

Delivering efficiency and innovation

RELA LIVE PILLONG RELATIONS OF THE PROPERTY OF

EXECUTIVE SUMMARY

Pioneering 3D Digital Twin

Industry Applications

Next-Generation Smart Factories

Real-time 3D virtual replicas + physicsbased Al-driven **virtual sensors**

Remote monitoring, process optimization, and automated decision-making

Manufacturing, logistics, retail, construction, professional sports

Modular layouts, 5G connectivity, Aldriven automation

Highly automated precision component factories

2x faster production, 50% cost reduction

Hyper-Customization – Al-assisted product design & manufacturing

WHO WE ARE.

established in 2017

32 employees

€ 2.3M Revenue

pipeline across 3 dimensions

€ 5M private customers

€ 2M public customers

€ 2M public grants

Peter Thiel

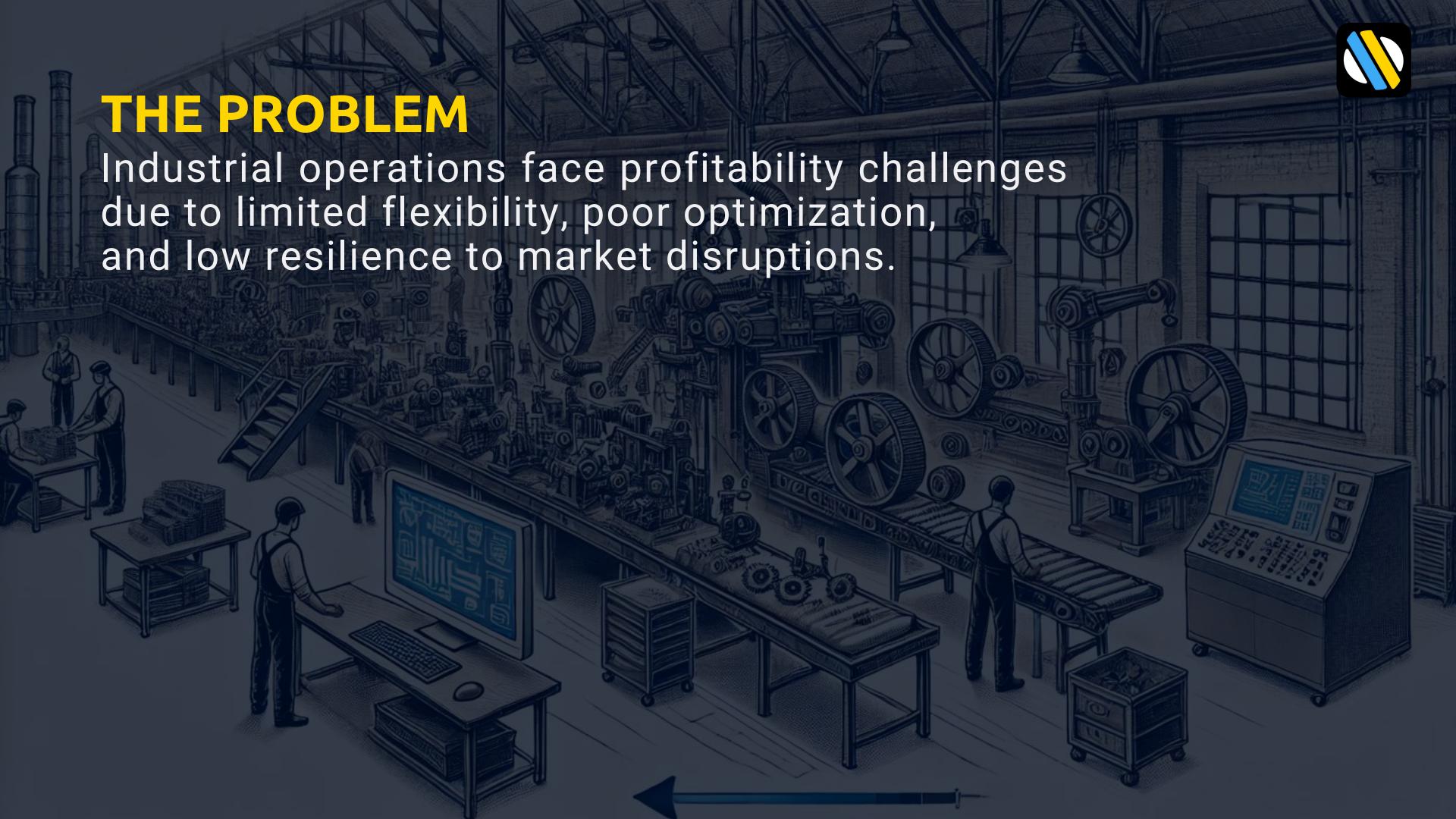
co-founder of PayPal, Palantir Technologies, Founders Fund, and the first outside investor in Facebook

