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Abstract—ROS2 (Robot Operating System Version 2) is an
open-source software framework and suite of libraries that
facilitates robotics application development and multi-core pro-
cessing. ROS2 is becoming the de-facto standard for autonomous
robotics application and recently. On the other hand, with
the support of NASA and Blue Origin, Space-ROS -a Space
applications specialized implementation of ROS2- is also starting
to be used for Space autonomous applications, like landers and
space robotics. ROS was designed to simplified and reduce
the development time and effort required to write robotics
applications and ROS2 kept this focus plus the main goal
of enabling real-time robotics. In the initial design of ROS2,
processing performance was given low priority, and, while an
effort has been made to increase processing performance, it is not
uncommon to face long latency in receiving sensor data or even
non-negligible data losses. The research presented here shows
a ROS2 executor implemented based on a lock-free ring-buffer
that can not only increase by significantly the data processing
rate with respect to the built-in ROS2 executors, but also reduce
the processing consumption substantially. Successful performance
results of this novel ring-buffer ROS2 executor are presented here
and validated in several Space computers and the de-facto real-
time benchmarking standard: the Raspberry Pi4 with Real-time
Linux as operating system.

Index Terms—ROS2, Space onboard computing, high perfor-
mance computing, parallel processing

I. INTRODUCTION

ROS2 (Robot Operating System 2) represents the evolution
of the widely adopted ROS (Robot Operating System) frame-
work, instrumental in the development of software applications
for robotics and other autonomous systems [7] [16]. Space-
ROS [15] extends this platform specifically for applications
in space, addressing the unique challenges presented by the
extreme environment including radiation, vacuum, temperature
fluctuations, and communication delays. It caters to these
challenges by offering specialized components for managing
space-specific issues such as radiation-hardened electronics,
specialized communication protocols, and fault-tolerant soft-
ware.

ROS2 data workflow design has been thought out to provide
a robust and uniform access to sensor data via different
supported middleware including DDS and memory sharing
solutions in order to enable real-time processing [11] [13].
While this design has largely simplified the development
effort required to write distributed robotics applications, it has

somewhat compromised processing performance, resulting in
occasional long latencies in receiving sensor data or even data
losses. Various studies have addressed this issue [9].

The ROS2 community, specifically the Real-Time Working
Group (RTWG), has dedicated significant efforts to improve
this situation, leading to the development of the Static Single
Thread and the Multi-thread Executors [17]. These executors
have demonstrated substantial performance enhancements for
certain specific scenarios [18]. However, a universal solution
to ROS2’s performance bottlenecks remains elusive, leaving
developers to determine the optimal combination of executors
for their specific use cases.

Other industries, such as finance, have achieved remarkable
speeds by parallelizing data processing algorithms, enabling
real-time applications through the so-called lock-free pro-
gramming technique [2]. Although complex to implement
efficiently, this technique can yield exceptional performance
results when employed correctly [5]. In this paper, the au-
thors have implemented a lock-free ring-buffer and validated
it across different on-board computers, yielding impressive
performance results for sensor data aggregation, processing,
and even artificial intelligence.

The research herein presents a ROS2 executor, built on our
lock-free ring-buffer, that significantly enhances data process-
ing rates and reduces processing consumption substantially
compared to the previously mentioned executors. This has
profound implications for system-level performance. Enhanced
processing speeds translate into faster response times, particu-
larly crucial for real-time autonomous navigation. The ability
of our executor to make quick, reliable decisions in this context
could lead to reductions in accidents and collisions, making
for safer and more efficient operations.

Furthermore, our ROS2 multi-node variant of this execu-
tor has been implemented, coupled with offline optimization
based on genetic algorithms. This combination promises per-
formance enhancements for virtually any scenario involving
ROS2 applications. These improvements, both at the micro
and macro levels, illustrate the potential of our approach to
optimize and enhance the effectiveness of robotic systems in
diverse settings.

The paper presents the performance results of this innovative
ring-buffer ROS2 executor and its multi-node variation using



the so-called reference system. The performance is validated
on several Space computers and the de-facto standard for real-
time benchmarking: the Raspberry Pi4 with Real-time Linux
as the operating system [3].

