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1. Introduction and Problem Statement
Rapid urbanization, coupled with escalating resource depletion and ecological degradation, underscores the critical need for innovative urban development solutions to achieve environmental sustainability goals. A key challenge for sustainable smart cities is the transition to electrified mobility, which necessitates the strategic and efficient deployment of Electric Vehicle (EV) charging infrastructure. Current urban planning methods often struggle to effectively capture the complex, dynamic, and interrelated urban flows necessary for optimal EV charging station placement, such as energy consumption, mobility patterns, and real-time demand. 
This project addresses these limitations by leveraging cutting-edge Generative Artificial Intelligence (GenAI) and Foundation Models (FMs) within an Urban Digital Twin (UDT) framework to develop an intelligent urban planning tool for EV charging infrastructure.

2. Project Idea and Core Concept
This project proposes the development of a Large Flow Model (LFM), as described in the "Digital Twin Cities" article, specifically tailored for EV charging infrastructure deployment. The LFM, grounded in a robust foundational framework and designed with GenAI capabilities, will be integrated into UDT systems to enhance predictive analytics, adaptive learning, and complex data management functionalities for urban planning.
Our LFM will act as a specialized type of Foundation Model within the domain of Generative Spatial AI (GSAI). It will model and analyze intricate urban flows, including mobility patterns (flow of vehicles, traffic congestion), energy generation and consumption (electricity distribution, renewable energy sources), and potentially material flows related to infrastructure development.
Key objectives of our LFM for EV charging station deployment include:
• Completing impartial city data: Addressing data gaps and biases in urban datasets, providing comprehensive and unbiased information on relevant urban flows.
• Estimating flow data for new or unmonitored locations: Accurately predicting EV charging demand and energy availability in areas lacking historical data, crucial for expanding infrastructure into underserved zones.
• Forecasting the evolution of flow data: Predicting how energy demand, EV adoption rates, and mobility patterns will change over time to ensure future-proof charging infrastructure.
• Providing a holistic urban understanding: Combining diverse datasets and analytical techniques to reveal interconnections between energy grids, traffic flows, urban planning decisions, and their cumulative impact on EV charging needs.
The project will utilize a custom Generative Spatial AI (like variational autoencoders, transformers, GANs, VAEs) a specialized Deep Learning architecture for City Flow modeling. This BCA will efficiently encode and generate complex, high-dimensional spatial-temporal data related to urban energy and mobility flows, enabling the modeling, prediction, and simulation of diverse urban dynamics critical for EV charging optimization.. It will learn patterns from flow data (e.g., vehicle movements, energy consumption), structural data (e.g., road networks, utility infrastructure, buildings), and flow descriptors (temporal, spatial, categorical).

3. Alignment with Call Objectives and Expected Outcomes
This project directly aligns with the HORIZON-MISS-2025-04-CIT-02 topic's aim to develop innovative, AI-based solutions for urban planning and management, particularly through Digital Twins.
Expected contributions to the call's outcomes include:
• Development of Digital Twin models with associated tools that utilize Artificial Intelligence (including generative AI), which will be rigorously tested, calibrated, and implemented in each participating city for EV charging optimization.
• Providing guidelines and recommended approaches for the integration and orchestration of these models and tools into urban planning and decision-making processes for sustainable EV infrastructure.
• Facilitating capacity building and peer learning for other cities interested in deploying similar AI-based tools.
• Developing exploitation plans for the Digital Twin, including a market analysis for replicability and scalability of the EV charging solution.
• Creating interactive 3D visualization tools that promote participatory urban planning for EV infrastructure, enabling stakeholders and citizens to provide informed feedback on proposed charging station locations and their impacts.
• Fostering the creation of multidisciplinary communities by bringing together IT developers, urban planners, designers, local authorities, energy providers, and transport operators to adapt and enhance AI-based solutions for urban domains like infrastructure planning and network/traffic management29.
• Demonstrating a clear contribution to the implementation and delivery of Climate City Contracts (CCCs) and/or Sustainable Energy Action Plans (SEAPs), Sustainable Energy and Climate Action Plans (SECAPs), and/or Sustainable Mobility Plans through optimized EV infrastructure deployment.
The project will specifically incorporate static physical urban characteristics such as buildings, road networks, and energy/heat grids, along with mobility modes and services (including freight transport where possible) and energy generation and consumption, as critical variables for the Digital Twin. It will provide different scenarios for achieving climate-neutrality through optimized EV adoption and charging, allowing simulation of impacts from various policy implementations. We will also explore the use of the Digital Twin for real-time monitoring and response to strengthen urban resilience in the face of unexpected events impacting charging availability or demand.

