

bettair®

Mapping Air Quality

Accurate air pollution mapping on a previously unimaginable scale

bettair®

Mapping Air Quality

This novel smart-city technology provides a highly efficient and large-scale pollution mapping tool.

It provides insights and information that our customers need to better understand and mitigate noise and air pollution.

Our sensing cartridge design allows to easily replace all sensors when required and **it does not require in-situ calibration.**

CUSTOM VISUALISATION TOOLS

Pollution data is provided using the latest GIS visualisation tools, and can be adapted to the individual requirements of each customer.

THE NETWORK

The platform is built around a grid of nodes that are strategically placed to optimise map coverage. Our solution is scalable and can be adapted to any scenario.

ADVANCED DATA POST-PROCESSING

Pollution data is run through a unique post-processing algorithm. The algorithms provide precise measurements of several air quality indicators with similar accuracy as traditional equipment but at a fraction of the price. Impressive Pearson Correlation ($R^2 > 0.9$) when compared with traditional AQM equipment.

The platform is fed by innovative sensors which are easy to install and can withstand tough climates.

OUR NODES

IP65 rated
dust tight and
water resistant

Customised
low-power
electronics

Low-power
wireless
network access

WHAT OUR NODES MEASURE

Temperature

Relative
Humidity

Ambient
Noise

PM₁ PM_{2.5} NO₂ NO SO₂ CO Atmospheric
PM₁₀ O₃ H₂S CO₂ VOC NH₃ Pressure
CH₄ HCl

ENVIRONMENTAL REQUIREMENTS

Operating
Temperature Range
with full accuracy
-10 to 40 °C

Operating
Relative Humidity
Up to 95%
non-condensing

WHAT CAN YOU DO WITH BETTAIR?

Mitigate air pollution

Identify unknown sources of pollution

Potential revenue generation through fines

Assess the impact of environmental actions

Reduce air pollution costs

Categorize zones per air quality

Forecast air pollution episodes

Climate change monitoring

HOW DOES POLLUTION AFFECT YOU?

Air pollution is a major problem for public health.

Outdoor air pollution kills 4.5 million people annually, mostly in cities.

The problem is magnified by unprecedented urban population growth.