The remainder of the paper is structured as follows: Section
II elucidates the primary concepts of the ROS2 executor
approach and the current state-of-the-art. Section III explains
the novel executor and how it utilizes lock-free program-
ming techniques. Finally, Section IV outlines the performance
benchmark setup and discusses the obtained results.

II. ROS2 EXECUTOR MODEL

A. ROS2 Executor Explained

The ROS2 Executor facilitates the coordination and schedul-
ing of a ROS2 application. It manages the callbacks associated
with subscriptions, messages, services, timers, and nodes.
In ROS2, the Executor doesn’t maintain its own queue of
messages and callbacks. Rather, it retrieves messages from the
underlying middleware DDS queues before dispatching them
for execution on one of the threads. The DDS system shoulders
the responsibility of defining the QoS settings [12].

The interface to the middleware, known as the ROS Middle-
ware Interface (rmw), is displayed in Figure 1. This interface
offers an abstraction layer to various DDS implementations,
facilitating communication with the ROS 2 Client Library.
This package encapsulates the rmw interface for DDS im-
plementation, along with some generally useful functionality
for implementers.

Fig. 1: ROS2 diagram.

To explain the role of the executor in the full ROS2 dataflow,
it is important to offer a brief description of the ROS2 software
stack, as depicted in Fig 2. This will be discussed from the
lowest to the highest level:

• The Middleware layer, utilizing either DDS or RTPS
implementation, is responsible for managing publish-
ing/subscribing mechanics, service request/reply mechan-
ics, and message serialization.

• The ROS 2 Middleware Interface (rmw) implements
an abstraction layer compatible with various middleware
implementations, enabling communication with the ROS2
Client Support Library. Each middleware is associated
with a unique rmw adapter, which harnesses the middle-
ware’s interfaces and tailors them for its corresponding
rwm.

• The ROS Client Library for C++ (comprising rclcpp
for C++ and rclpy for Python) is a user-facing, C++
idiomatic interface. This library encapsulates all ROS
client functionalities such as node creation, publisher
and subscriber setup, etc. It implements sophisticated
functionality and is typically the interface users interact
with. The executor is housed within this library.

• User code represents the actual application code that
deploys the ROS2 stack.

Fig. 2: Description of the ROS2 software stack [12]

The executor operates as a cyclical single process that, when
idle, requests a status update from the middleware via the
rclcpp and the rmw (including their respective adapters). The
responses are not the actual messages from the middleware,
but rather a notification of which queues have pending mes-
sages within the middleware. These queue status responses are
accumulated in a wait-set.

A wait-set is employed to notify the Executor of messages
available on the middleware layer, with each queue represented
by a binary flag. Additionally, wait-sets serve to detect when
timers expire. The executor then proceeds to traverse the Wait-
set, gathering a message, triggering the callback, and clearing
the corresponding Wait-set queue at each step.

Once the Wait-set is emptied, the executor reverts to an idle
state, thereby instigating another request to the middleware
cycle.

B. State-of-the-art

ROS2 default C++ executors exhibit different methodolo-
gies for assigning nodes to various threads [18]:

• Single-threaded executor: This executor employs a soli-
tary thread to query the middleware and execute callbacks



sequentially. Subsequently, it scrutinizes the structure,
updating the number of nodes, subscriptions, services,
etc, and regenerates a Wait-set.

• An adaptation of the Single Threaded Executor is the
Static Single Threaded Executor. Here, the structure’s
scan and definition occur solely during initialization.
This executor is essentially a static version of the initial
single-threaded executor, with ”static” referring to the
absence of list reconstruction for each iteration. All
nodes, callback groups, timers, subscriptions etc. are
established before spin() is invoked, and modified only
upon adding/removing an entity to/from a node.

• The Multi-threaded executor establishes multiple threads
to execute callbacks concurrently. Analogous to the
single-threaded executor, it intermittently scans the appli-
cation’s structure and refreshes the problem description.
This executor leans on callback groups for parallel ex-
ecution and initiates a threadpool to execute callbacks.
Callbacks within distinct groups may be executed in
parallel. Callback groups can be designed to be either:

– Mutually Exclusive Callback Group: In this case, no
two callbacks can be executed concurrently.

– Reentrant Callback Group: Here, no restrictions are
imposed on executing diverse callbacks simultane-
ously.