4. Consortium Requirements and Stakeholder Engagement
To ensure comprehensive and effective project implementation, the consortium must adhere to the following criteria:
• Minimum three legal entities, independent from each other, each established in a different EU Member State or Associated Country.
• At least one of these cities must be one of the 112 cities selected for the EU Mission on Climate-neutral and Smart Cities.
• The consortium should include a diverse range of expertise: local authorities, urban planners, IT developers, operators (e.g., energy utility companies, public transport operators), service providers (e.g., charging network operators), and other relevant actors.
• The selection of participating cities will ensure complementarity in terms of climatic conditions, city typologies, and geographical balance to enhance the model's generalizability.
• Crucially, the project requires the effective contribution of Social Sciences and Humanities (SSH) disciplines and the involvement of SSH experts, institutions, to produce meaningful societal impacts, addressing aspects like user behavior, social equity in access to charging, and policy integration.

5. Budget and Technical Readiness
The expected EU contribution per project is around EUR 6.00 million, with a total indicative budget for the topic of EUR 24.00 million. Activities are expected to achieve a Technology Readiness Level (TRL) of 6-8 by the end of the project, meaning the solutions will be demonstrated in a relevant environment and ready for widespread deployment.

6. Key Activities and Synergies
Our project will involve the following key activities:
• State of the art research: involves systematically sourcing peer-reviewed journal articles, conference proceedings, and books published primarily between 2020 and 2024 from established academic databases such as Scopus, Web of Science, ScienceDirect, and Springer Link. Afterwards, the aim is to prioritize studies that address the foundational principles and applications of AI and GenAI models in urban planning and design, their integration with UDT as decision-support tools for sustainable smart cities, the application of FMs for sustainable urban development, environmentally sustainable practices, and the challenges/opportunities of multimodal data integration in UDT systems (similarly as the Digital Twin article does)
• Detailed architectural design of the LFM, including the custom BCA, focusing on its encoder-decoder structure for handling high-dimensional spatial-temporal data related to EV charging.
• Comprehensive data collection and integration from diverse urban sources (mobility patterns, energy consumption, structural data like road networks and utility grids), ensuring harmonization across various formats, temporal resolutions, and spatial scales23....
• Algorithm implementation and fine-tuning of the LFM using both supervised and self-supervised learning, with validation from domain specialists in urban mobility and energy.
• Development of advanced simulation modules to model specific urban scenarios for EV charging, such as varying EV adoption rates, impacts on local energy grids, and optimal placement strategies to mitigate congestion.
• Creation of interactive visualization tools to translate the LFM's outputs into user-friendly formats, enabling stakeholders to visually explore EV charging scenarios and predictions.
• Validation and verification of the LFM's reliability and accuracy against real-world data, with iterative refinements based on performance feedback and stakeholder insights46.
The project will ensure essential collaboration with the Cities Mission Platform, formalizing this through a Memorandum of Understanding. We will also seek strong synergies with the Driving Urban Transitions (DUT) partnership and the Urban Transitions Mission. Furthermore, we will explore opportunities with the Digital Europe Programme and its EU Toolbox for Local Digital Twins, and align with Common European Data Spaces like the EU Smart Communities Data Space and the Mobility Data Space, engaging with the SIMPL project for interoperability. The project will build upon existing research and innovation actions to leverage prior knowledge.

7. Limitations, Challenges, and Mitigation
While promising, we acknowledge potential challenges inherent in this innovative approach. These include:
• Dependency on data quality and comprehensiveness: The accuracy of the LFM's synthetic data generation and predictions relies heavily on the quality, diversity, and reliability of input datasets. We will implement robust data abstraction and standardization processes to mitigate inconsistencies and ensure data integrity.
• Computational complexity and scalability: Processing vast quantities of spatiotemporal data demands significant computational resources. We will prioritize scalable architectures and explore efficient training techniques (e.g., knowledge distillation, model pruning) to optimize performance and reduce resource demands.
• Generalizability across diverse urban contexts: While the Blue City Project serves as a strong testbed, expanding evaluation to multiple urban settings will enhance the LFM's robustness and broader applicability.
• Ethical considerations: Addressing potential biases embedded in historical data, ensuring transparency in AI decision-making, safeguarding data privacy, and mitigating security vulnerabilities are critical. Our approach will prioritize explainable AI techniques, robust data anonymization, and continuous vulnerability assessments, integrating ethical principles throughout the development and deployment.
• Environmental footprint of AI tools: We will assess the computational energy consumption of our AI models and include a cost-benefit analysis and mitigation strategies if the footprint is significant (where possible).