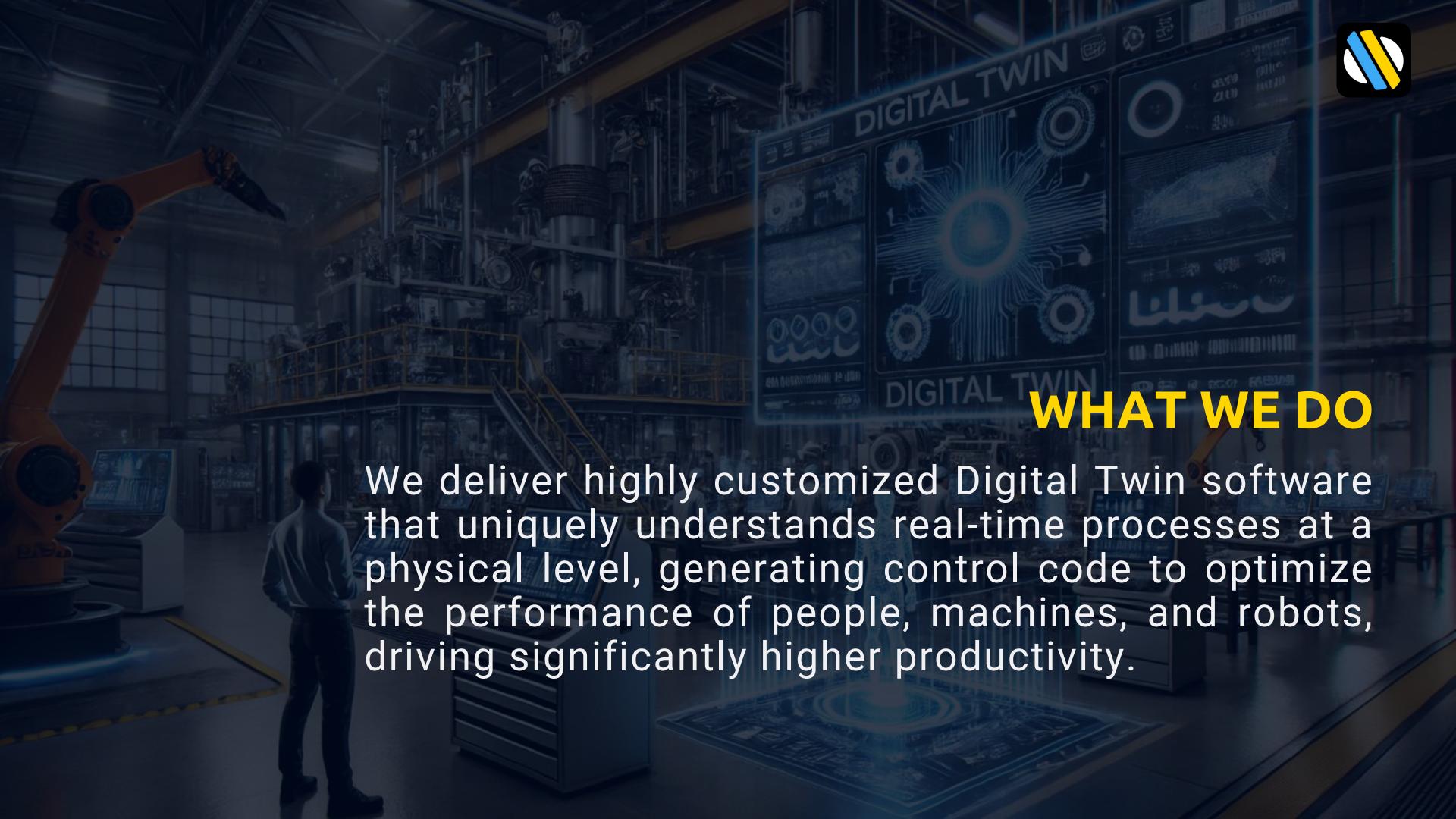
Technological advancement has narrowed to primarily digital realms while progress in the physical world has nearly halted since the 1970s