III. THE RING-BUFFER ROS2 EXECUTOR

The research discussed herein comprises a high-
performance ROS2 Executor implementation. This execution
is built on Klepsydra’s Lock-free Ring Buffer and capitalizes
on its high-performance parallelization features to distribute
messages to the ROS2 subscribers in a highly efficient
manner.

A. The lock-free ring buffer

1) Lock-free parallel data processing for embedded sys-
tems: The foundation of this research is the concept of lock-
free ring buffers [10]. These are high-performance concur-
rency frameworks based on CAS (Compare And Swap). Their
efficiency has attracted considerable attention from industry.
For instance, corporations such as LMAX have utilized these
techniques [2] to develop software capable of processing up
to six million orders per second [5].

Lock-free programming, specifically with regard to ring
buffers, is traditionally implemented in Java, due to the lan-
guage’s embedded Java Garbage Collector, which simplifies
the complex task of lock-free programming, making it more
accessible to developers. Furthermore, the popularity of books
like “Java Concurrency in Practice” [14] has had a significant
influence on the Java development community. The arrival of
C++11 and smart pointers [8] paved the way for a partial
porting of ring buffers to C++, given the similar coding style
to Java Garbage Collector.

2) Lock-free event loop: Relying on this pattern, coupled
with the incorporation of the newly introduced smart pointers
in C++11 and encapsulating it within a publisher-subscriber

pattern [4], we crafted a simplified application public interface
(API). This represents a condensed adaptation of the robust
LMAX disruptor, customized for embedded systems, as illus-
trated in figure 3.

Fig. 3: Developed ring buffer.

The presented ring buffer operates in two modes. The
first is the sensor multiplexer as shown in figure 4, which
operates as a single producer, multiple consumer solution.
Primarily employed for vision navigation robotics and drone
applications, this pattern is beyond the scope of this article.
The second is an event loop (figure 5) which is based loosely
on financial system developments. This event loop is lock-
free, offers high performance and a level of determinism that
is unprecedented in embedded systems [1].

Fig. 4: Sensor multiplexer.

B. The ring-buffer ROS2 executor

The ring-buffer ROS2 Executor utilizes the Klepsydra’s
event loop to dispatch messages to the subscribers in all nodes,
which are coming from the middleware via the rmw, as
depicted in Figure 6. The event loop administers these topics
using publisher-subscriber pairs. It is crucial to differentiate
that the event loop publishers are not the same as the ROS2
node publishers. Henceforth, we will refer to the event loop
publisher when we mention ”publisher”, unless stated other-
wise.

In several respects, the ring-buffer executor operates in a
way akin to the static single-threaded executor. Firstly, it



Fig. 5: Lock-free eventloop.

does not reconstruct the executable list for every iteration.
All nodes, callback groups, timers, subscriptions etc. are
established at construction time. Secondly, all subscriptions
within a node execute on the same thread, regardless of the
number of cores allocated for the streaming setup.

The ring-buffer executor relies on the event loop to transmit
middleware messages to all nodes in the ROS2 application.
Although it borrows inspiration from the static single-threaded
executor, its implementation is encapsulated in the following
features:

• A publisher-subscriber pair is created for each topic
demanded by a specific ROS2 node. Each publisher-
subscriber pair is internally distinguished by two param-
eters: the node name and the topic name. Hence, two
distinct nodes publishing to the same topic are managed
independently.

• All publisher-subscriber pairs related to topics belonging
to the same node are supervised by the same event loop.

• Since a single event loop manages all topics in a node,
all subscribers are invoked on the same thread.

• Similar to the static single-threaded executor, the ring-
buffer executor establishes the mapping between nodes
and event loops before invoking the ROS2 spin API,
implying that changes to the nodes (adding or removing
topics) are not possible when utilizing the ring-buffer
executor.

C. Single and Multicore variations

The ring-buffer executor is available in two variations:
single-core and multi-core. The advantage of the ring-buffer
executor is that there is no need for multithreading manage-
ment of the subscribers since all of them are managed by the
thread of the associated event loop, which is common to both
single-core and multi-core.

The single-core version functions similarly to the static
single-threaded executor, as all subscribers in all nodes are
invoked by the same thread, as illustrated in Figure 6.

