European Cyber Defence Policy

- **1. Highly Modular Architecture**: Enables the performance of a wide range of tasks, such as data exfiltration, keystroke logging, and network reconnaissance.
- 2. Advanced Persistence Mechanisms: Maintains its foothold in infected systems by encrypting payloads and employing obfuscation techniques to evade detection.
- **3.** Covert Communication: Utilizes stealthy communication methods, often tunneling traffic through legitimate protocols like HTTP, HTTPS, and DNS, and sometimes piggybacks on legitimate traffic to avoid detection.
- 4. Peer-to-Peer Network: Uses an encrypted peer-to-peer (P2P) network to communicate between infected machines, making it challenging to disrupt its operations.
- 5. Cross-Platform Capability: Targets multiple platforms, including Windows, macOS, and Linux, enhancing its versatility in espionage campaigns.

What is QuantumPrime?

- Mathematical method: An additional security layer to create secret keys and anonymize data.
 Formula: observable = base ±E, where base is a prime number, and E is a product of primes (Euclid's Theorem).
- Strong protection: Strong randomness is achieved by distinct prime numbers and depths.
 Recursion: applying the formula to each prime factor (up to a certain depth) increases the complexity.
- Unique Point-of-View for New Materials: Analyzing the "<u>quantum equilibrium</u>" in materials through a unique and <u>revolutionary approach</u>—similar to the equilibrium of a tower made from elemental "Lego" blocks.

Singularity = root prime ± 2^0 x q

Prime numbers as "Lego" blocks to protect information

Private Key: which primes are used as preferred bases, in what order of preference, and the level of recursion applied.

- 1. Easy integration: sending mathematical expressions as confirmation codes when performing operations (email or SMS).
 - 1.1. Example: the mathematical expression "2^2281-1" is encoded as "9RdfrxM5U9N" and generates a large prime (243 bytes).
- 2. Anonymization: the formula produces a unique hash of the information, which is used as a public ID of the private data.
 - I. Security: it is not possible to guess the key from a generated hash (prime numbers, order and recursion level).
 - 2. Example:

Adding an **additional layer of security** to existing algorithms (SHA, HMAC, AES) to generate **unique secrets or identifiers**, such for **symmetric keys** (via hashing the formula) **and for digital twin IDs**.

This includes protecting private data like account IDs, identification documents, mobile phone numbers, Bluetooth device IDs, as well as terrestrial, marine, or aerial vehicle identification numbers (civil or military).

Quantum-Resistant Security for Any Network Channel

Secure session negotiation and data exchange for HTTP and Bluetooth protocols by improved data protection mechanism (based on the Financial API Security Profile)

Example: Emergencies and Rescue Operations

Documentation: github.com/soschain/docs

Preview video: youtube.com/@soschain

Info: connecthealth.info/soschain

Author: Fernando Latorre (ORCID 0009-0004-6313-6471)

A new paradigm: the <u>Unified Health</u> ID*

Create your own <u>worldwide Unified Health ID</u> and link any other identifier to be attended to <u>anytime</u>. Offline mode is supported in case of network downtimes by using your secure wallet. Authorize being rescued in emergencies via Bluetooth devices (e.g. Apple Tag) or others. Create anonymous IDs** to avoid being tracked.

* Patent US 11,636,776

** QuantumPrime is used for generating anonym device identifiers and digital twins

Use Case: Development of New Materials

Conducting a validation using materials from nature and laboratories:

Name	Element	Element Type	Isotope in Nature	Protons	Neutrons	Electrons	Value	Previous Prime	Distance From Previous Prime	Next Prime	Distance From Next Prime
Hydrogen (dihydrogen)	H2	Non-metal	H-1	2	0	2	23,0	23	0,0	23	0,0
Helium	Не	Noble gas	He-4	2	2	2	41,0	41	0,0	41	0,0
Lithium	Li +	Alkali metal	Li-7	3	4	2	69,0	67	2,0	71	-2,0
Boron	B 3+	Metalloid	B-11	5	6	2	107,0	107	0,0	107	0,0
Oxygen	0 2-	Non-metal	O-16	8	8	10	167,0	167	0,0	167	0,0
Fluorine	F-	Halogen	F-19	9	10	10	195,0	193	2,0	197	-2,0
Neon	Ne	Noble gas	Ne-20	10	10	10	205,0	199	6,0	211	-6,0
Sodium	Na +	Alkali metal	Na-23	11	12	10	233,0	233	0,0	233	0,0
Magnesium	Mg	Alkaline earth metal	Mg-24	12	12	12	246,0	241	5,0	251	-5,0
Aluminium	AI 3+	Post-transition metal	AI-27	13	14	10	271,0	271	0,0	271	0,0
Silicon	Si 4+	Metalloid	Si-28	14	14	10	281,0	281	0,0	281	0,0
Silicon	Si 4-	Metalloid	Si-28	14	14	18	293,0	293	0,0	293	0,0
Sulfur	S 2-	Non-metal	S-32	16	16	18	331,0	331	0,0	331	0,0
Chlorine	CI -	Halogen	CI-35	17	18	18	359,0	359	0,0	359	0,0
Argon	Ar	Noble gas	Ar-40	18	22	18	405,0	401	4,0	409	-4,0
Potassium	К+	Alkali metal	K-39	19	20	18	397,0	397	0,0	397	0,0
Scandium	Sc 3+	Transition Metal	Sc-45	21	24	18	453,0	449	4,0	457	-4,0
Titanium	Ті	Transition Metal	Ti-48	22	26	22	487,0	487	0,0	487	0,0
Titanium (Berkeley Lab)	Ti-50 12+	Transition Metal	Ti-50	22	28	10	487,0	487	0,0	487	0,0
Vanadium	V 5+	Transition Metal	V-51	23	28	18	509,0	509	0,0	509	0,0
Manganese	Mn 7+	Transition Metal	Mn-55	25	30	18	547,0	547	0,0	547	0,0
Iron	Fe 2+	Transition Metal	Fe-56	26	30	24	566,0	563	3,0	569	-3,0
Iron	Fe	Transition Metal	Fe-56	26	30	26	569,0	569	0,0	569	0,0
Zinc	Zn	Transition metal	Zn-65	30	35	30	660,0	659	1,0	661	-1,0
Krypton	Kr	Noble gas	Kr-84	36	48	36	846,0	839	7,0	853	-7,0
Strontium	Sr	Alkaline earth metal	Sr-88	38	50	38	887,0	887	0,0	887	0,0
Ruthenium (synthetic)	Ru 8+	Transition Metal	Ru-102	44	58	36	1016,0	1013	3,0	1019	-3,0
Rhodium	Rh 3+	Transition Metal	Rh-103	45	58	42	1035,0	1031	4,0	1039	-4,0
Palladium	Pd 2+	Transition Metal	Pd-106	46	60	44	1066,0	1063	3,0	1069	-3,0
Indium	In 3+	Post-transition metal	In-115	49	66	46	1153,0	1153	0,0	1153	0,0
Tin	Sn 2+	Post-transition metal	Sn-119	50	69	48	1193,0	1193	0,0	1193	0,0
lodine	11-	Halogen	I-127	53	74	54	1277,0	1277	0,0	1277	0,0
Barium	Ba 2+	Alkaline earth metal	Ba-137	56	81	54	1370,0	1367	3,0	1373	-3,0
Barium	Ba	Alkaline earth metal	Ba-137	56	81	56	1373,0	1373	0,0	1373	0,0
Platinum	Pt	Transition Metal	Pt-195	78	117	78	1950,0	1949	1,0	1951	-1,0
Thallium	TI 3+	Post-transition metal	TI-204	81	123	78	2034,0	2029	5,0	2039	-5,0
Polonium	Po 4+	Post-transition metal	Po-209	84	125	80	2085,0	2083	2,0	2087	-2,0
Polonium	Po 2+	Post-transition metal	Po-209	84	125	82	2088,0	2087	1,0	2089	-1,0
Radon	Rn	Noble gas	Rn-222	86	136	86	2213,0	2213	0,0	2213	0,0
Radium	Ra 2+	Alkaline earth metal	Ra-226	88	138	86	2251,0	2251	0,0	2251	0,0
Livermorium	Lv	Superheavy element	Lv-290	116	174	116	2900.0	2897	3.0	2903	-3.0

Some important elements in nature or in compounds exhibits a "quantum equilibrium", where their value is a prime number or an interprime (equidistant between the previous and next prime).

To make element 116 (Lv-290, interprime value), researchers produced special isotopes of titanium (Ti 12+, prime value).

Credits: Berkeley Lab

newscenter.lbl.gov/2024/07/23/a-new-way-to-make-element-116-opens-the-door-to-heavier-atoms

Author: Fernando Latorre (ORCID 0009-0004-6313-6471)

Use Case: Analyzing Biomaterials

Extracting new insights from molecules, and tracking changes in genetic expressions.

Name	Formula	с	н	N	0	Ρ	Mg	S	Protons	Neutrons	Electrons	Value	Prev. prime	Dist. Prev. Prime	Next Prime	Dist. Next Prime
Citosine (C)	C4-H5-N3-O	4	5	3	1				58	53	58	1144.0	1129	<mark>15.</mark> 0	1151	-7.0
Uracile (U)	C4-H4-N2-O2	4	4	2	2				58	54	58	1153.0	1153	0.0	1153	0.0
Timine (T)	C5-H6-N2-O2	5	6	2	2				66	60	66	1299.0	1297	2.0	1301	-2.0
Adenine (A)	C5-H5-N5	5	5	5					70	65	70	1390.0	1381	9.0	1399	-9.0
Guanine (G)	C5-H5-N5-O	5	5	5	1				78	73	78	1554.0	1553	1.0	1559	-5.0
C-G		9	10	8	2				136	126	136	2698.0	2693	5.0	2699	-1.0
U-G		9	9	7	3				136	127	136	2707.0	2707	0.0	2707	0.0
A-T		10	11	7	2				136	125	136	2689.0	2689	0.0	2689	0.0
A-U		9	9	7	2				128	119	128	2543.0	2543	0.0	2543	0.0
ATP	C10-H16-N5-O13-P3	10	<mark>1</mark> 6	5	13	3			260	247	260	5213.0	5213	0.0	5213	0.0
Chlorophyll A	C55-H72-O5-N4-Mg	55	72	4	5		1		482	410	482	9233.0	9233	0.0	9233	0.0
Chlorophyll B	C55-H70-O6-N4-Mg	55	70	4	6		1		488	418	488	9374.0	9371	3.0	9377	-3.0

Some of the most **important molecular structures** for life are **prime or interprime** numbers:

- The two helices of DNA are connected by adenine-thymine pairs (A-T, prime number) and cytosine-guanine pairs (C-G).
- During transcription, DNA is copied into mRNA, and thymine (T, interprime) in DNA is replaced by uracil (U, prime) in mRNA.
- Cytosine can convert to uracil (changing to a prime number) in a process called deamination, where C-G transforms to U-G.

• Cells are programmed to repair the uracil damage in the DNA before copying it into mRNA to avoid further DNA damage.

Author: Fernando Latorre (ORCID 0009-0004-6313-6471)