MISSION

Provide efficiency & Innovation

LEAN


flexible
efficient
problem-solving


GREEN

save resources increase process sustainability

DIGITAL

traceability of parameters across entire operation

VALUE WE BRING

15% by solving known problems

25% by solving unknown problems

(identified by the digital twin)

10% by improving process automation

100% by simulating change to find best configuration100% by implementing the change through digital twin

Revolution in System Control with Digital Twin Centralization of Control in Server and Edge

IoT with PLC controlling operations

System Control Individual process optimization

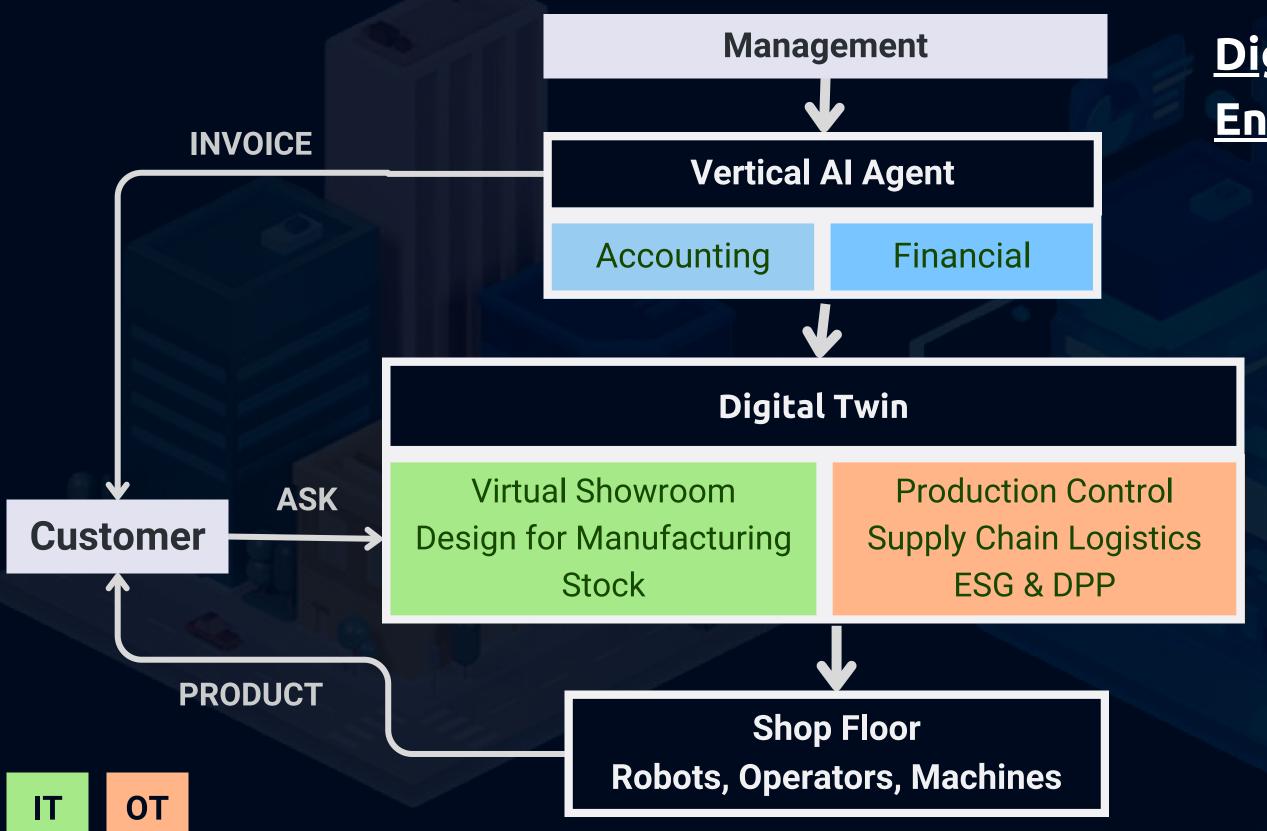
Digital Twin controlling and integrating all operations, people, machines, and vehicles

operational efficiency flexibility enhanced coordenation

From PLC to Digital Twin: A New Era in Operations Control and Hollistic Transformation of Business

Revolution in System Control with Digital Twin Centralization of Control in Server and Edge

Powered by:



Omnichannel:

Digital Twin: The Perfect Convergence of IT and OT

<u>Digital Twin is Reinventing</u> <u>Enterprise IT</u>

- Simplified IT: stop retrieving and showing data through multiple applications, simply answer questions
- Faster decision-making on OT level: through intelligent operational orchestration directly connected to customer.
- Cost reduction: by eliminating redundant software layers and complex integrations

Vertical AI Agent

Seamlessly Connecting Business and Operations

Enterprise Data Integration

Unified access to accounting, sales, and HR data powered by Oracle Database 23ai

--> Customized Al Models --->

Tailored to understand and analyze enterprise data.