In contrast, the multi-core variant permits mapping of nodes
to different cores, where each event loop is entirely dedicated
to processing the messages of each node, as demonstrated in
Figure 7. The primary advantage of the multi-core is that the

Fig. 6: Single Core ring-buffer Executor.

system load can be better distributed across different event
loops and thus across different cores. Furthermore, the next
section elaborates on the usage of genetic algorithms for
finding the optimal distribution of nodes to cores.

Fig. 7: Multi Core ring-buffer Executor.

D. Multi-core ring-buffer executor optimization

Optimal load distribution of the nodes among cores can
significantly enhance the multi-core variant of the ring-buffer
executor’s performance in terms of latency, power consump-
tion, and data throughput. However, core mapping is not
straightforward and demands a systematic method. One po-
tential approach is to define a target function that gauges
the system’s performance based on the core configuration.
A genetic algorithm can optimize the core configuration by
testing different configurations iteratively and selecting those
that perform well according to the target function. This process
continues until an optimal configuration is found, thereby
ensuring more efficient utilization of the multi-core system
and optimal load distribution.

This approach is generally versatile and proves effective in
many scenarios. It makes no presumptions about the general
application topology and is applicable to a broad range of
systems. However, the genetic algorithm’s convergence is
not guaranteed and might be influenced by the application
topology. Moreover, it presumes the application topology is



static and does not account for potential alterations in the task
structure.

IV. THE PERFORMANCE BENCHMARK FRAMEWORK

The benchmark performance was evaluated using the Ref-
erence System [6], a benchmarking tool devised by APEX.ai
to simulate real-world robotics applications constructed with
ROS2. The Reference System comprises modular blocks act-
ing as nodes with defined behaviors, a system for connecting
and structuring these blocks using callbacks, and a suite of
scripts to measure performance.

A. The benchmark setup

All performance data were gathered using a Raspberry Pi
4B with the following specifications:

• ROS galactic
• Ubuntu 20.04
• 4 GB of ram
• Real-time patch.
This configuration aligns with the recommended setup for

the reference system. As advised, we set the operating fre-
quency to a constant 1.50 GHz, following the provided setup
guidelines. Unlike the repository’s suggestion, we will not
isolate the CPUs due to our executor’s capability to leverage
the multi-core configuration.

Our benchmark is based on the Autoware reference system
detailed in [6], a realistic driving application example built
on the Reference system. Figure 8 presents all executing
nodes and their interconnections. In line with the optimization
target defined in Section III-D, our genetic algorithm aims to
minimize the average latency of the critical path. This is the
duration from Lidar Data publication until the Object Collision
Estimator completes its task. Figure 9 highlights the critical
path we aim to optimize. Each benchmark will run for 90
seconds on all executors.

Fig. 8: Node relationship Autoware Reference System.

Fig. 9: Critical path reference system

V. BENCHMARK OUTCOMES

The Reference System employs a basic prime search algo-
rithm up to a number N, establishing the workload executed
by the nodes. To assess our executor’s robustness, we executed
various N values. Note that the workload does not scale
linearly. All units are in milliseconds. Table I and Figure

10 details the results. For comparison, the reference system
examples implement an N of 4096. The following conclusions
can be drawn:

• Across all test cases, Klepsydra’s executor performance
matches or surpasses that of the original executors.

• For minor node workloads, the increased complexity does
not improve results. The static single-threaded executor,
due to its simplicity, outperforms the other executors.

• As expected, as the workload increases, the second-best
executor shifts from Static Single Threaded to Multi-
threaded. This is anticipated since the complexity added
by parallel processing begins to offset its cost.

• It was projected that the Static Single Threaded would
consistently outperform the single-threaded executor,
given the application does not alter its topology during
execution. This is indeed the case, as demonstrated by
the results.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduces a unique strategy to optimize the
ROS2 execution model, integrating a lock-free ring-buffer
based ROS2 executor implementation with the use of genetic
algorithms to optimally distribute the robotic application load
among available computer cores. This combination proves
highly efficient for systems with a substantial computational
load, such as the discussed reference system. A major advan-
tage of this research is its adaptability to different applications:
varying ROS2 application topologies can be expedited using
the ring-buffer executor coupled with genetic optimization,
addressing one of the most debated challenges in ROS2.

Looking ahead, several features are to be incorporated into
the ring-buffer executor: timer support, open-source release of
the single-core ring-buffer executor, and the employment of
the sensor multiplexer along with the event loop for topics
with multiple subscribers.
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