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Abstract
Recent studies have started to incorporate imagery infor-

mation from picture-description tasks in clinical interviews to
automate Alzheimer’s disease detection in the elderly. How-
ever, the high-level logical flow of visual-attention cognition
mechanisms has not yet been investigated for enhanced inter-
pretability. In this study, we systematically analyze the ele-
ments of picture-description tasks and propose a set of top-
to-bottom human-interpretable features to describe the cogni-
tive behaviors of patients, focusing on visual attention patterns,
description quality, and repetition characteristics. These fea-
tures achieve 85% accuracy in AD detection without special-
ized equipment, offering valuable insights for clinical practices
and non-expert caregivers. Our results demonstrate that these
high-level descriptive features, particularly those related to vi-
sual attention and the logical flow of speech, serve as effective
biomarkers for AD detection.
Index Terms: Alzheimer’s Disease; Interpretable AI; Neural
Additive Model; Visual Attention

1. Introduction
Dementia affects over 55 million individuals globally, with
Alzheimer’s disease (AD) accounting for 60-70% of cases,
making it the seventh leading cause of death worldwide. In
2019, the cost of caring for patients with Alzheimer’s Disease
and Related Dementia (ADRD) in the United States reached
$244 billion12. Early detection and accurate diagnosis of AD
remain critical challenges in healthcare, underscoring the need
for more effective diagnostic tools and biomarkers. Previous
studies [1, 2] have highlighted the pivotal role of language in
detecting cognitive decline at various stages of ADRD, demon-
strating that speech analysis can facilitate early identification
of cognitive impairment. Research has revealed a significant
correlation between lexical attributes in linguistic production
and the integrity of medial temporal lobe regions in early AD
patients [1]. Recent advancements in machine learning and
deep learning techniques have achieved notable success in au-
tomated AD detection through linguistic and acoustic biomark-
ers [3, 4, 5, 6, 7]. While these approaches demonstrate the fea-
sibility of using textual data for AD detection, the underlying
mechanisms driving their success remain poorly understood,
potentially hindering their adoption in clinical settings. Picture
description tasks, particularly the Cookie Theft task, have be-
come valuable tools for assessing cognitive impairment, with

*These authors contributed equally.
†Corresponding author.
1https://www.alz.org/media/documents/alzheimers-facts-and-

figures.pdf
2https://www.who.int/news-room/fact-sheets/detail/dementia

studies indicating that over 70% of AD patients encounter dif-
ficulties in such tasks [8]. Previous efforts for the automatic
detection of AD have primarily focused on individual language
and speech features [9, 10, 11, 12]. To enhance the understand-
ing of cognitive decline in language, it is crucial to incorpo-
rate task-specified features that can detect subtle differences in
cognition between AD patients and healthy controls. More re-
cently, research has begun exploring visual attention patterns in
these tasks [13, 14]. However, these studies often employed
black-box approaches that obscured the underlying cognitive
mechanisms. The complexity of black-box decision-making
in AI poses significant challenges in AD detection, where in-
terpretability is essential for transparency, trustworthiness, trust
and clinical utilization. Some researchers have attempted to ad-
dress model interpretability by analyzing switching of the de-
scribed objects and text-image relevance [15, 16]. While these
approaches have provided valuable insights, there remains an
opportunity to develop fine-grained and interpretable features
that effectively capture visual attention patterns and their rela-
tionships to cognitive decline.

Motivated by the need for deeper mechanistic understand-
ing of how cognitive decline manifests in language production,
we systematically devise a set of interpretable cognitive indica-
tors through picture description tasks. While we demonstrate
our method using the Cookie Theft task, the underlying princi-
ples of modeling visual-attention patterns and language produc-
tion capacity can be generalized to similar cognitive assessment
tasks. Our work hypothesizes that if these cognitive-based fea-
tures can effectively distinguish AD patients, they may explain
why text-based models achieve high accuracy across various as-
sessment contexts. Models trained on our cognitively-motivated
features achieve comparable performance to those trained di-
rectly on text or linguistic features, suggesting that we have
identified the underlying cognitive factors that drive AD detec-
tion. Furthermore, by applying interpretable machine learning
methods to analyze these features, we reveal specific mecha-
nisms of how these cognitive factors contribute to AD predic-
tion. Through this analysis, we align our findings with previous
research observations while also uncovering new indicators for
AD detection, establishing a framework that bridges machine
learning performance and clinical understanding.