Intelligent Insights •

Optimizes operation with business forecast

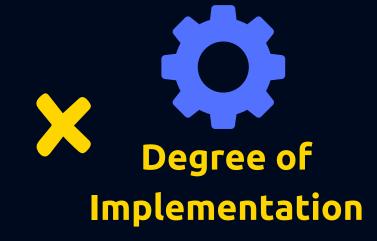
Seamless Integration with Digital Twin

Synchronizes business and operational systems.

DATA QUALITY

Standard AI provides minimal gains, never massive efficiency gains

Is your data enough to understand phenomenologically all details of your operation?


Your data is for the machine and operator to know what to do, not for process reengineering.

Unleashing the Full Productivity of Al Agents with Digital Twin Technology

The Challenge

Al agents assume the data they're trained on is high quality. However, many companies operate with incomplete operational tracking, leading to blind spots in the data. This results in Al agents that:

- Learn and automate suboptimal or poorly executed tasks.
- Overcomplicate operations due to flawed assumptions.
- Fail to adapt, perpetuating inefficiencies without realizing competitors may be doing better.

Training AI agents on incomplete or suboptimal data creates ineffective systems incapable of delivering true productivity improvements.

The Solution Digital Twin Integration with AI Agents

Digital twin technology ensures AI agents are trained on complete and optimized data, transforming their capabilities far beyond automation

Continuous Learning & Adaptation

Process Optimization Insight

Complete Operational Traceability

Tracks all tasks, even in areas without physical sensors, eliminating blind spots for Al agents.

Provides a phenomenological understanding of tasks and processes to identify the most efficient ways to execute them.

Ensures AI agents learn optimal methods rather than replicating inefficient practices.

Maintains a seamless connection between the digital twin and AI agents.

Enables real-time adjustments as the operation evolves with new market conditions and customer requirements.

Digital twin orchestrates optimal execution, teaching Al agents continuously.

Industrial Automation with Digital Twin

The Challenge

High variability:

Industrial operations are inconsistent due to years of manual processes.

Non-Standardized Procedures:

Tasks rely on personal experience instead of uniform workflows.

Integration Challenges:

Automating systems is difficult in unpredictable, non-standardized environments.

The Solution Digital Twin Technology

1. Operation Systematization

Analyzes and monitors workflows to reduce variability and create repeatable processes.

2. Automation Planning

Identifies areas where automation delivers maximum impact, optimizing ROI.

3. Virtual Commissioning

Simulates real-world scenarios to validate and optimize system performance before deployment.

The Results

Streamlined Operations:

Standardized and digitally tracked workflows.

Efficient Automation:

Systems operate with precision and reliability.

Maximum ROI:

Achieve operational excellence and cost-effectiveness.

Al Adoption & Transformation

Think Big, Start Small, Scale Fast.

Clearly envision the transformative potential of Al for your organization.

Begin with clearly defined, manageable projects that deliver immediate, measurable value. Build the right infrastructure, data, skills, and organizational readiness early to enable fast growth from pilots to full-scale transformation.

- Key Insights

Avoid "POC Purgatory": Don't let promising AI projects stall due to inadequate preparation. Sustainable Growth: Small AI wins build capability and confidence, paving the way for broader adoption.

Al security: Implement one robust Al framework from the outset to ensure transparency in Al decision-making processes