8. Conclusion
This project aims to introduce a pioneering AI-based Digital Twin, an LFM, specifically for optimizing EV charging infrastructure deployment in cities. By effectively modeling complex urban flows, completing data gaps, and providing robust predictive capabilities, this tool will enable evidence-based decision-making for urban planners, contribute to climate-neutrality goals, and enhance the resilience and sustainability of urban environments. Addressing the outlined challenges through interdisciplinary collaboration and ethical practices, this project will significantly advance the field of GSAI for sustainable urban development.

Annexes
A. Important concepts and examples
Foundation Models are large-scale machine learning models trained on broad, diverse datasets and designed to be adaptable to a wide range of downstream tasks with minimal fine-tuning. Examples include GPT-4 (language), DALL·E (image), and CLIP (vision-language). These models serve as general-purpose foundations upon which task-specific capabilities are built.

Large Flow Models can be understood as a task-specific extension of a Foundation Model, tailored to simulate, analyze, and predict multi-dimensional flow data in urban systems. These "flows" can include:
· Traffic movement
· Human mobility
· Energy usage
· Waste management
· Environmental flows (e.g., air or water pollution)
LFMs focus on understanding how dynamic elements interact spatially and temporally across a city, often using data fusion techniques from sensor networks, satellite imagery, and GIS layers.

Generative Spatial AI refers to a new class of AI systems that:
· Use generative models (like variational autoencoders, transformers, GANs, VAEs)
· Are spatially aware—meaning they understand geographic, geometric, or topological relationships
· Produce or simulate new spatial configurations, forecasts, or scenarios
This includes tasks such as:
· Generating synthetic cities or neighborhoods
· Predicting urban growth patterns
· Simulating pedestrian or traffic flows
· Supporting real-time decision-making in Digital Twins
GSAI bridges geospatial sciences, urban planning, and generative modeling.

The Blue City Autoencoder (BCA), referenced in "Digital Twin Cities" article, is an advanced deep learning model designed to analyze and simulate complex urban dynamics within the framework of Urban Digital Twins (UDTs). Similar technologies and methodologies have been applied in urban planning and smart city initiatives, as following:
Variational Autoencoders (VAEs) for Urban Network Modeling
Researchers have utilized VAEs to model urban street networks. For instance, a study applied VAEs to reconstruct and analyze urban street networks, enabling the identification of similarities between different urban forms and the generation of new urban layouts. This approach demonstrates how generative models can be employed to understand and simulate urban structures. 
Adversarial Autoencoders for Urban Air Pollution Forecasting
An approach integrating adversarial autoencoders with Long Short-Term Memory (LSTM) networks has been proposed to improve forecasts of urban air pollution. This method combines reduced-order models obtained via Principal Components Analysis (PCA) with adversarial training to enhance the accuracy of pollution simulations, showcasing the application of generative models in environmental simulations. 
Dynamic Digital Twins in Helsinki
Helsinki has developed dynamic digital twins to simulate and analyze urban development scenarios. These models integrate real-time data to support decision-making in urban planning, demonstrating the practical application of digital twins in managing urban dynamics. 
Urban Digital Twin in Sydney
Sydney's urban digital twin integrates diverse real-time and historical data, including weather, crime, emissions, and traffic, to support sustainable urban planning. By employing machine learning for predictive modeling, such as forecasting traffic crash risks, this initiative illustrates the use of digital twins in proactive urban management.
While these implementations may not use the exact architecture of the Blue City Autoencoder (BCA), they share several key characteristics:
· Generative Modeling: Like the BCA, these approaches utilize generative models to simulate urban dynamics and structures.
· Multimodal Data Integration: They integrate various data types, such as street networks, environmental data, and socio-economic factors, to create comprehensive urban models. 
· Predictive Capabilities: These models employ predictive analytics to forecast future urban scenarios, aiding in decision-making processes.
· Urban Planning Applications: The technologies are applied in urban planning to optimize infrastructure, enhance sustainability, and improve quality of life.
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