The main contributions of our work are: (1) We devise a
set of features that capture multiple aspects of cognitive behav-
iors in picture-description tasks, with a particular emphasis on
underexplored visual and logical attention patterns in a top-to-
bottom scheme. (2) The 28 devised features are validated using
interpretable machine learning models, demonstrating their ef-
fectiveness while maintaining clinical relevance. (3) A compre-
hensive analysis of feature contributions reveals both previously
known and novel indicators of AD, providing valuable insights
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for clinical validation and advancing our understanding of AD’s
impact on cognitive processes.

2. Methods

(a) The “Cookie Theft Picture”

(b) Picture segmented into four groups.

Figure 1: (a) The “Cookie Theft Picture” from the Boston Diagnostic
Aphasia Examination. The prompt employed in the study was, “Please
tell me everything you see going on in this picture.” (b) The picture is
segmented into four element groups, labeled from 1 to 4 from left to
right, where each group corresponds to a critical information content
unit traditionally analyzed in clinical assessments [17].

2.1. Dataset Description and Annotation Process

We use the Cookie Theft sub-dataset from the Pitt corpus [18],
containing 243 control and 306 dementia samples, where par-
ticipants described events shown in Figure 1 (a). Furthermore,
We manually tag object mentions to develop features for vi-
sual attention and description quality. Challenges include syn-
onyms (e.g., “son” vs. “boy”) and ambiguous terms (e.g., “dish”
for multiple objects). To enhance consistency, we standardize
names using lexicon mapping rules (Table 1).

2.2. Proposed Feature Modeling Approach

We propose 28 hand-crafted features, categorized into five
groups, to quantify participants’ cognitive functions (percep-
tion, memory, and language) based on their descriptions of the
“cookie theft” scene.

2.2.1. Region Coverage in Picture Description

“Region Coverage” (RC) quantifies a participant’s attention to
different areas of the scene. The picture is divided into four
non-overlapping regions, each containing key elements of the
“cookie theft” activity. The RC is calculated as the ratio of
mentioned regions to all regions, RC = M/R, where R is the
number of all regions and M is the number of regions men-
tioned. A higher RC suggests better cognitive and perceptual
function, while a lower value may indicate deficits in attention
or cognition.

2.2.2. Level of Attention

We introduce a metric to assess whether all objects are per-
ceived similarly by both groups, categorizing objects into four
frequency levels (high, mid-high, mid, and low) based on men-
tion rates. Let O denote the set of objects mentioned in one

description. Define Ohf , Omhf , Omf , and Olf as the sets
of objects classified into high frequency, mid-high frequency,
mid-frequency, and low frequency categories, respectively. The
attention to high frequency (Attentionhf ), mid-high frequency
(Attentionmhf ), mid-frequency (Attentionmf ), and low fre-
quency categories (Attentionlf ) are measured by:

Attentioni =
|O ∩ Oi|

|Oi|
, i ∈ {hf,mhf,mf, lf} (1)

These features reflect attention to different object cate-
gories.