INDUSTRIES WE TARGET

Clients

Portugal

Brasil

Partners

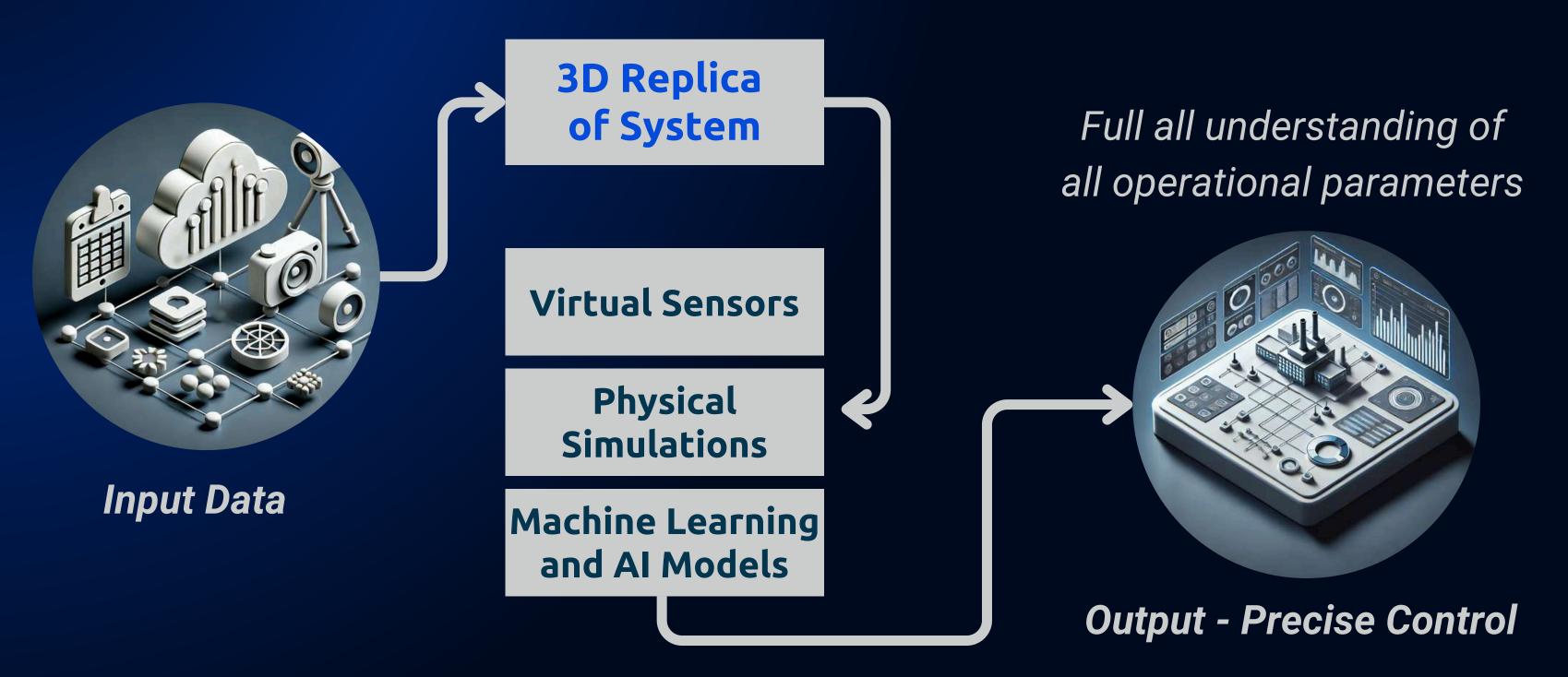
3D SYSTEM VIRTUALLY CONTROLS QUALITY

Physics-Driven Insights

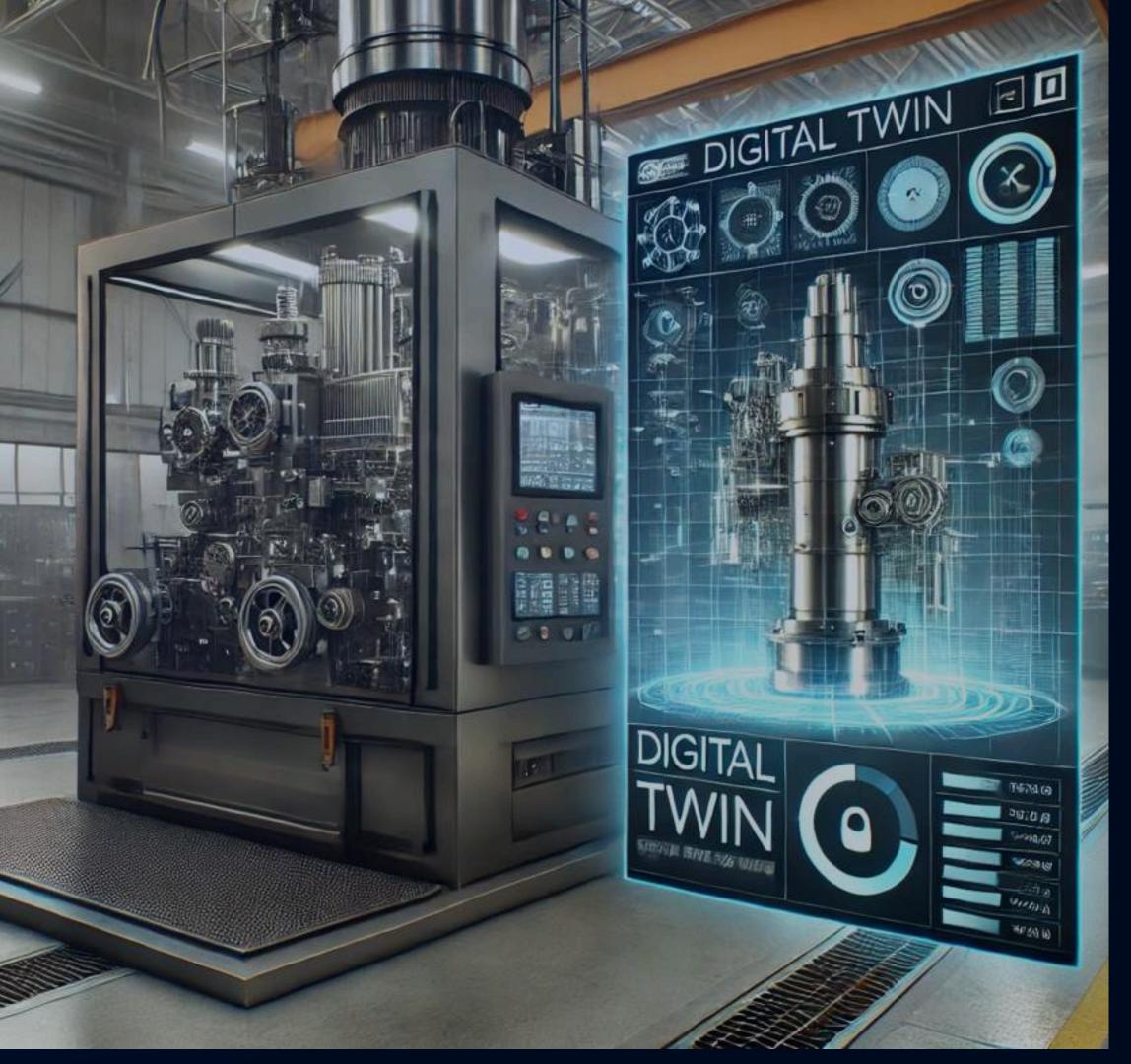
Calculate quality parameters with 50% improved control accuracy

3D Real-Time Sensor Fusion

Combine multimodal data streams in a seamless virtual environment


AI Training Integration

Render 3D operational environments to accelerate Al-driven robotics development


Optimized Simulations

Test and adapt parameters or layouts to enhance efficiency and performance

Real-time Digital Twin Workflow

Continuous simulation for optimization real-time integration of 3D and data processing

Virtual Sensors

Our Technology

Real-Time Monitoring

