-specific
dataset will be required for the methodology to work for a different
geographical area. StarGAN (Choi et al., 2018) is a multi-domain
mage-to-image model that may avoid the inconvenience of having to
rain a different model, albeit the region-specific dataset would still be
eeded.

7. Conclusions

We have presented a method based on conditional Generative Ad-
ersarial Networks (cGAN), specifically Pix2Pix (Isola et al., 2016), that
uccessfully uses Numerical Weather Prediction (NWP) data to gener-
te high-resolution Computational Fluid Dynamics-like (CFD) results,
ithout incurring the high computational cost of CFD simulations. The
ethod considers the results from NWP and CFD as paired ‘‘images’’,

nd attempts to predict the latter from the former.
The method is tested for generating detailed, CFD-like results for a

challenging, orographically complex region in the Pyrenees mountain
range in Spain. The results show that the proposed Pix2Pix model
outperforms other traditional methods machine-learning methods such
as Support Vector Machines (SVM) (Milla-Val et al., 2024), providing
reater accuracy and better computational efficiency. Mean Average
rrors are MAEspeed = 1.36 m∕s for wind speed, MAEdir = 18.73◦ for
ind direction, and the Structural Similarity Index (SSIM) is 0.78 for
he reported results. Traditional CFD simulations take nearly one hour
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to complete for this problem, but the present Pix2Pix model can reduce
the computational time by four orders of magnitude.

The proposed methodology has been therefore successful in terms of
ccuracy and has significantly reduced computational times; however,
here are still some areas that are worth exploring. We have used
n this work an image-to-image model to ‘‘translate’’ NWP products
o CFD-like results; but a similar relationship should exist in the re-
erse direction, from CFD to NWP. Bidirectional translations between
WP and CFD could be obtained using transfer style models, such as
ycleGAN (Zhu et al., 2017). This may potentially further improve

the performance of the methodology proposed in this work and help
the neural network training process by uncovering the underlying
relationship in the opposite direction of this ‘‘translation’’, viz from the
CFD domain to the NWP domain. The batch normalisation layer was
removed from the proposed cGAN model (while it was present in the
original Pix2Pix model) because its removal resulted in better results
for the application in this study. Huang and Belongie (2017) and Park
et al. (2019) proposed the AdaIN and SPADE paradigms, which may
serve as an alternative to improve the performance of the traditional
batch normalisation layers by preserving semantic information.

This paper has shown that the proposed approach is suitable for
a region with a challenging mountainous landscape and intricate to-
pography. Its usage in urban settings can be highly advantageous in
applications that are becoming increasingly important, such as energy
production in urban areas or building layout planning (Hao et al., 2023;
Kwok and Hu, 2023).

In this work, we are treating the several data snapshots as an
ensemble of steady-state simulations. However, the transient nature of
wind evolution may be a critical aspect of its modelling. To incorporate
these effects, transformers (Vaswani et al., 2017) can be used, as has
been done in various CFD applications, such as the generation of syn-
hetic inflow to spatially developing turbulent boundary layers (Yousif

et al., 2023), and flow prediction for the design and optimisation of
aerodynamic shapes (Jiang et al., 2023a).
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Appendix A. Additional events from Pix2Pix

Additional events are presented in Fig. 9 to further analyse the
results that the proposed Pix2Pix model provides. In addition, SVM
results are shown to show the improvement of the present proposal
over previous ones. The events in Fig. 9 are part of the 80 test events
used to compute metrics and errors as a part of the model performance
assessment. The events in the figure are distributed along the test year
2018 and have been selected to include dates in all the four seasons.
They show a wide variety of weather conditions with strong and weak
wind intensities (colour scale of the middle column) and several wind
directions (third column).

Data availability

Data will be made available on request.
Fig. 9. Results for six events from the test dataset. First row, input data (NWP results); second row, the target values (CFD results); third row, results from the present Pix2Pix
model; fourth row, results from a previous SVM model for comparison. First column: RGB representation of U and V velocity components; second column, wind speed; third
column, wind direction (0◦ is North, 90◦ is East, −90◦ is West and −180◦ and 180◦ are South).
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