High Freq Mid-high Freq Mid Freq Low Freq
Object Freq Object Freq Object Freq Object Freq
Mother 522 Window 232 Kids 87 Table 8
Boy 514 Floor 216 Faucet 69 Bowl 4
Dish g2 484 Cup 150 Cabinet g3 66 Handle 3
Girl 478 Dish g3 127 Path 52 Cabinet g2 3
Stool 461 Curtain 120 Door 51 Corner 2
Water 434 Plant 100 Lid 44 Wall 2
Cookie 432 - - House 38 Mop 1
Sink 394 - - Cabinet g1 32 Bird 1
Jar 389 - - Yard 31 Button 1
- - - - Towel 25 Board 1
- - - - Garage 17 Dish g1 1

Table 1: Frequency Distribution of Objects: Objects accompanied by
a subscript “g” indicate their group affiliation. “Freq” indicates fre-
quency.

2.2.3. Major Object Description Frequency (MODF)

We introduce the “major object description frequency”
(MODF) to assess attention to specific objects, focusing on
high and mid-high frequency objects. For each descrip-
tion, MODF for a major object Omajor is calculated as:
MODFOmajor = Count(Omajor, D), where D is the description,
and Count(Omajor, D) counts the occurrences of Omajor. MODF
highlights individual focus and narrative priorities, reflecting
cognitive and perceptual differences.

2.2.4. Description Repetition Score

The Description Repetition Score (DRS) quantifies repetitive-
ness in descriptions, potentially indicating cognitive decline
in AD. It measures sentence similarity using sentence embed-
dings [19] and cosine similarity:

sim(Si, Sj) =
Si · Sj

||Si|| ||Sj||
(Si, Sj : sentence embeddings) (2)

The DRS is calculated as:

DRS =
2

n(n − 1)

n−1∑
i=1

n∑
j=i+1

sim(Si, Sj) · log10(|i − j|) (3)

where n is the number of sentences, i, j denote sentence in-
dices, and log10(|i − j|) account for the significance of repe-
tition between non-adjacent sentences. This formula quantifies
repetitiveness, giving more weight to distant sentence repeti-
tions.

2.2.5. Description Quality Score

The Description Quality Score (DQS) evaluates how effectively
a description captures an image’s content using structural and
semantic approaches. The structural approach analyzes sen-
tence count (DQSSC ) and average word count per sentence
(DQSWC ), assuming variations indicate description efficiency.
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Higher sentence counts suggest less information delivery per
sentence. The semantic approach measures the similarity be-
tween the description and the image using the CLIP model [20],
comparing text and image content. For each group g, DQSg is
defined as the average sentence-image similarity:

DQSg =
1

|Sg|
∑
i∈Sg

sim(Ig, Si) (4)

where Sg is the set of indices of sentences describing group g,
Si is the sentence embedding with index i, and Ig is the image
embedding of sub-image of group g. sim is implemented by
cosine similarity. The overall DQS is the average across all
groups:

DQSoverall =
1

G

G∑
g=1

DQSg (5)

where G is the number of groups (4 in this case).

2.3. Neural Additive Models

Neural Additive Models (NAMs) combine neural networks
with generalized additive models (GAMs), integrating feature-
specific neural networks whose outputs are summed for final
predictions [21]. NAMs offer explainability through shape
functions, showing each feature’s impact on the prediction.
Density plots overlay these functions to display data distribu-
tion and model confidence. Global explanations are provided
via feature importance scores based on shape function variabil-
ity. NAMs were chosen for their explainability and strong pre-
dictive performance. Their design ensures accurate explana-
tions, avoiding post-hoc method inaccuracies [22, 23, 24], while
maintaining model effectiveness, making them ideal for appli-
cations needing both predictability and interpretability.

3. Results
3.1. Experiment Setup and Data Pre-processing

The data was split into 81% training, 9% validation, and 10%
testing. Model robustness and generalizability were assessed
through five runs with different random seeds, ensuring consis-
tent performance evaluation across subsets. Further, we applied
Z-Score3 to our extracted feature inputs.