Oversee operations without relying on physical sensors

Cost-Effective Precision

Physics-based parameter calculations replacing traditional sensors

Full System Views

Smarter, data-driven decisions

Custom AI Solutions

Adapts to the unique dynamics of each operation, enhancing efficiency and control

Virtual Sensors

Benefits & Advantages

Customization

Tailored calculations for all operational parameters

Traceability

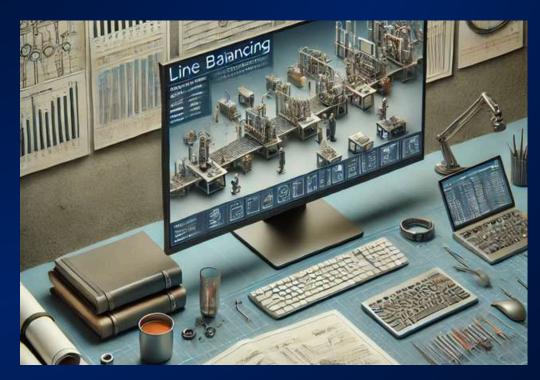
Full process visibility enhances precision and control

Process Knowledge

Hollistic insights optimize efficiency and sustainability

Scalability

Reduces reliance on physical sensors, enabling cost-effective scaling


From individual challenges of each operation...

...to a zoom out across the entire value chain.