PM

Affects central nervous system

NO₂

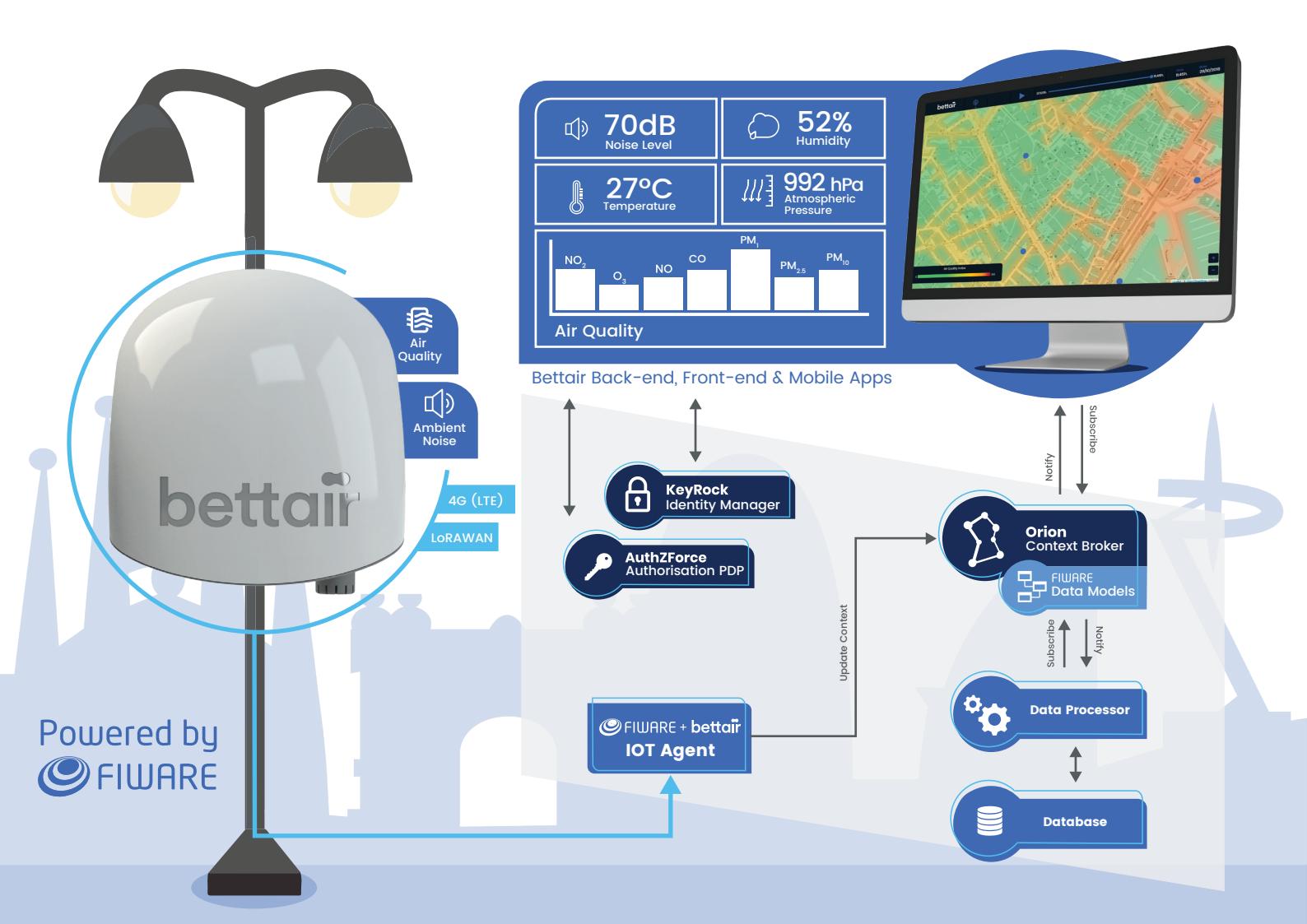
Affects liver, spleen, and blood

PM

Asthma, reduced breathing capacity, & chronic obstructive pulmonary disease

O₃, PM

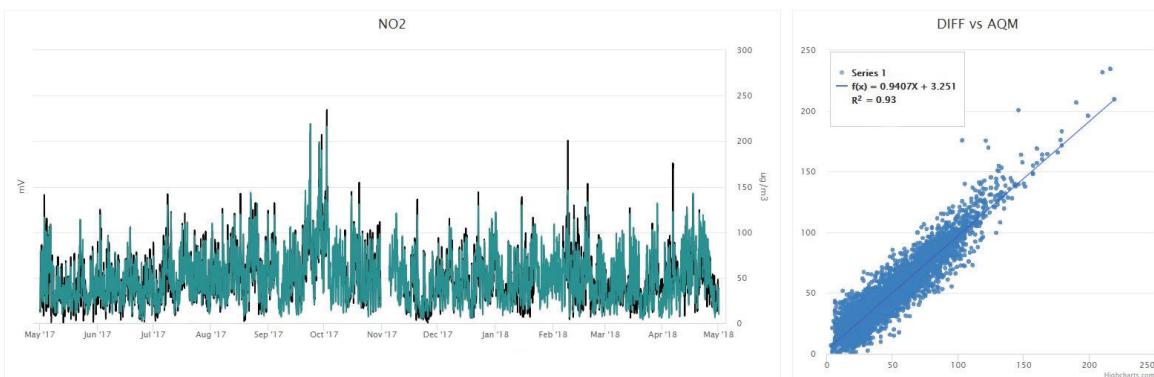
Heart diseases

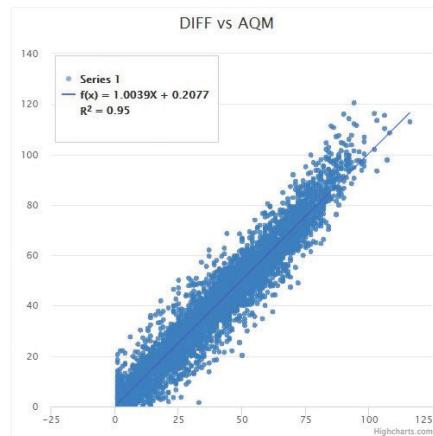
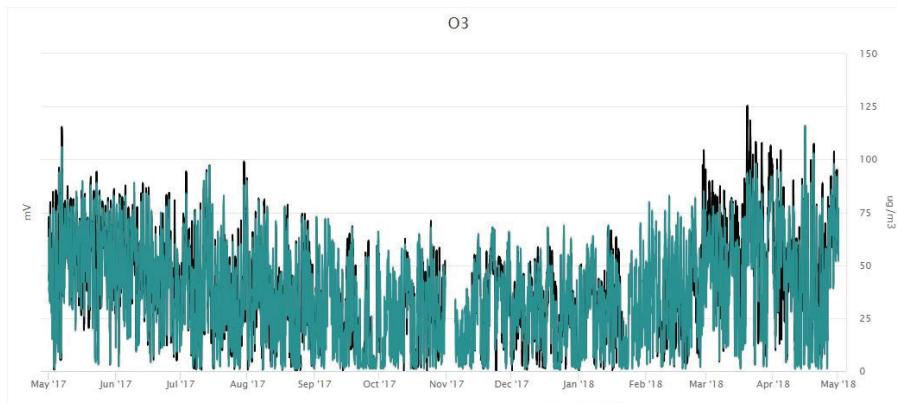
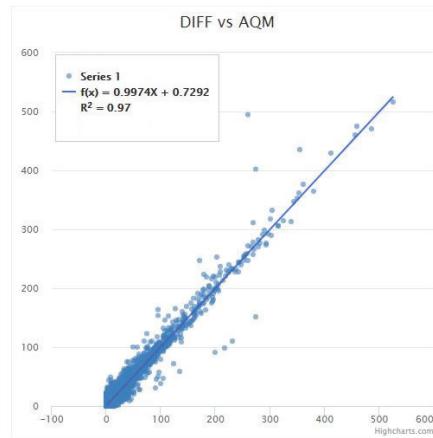
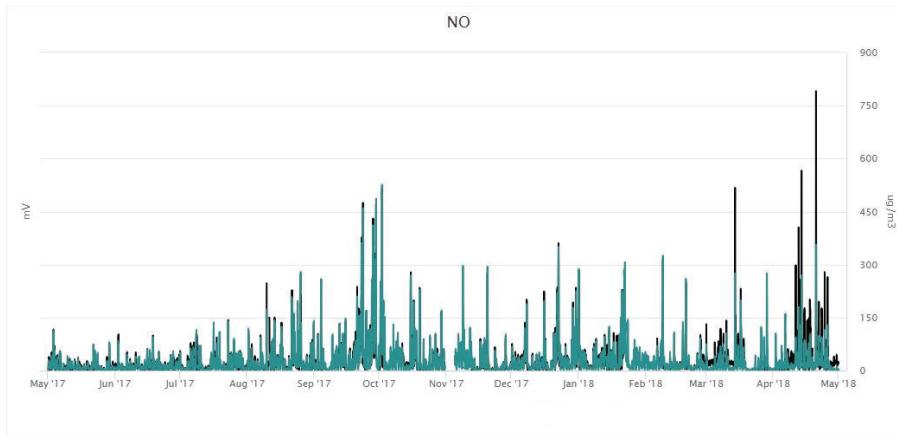