3.2. Baseline Models

In this section, we introduce seven baseline models including
the first three models—Bouazizi et al. [25], Bouazizi et al. [16],
and Zhu, Youxiang, et al. [15]—chosen for their strong perfor-
mance in the same AD prediction task. We use their reported
scores directly, as we are evaluating on the same dataset, rather
than reproducing their methods. The remaining four models
are widely-used machine learning algorithms: XGBoost [26],
Random Forest [27], Support Vector Machine (SVM) [28], and
Multilayer Perceptron (MLP) [29]. These models are trained on
our crafted features to provide a comprehensive evaluation of
feature effectiveness across different algorithmic approaches.

3.3. AD Prediction Performance

Table 2 shows the AD detection performance across all mod-
els. Both machine learning and deep learning models were
trained on our features, achieving an average accuracy of 80%.

3we use the scikit-learn implementation: https://scikit-
learn.org/stable/index.html

Model Accuracy AUC F1 Recall Precision
Bouazizi et al. [25] 0.815 - 0.852 0.831 0.873
Bouazizi et al. [16] 0.821 - 0.821 0.821 0.821

Zhu, Youxiang, et al. [15] 0.834 - - - -

XGBoost [26] 0.789 0.861 0.811 0.832 0.807
Random Forest [27] 0.782 0.843 0.803 0.794 0.828

SVM [28] 0.778 0.844 0.811 0.826 0.799
MLP [29] 0.815 0.878 0.847 0.881 0.817

NAM 0.851 0.877 0.876 0.884 0.872
Table 2: Performance of different models that are trained on our hand-
crafted features, with scores averaged over five trials employing varied
random seeds for train-test splitting.

Deep learning models like MLP and NAM outperform tradi-
tional models (e.g., Xgboost, SVM, Random Forest). Among
all, NAM performs best, prompting further exploration of its
learned insights through explanation analysis.

3.4. Feature Importance Analysis

Figure 2: Bar chart depicting the NAM’s gloabl feature importance
score. Features with higher importance scores contribute more to the
variability of the model’s output and, therefore, have a more significant
impact on the predictions.

We train five NAMs on different dataset splits and eval-
uate the consistency of their explanations by measuring pair-
wise Spearman’s correlations between their feature importance
scores. The analysis revealed high consistency across all model
pairs, with a minimum correlation coefficient of 0.87. This
agreement between models trained on different data splits sug-
gests that NAMs are capturing genuine underlying patterns
rather than spurious correlations. For subsequent analyses, to
ensure that we present consistent patterns rather than poten-
tially outlier explanations, we selected the model that exhib-
ited the highest average correlation with the other models. Fig-
ure 2 shows the NAM’s global feature importance scores. Fea-
tures with higher scores have a greater impact on predictions. It
shows that the NAM prioritizes high-frequency object attention
(Attentionhf ), object mention frequencies (MODF ), and de-
scription repetitiveness (DRS) for AD detection, with objects
like the girl and cup being most influential. Region coverage
(RC) and description quality (DQS) have a lesser impact. Fur-
ther analysis of feature contributions follows.

Region Coverage Figure 3 (28) shows the relationship be-
tween RC scores and AD prediction likelihood. As RC scores
increase, AD prediction likelihood decreases, especially be-
tween 0.5 and 0.75. Beyond 0.75, RC’s influence becomes
slightly negative, suggesting that high RC leads the model to
predict healthy control (HC). This trend implies that AD pa-
tients may have diminished visual perception. While RC is cor-
related with AD likelihood, its variability has a limited impact,
indicating it is relevant but not highly influential.

Level of Attention Figure 3 (1)-(4) shows that attention to
high and low-frequency objects significantly impacts AD pre-
diction, while mid-high and mid-frequency objects have little
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effect. The relationship between high and low-frequency ob-
jects is reversed: more high-frequency objects lead to lower AD
prediction likelihood, while fewer low-frequency objects reduce
the likelihood of AD prediction. This suggests that healthy con-
trols focus more on high-frequency objects, while AD patients
tend to focus on low-frequency objects.

Figure 3: NAM plots for 28 features: Each shape curve shows the re-
lationship between input feature and model output, while background
shading indicates data density to reflect prediction certainty in different
regions.