Simulation Software

Offline engineering

- 1. Product Design
- 2. Product Line Design
- 3. Offline Simulation line balancing workflow optimization

from Offline Simulation

to Real-Time Operations

Digital Twin

Connecting simulation to reality

Real-time commissioning with feedback loops

Precise 3D control using virtual sensors

3D replicas for quality tracking and optimization

Supply Chain Efficiency

Connected Digital Twin

Consistent Quality Standards

Maintain uniform product quality across production stages and factories.

Enhanced Sustainability Tracking

Monitor environmental impact at every stage to reduce waste, energy use, and carbon footprint.

Transparency and Risk Mitigation

Predict and manage risks to enhance resilience and ensure quality in all scenarios.

Adaptive Production Planning

Simulate product changes to optimize resources and minimize disruptions across the supply chain.

Enhanced Sustainability Tracking

Digital twin powered sustainability score

Product Specific

Score tailored to each product or production line, enabling personalized communication.

Data Driven

Incorporates life-cycle analysis for a unique sustainability passport

Real Time

Calculated using reliable digital twin data without additional sensors or manual input.

Life-cycle Analysis

Differentiates products and services based on their full production journey.

Enabling the Digital Product Passport with Digital Twin Technology

What is the Digital Product Passport (DPP)

DPP is a key initiative of the EU to enhance transparency, sustainability, and circularity across the lifecycle of products.

By ensuring each product carries digital information about its composition, origin, and environmental impact, the DPP enables traceability, efficient resource usage, and informed consumer decisions.

How Digital Twin Technology Supports DPP Creation

Automatic Data Generation

Real-time production data

Ensuring Compliance

Validation against EU & environmental rules

Lifecycle Traceability

Tracking product updates & repairs

Consumer Transparency

Providing sustainability & recycling details

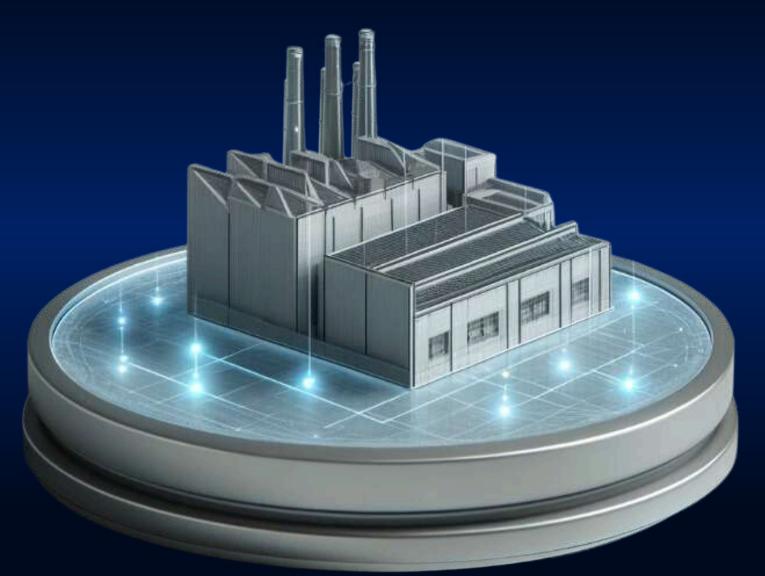
Automatic Data Generation

Real-time production data

Real-time Data

Our technology captures real-time data for each product during its lifecycle, beginning with production

Data is automatically fed: no manual entry errors


Collected Data Points

Raw material usage and origin

Production energy consumption

Process quality metrics

CO₂ emissions

Digital Twin

Revolutionizing sales with Digital Twin

Personalization, Engagement, and Real-Time Insights

Virtual Companion

- Customization
- Immediate Quote
- Production Orchestration

Gamification

- Positive Behavior Induction
- Engagement
- Real-Time Feedback

Virtual Showroom

- Optimized Shopping Experience
- Personalization
- Enhanced Interaction

3D Digital Twin Marketplace

Revolutionizing Supply Chain Efficiency

- > Template-based
- > User-configurable
- > For SMEs and midcaps
- > Accelerated digital adoption

1. Select operation templates

- 2. Upload 2D drawings
- 3. Guided 3D digital twin integration
 - a. camera placement
 - b. module configuration
 - c. connectivity tests