O₃, PM, NO₂, SO₂, NH₃
Cause eye, nose, and throat irritation; respiratory problems

PM

Affects reproductive system







Measurement Specifications

Variable	Range	LDL*	Resolution	Precision	Unit
NO ₂	0 - 20 ppm**	2 ppb***	0.1 ppb	± 3 ppb	ppb or $\mu\text{g}/\text{m}^3$
O ₃	0 - 20 ppm	1 ppb	0.1 ppb	± 5 ppb	ppb or $\mu\text{g}/\text{m}^3$
NO	0 - 20 ppm	2 ppb	0.1 ppb	± 4 ppb	ppb or $\mu\text{g}/\text{m}^3$
CO	0 - 500 ppm	30 ppb	1 ppb	± 30 ppb	ppb or $\mu\text{g}/\text{m}^3$
SO ₂	0 - 50 ppm	10 ppb	0.1 ppb	± 15 ppb	ppb or mg/m^3
CO ₂	400 - 10,000 ppm	400 ppm	1 ppm	± 30 ppm	ppm or mg/m^3
H ₂ S	0 - 50 ppm	2 ppb	0.1 ppb	± 10 ppb	ppm or mg/m^3
NH ₃	0 - 60 ppm	6 ppb	0.3 ppb	± 10 ppb	ppb or $\mu\text{g}/\text{m}^3$
CH ₄	0 - 50,000 ppm	250 ppb	10 ppm	± 250 ppb	ppm or mg/m^3
HCl	0 - 20 ppm	5 ppb	0.1 ppb	± 15 ppb	ppb or mg/m^3
VOC	0 - 100 ppm	20 ppb	1 ppb	± 1 ppm	ppb or mg/m^3
VOC****	0 - 500 IAQ***	n/a	1 IAQ	± 3	IAQ
PM ₁	0 - 1,000 $\mu\text{g}/\text{m}^3$	1 $\mu\text{g}/\text{m}^3$	1 $\mu\text{g}/\text{m}^3$	± 2 $\mu\text{g}/\text{m}^3$	$\mu\text{g}/\text{m}^3$
PM _{2.5}	0 - 1,000 $\mu\text{g}/\text{m}^3$	1 $\mu\text{g}/\text{m}^3$	1 $\mu\text{g}/\text{m}^3$	± 2 $\mu\text{g}/\text{m}^3$	$\mu\text{g}/\text{m}^3$
PM ₁₀	0 - 1,000 $\mu\text{g}/\text{m}^3$	1 $\mu\text{g}/\text{m}^3$	1 $\mu\text{g}/\text{m}^3$	± 2 $\mu\text{g}/\text{m}^3$	$\mu\text{g}/\text{m}^3$

* Limit of Detection ** parts per million *** parts per billion **** Index for Air Quality

RESULTS OF LONG-TERM IN-FIELD TEST AND COMPARISON WITH TRADITIONAL AQM STATION

Pollutant R² correlation coefficient

NO ₂	O ₃	NO
0.93	0.95	0.97

The co-location period covered with this station started from 1st May 2017 until 30th April 2018

Mapping Air Quality

Better cities, Better life, bettair®

*AIRLAB

<https://bettaircities.com>

[in](#) Bettair Cities

info@bettaircities.com