Major Object Description Frequency MODF measures
attention at the object level, revealing differences in visual at-
tention between AD patients and healthy controls (HC). Fig-
ure 3 (13)-(27) shows that the MODF of 12 out of 15 high
and mid-high frequency objects influences AD prediction. Ob-
jects like the cup, dish, floor, and jar are positively correlated
with AD prediction, while the curtain, girl, boy, and others
are negatively correlated. The MODF feature reflects visual
engagement, with high scores indicating detailed descriptions.
AD-predictive objects are smaller and peripheral, while HC-
predictive ones are larger and central, highlighting attention dif-
ferences between AD and HC groups.

Description Repetition Score Figure 3 (12) shows a pos-
itive relationship between DRS and AD prediction likelihood,
indicating that higher sentence repetitiveness is associated with
increased AD prediction. AD individuals tend to repeat descrip-
tions more than healthy controls (HC), suggesting that repetitive
language patterns may signal cognitive decline.

Description Quality Score Figure 3 (5)-(12) shows that
DQSSC has a slight positive relationship with AD prediction,

suggesting AD patients tend to use more sentences, possibly
due to repetition or low language efficiency. However, sen-
tence count has limited significance in AD detection. Sim-
ilarly, DQSWC does not significantly affect AD prediction.
For semantic-based measurements, higher DQS values cor-
relate with a reduced likelihood of AD prediction. Notably,
DQSoverall shows a significant drop in AD prediction between
5 and 18, suggesting HC individuals provide higher-quality de-
scriptions. Among group-specific DQS values, DQSg1 has the
strongest impact, with AD prediction dropping significantly be-
tween 20 and 30. This reflects that group 1 descriptions likely
cover more detail, making language production deficits in AD
patients more apparent.

4. Discussion
Through carefully designed interpretable features, we success-
fully captured multiple aspects of cognitive function, achieving
an accuracy of 0.851 ± 0.027 with our best-performing NAM
model. This suggest that speech transcripts from the Cookie
Theft picture description task contain rich cognitive informa-
tion and reveal that visual characteristics likely to be more cru-
cial for AD detection than traditional linguistic features.

The explanations derived from the trained NAM model re-
vealed several important features that align with previous clin-
ical studies on visuospatial function in early Alzheimer’s dis-
ease. The Description Quality Score (DQS) feature, which mea-
sures the overall quality of the picture description, was found to
be an important predictor of AD. This finding can be explained
by the theory of visual attention (TVA) [30, 31]. According to
TVA, deficits in visual short-term memory (VSTM) may cause
AD patients to provide relatively superficial descriptions of the
scenes in the picture, as they have limited ”bandwidth” to allo-
cate sufficient memory to every detail in the image. While this
explanation is plausible, further clinical verification is needed
to confirm this hypothesis. Another important feature identified
by our model was the repetitiveness of description. This finding
is consistent with previous studies [32, 33], which found that
AD patients repeated words, phrases, and ideas more frequently
than healthy controls in picture description tasks. However, our
measure of repetitiveness differs from [10] by considering the
relative position between two sentences, which better character-
ize the repetitiveness in real-world cases.

The simplicity of the picture description task, combined
with our interpretable feature design, offers practical advan-
tages for clinical implementation. While current object anno-
tation requires manual effort, integration with established NER
techniques could enable full automation. Beyond immediate di-
agnostic applications, our findings on visual attention patterns
and cognitive markers open new avenues for investigating AD
progression mechanisms and developing targeted assessment
tools.

5. Conclusions
This study shows that interpretable, hand-crafted features from
Cookie Theft picture descriptions are effective for AD detec-
tion. Our model reveals key cognitive markers and novel vi-
sual attention patterns. The task’s simplicity and our approach’s
transparency offer a promising framework for enhancing AD di-
agnosis in clinical settings, contributing to a better understand-
ing of cognitive patterns and paving the way for targeted diag-
nostic tools.
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