- > Marketplace Model
- > Scalable & Sustainable
- > Proprietary Technology

- **→** Motion Tracking
- Physics-based 3D AI
- Supply Chain Integration

DIGITAL TWIN COMBINES DISSIMILAR DISCIPLINES

André Luz, PhD General Manager

Karyna Yurchenko
CG Generalist

Fábio Ferreira, PhDData Scientist

Vasco Ferreira, PhD

Data Scientist

Guilherme TavaresSoftware Developer for
Rendering and Simulation

David Carvalho, PhD
Simulation & Data
Specialist

Rita MagalhãesProject & Community

Manager

Gonçalo Garganta Computer Vision & Robotics Specialist

Bruna BentoFunctional Operations
Analyst

Diogo CampasComputer Vision & Machine
Learning Specialist

Maria Inês Carvalho
3D Graphic Designer
& Developer

Mário Travassos3D Software Engineer

Infinite Foundry Portugal Meet the Team

Automatic Operations: Maintenance Traceability

WATCH VIDEO

WATCH VIDEO

CHALLENGE

Line produces many different types of products, and this variability precludes using traditional AI approaches to calculate remaining lifetime of components

SOLUTION

Virtual sensors are based in physics calculation and can calculate component stresses for any kind of movements, ensuring precise prediction of remaining lifetime

RESULTS

Precise predictive maintenance of components decreased 80% number of components replaced per year

Automatic Operations: Quality Traceability

Variability of raw materials causes different heat treatment of components inside furnace, which results in quality non-conformance

SOLUTION

Virtual sensors measure in real time the heat treatment of each component, automatically adjusting furnace parameters to ensure high quality of all components at the end of process

RESULTS

Reduction in 75% of number of components with non-conformity due to bad quality

WATCH VIDEO

USE CASES

Manual Operations:
Task Traceability

CHALLENGE

Operators induce variability in a production process that causes loss of efficiency and quality

SOLUTION

Virtual sensor task traceability in real-time using computer vision and avatars for precise remote monitoring by automatically logging every action in a traceable format

RESULTS

Reduction of 90% in quality problems that are immediately not detected and are propagated during the production process

USE CASES Manual Operations: Ergonomic Traceability

CHALLENGE

Operators develop strain injuries due to improper ergonomics even in workstations that are designed to minimize the risk of injury

SOLUTION

Virtual sensor uses avatars for real-time monitoring of operators as they perform their tasks, to enable the analysis of body movements and working postures continuously, generating alerts for the operator to make corrections

RESULTS

Reduction of 50% in worker absenteeism due to occupational diseases

WATCH VIDEO

CHALLENGE

In many types of inventories, it is not possible to use tags to monitor their position in the warehouse, which results in mistakes in inventory tracking and management

SOLUTION

Virtual sensors through computer vision allow real-time precise inventory tracking and optimizes the movements of forklifts and AMRs to maximize space utilization

RESULTS

Reduce by 40% the time it takes to fulfill orders

Layout Optimization:
Inventory Traceability

CHALLENGE

Changes in customer requests cause bottlenecks and inefficiencies in the existing layout, which makes accommodating growth while maintaining efficiency highly challenging

SOLUTION

Digital twin allows for the simulation of different layout scenarios, by understanding current traffic patterns like the flow of materials, products, and personnel, so that spaces can be automatically rearranged to streamline operations, reduce travel time and distance, and improve safety.

RESULTS

Increase productivity by 50% - number of products produced and/or moved

Worker Training: Virtual and Augmented Reality

CHALLENGE

Labor shortage means retaining workers in operations is highly difficult, so hiring rates must continuously outpace quit rates to ensure growth and the effectiveness and efficiency of training programs plays a big role

SOLUTION

Digital twin creates a highly accurate and detailed replica of a physical environment, which allows trainees to experience realistic and tailored workplace scenarios without the physical risks associated with on-the-job training

RESULTS

Improve worker productivity by 20% and reduce accidents by 50%

Sports Training: Performance Traceability

CHALLENGE

thlete training involves multiple variabilities that are difficult to fully measure with sensors only to maximize performance analysis and prevent injury

SOLUTION

Virtual sensors allow for the creation of a highly detailed, real-time avatar of an athlete, capturing every aspect of their physical performance during training and actual competition. This data-rich avatar can be analyzed to assess biomechanics, technique, and movement efficiency to pinpoint very specific areas for improvement and provide tailored feedback based on accurate, objective data

RESULTS

Improve by 20% results in competition

USE CASES Smart Cities: Mobility Traceability

CHALLENGE

Urban mobility is a major issue in all cities, so promoting walking and biking as preferred modes of transportation is essential to promote sustainability and more pleasant environments

SOLUTION

Digital twin of the city can analyze in real-time the flow of different types of traffic, including pedestrians and cyclists, and use gamification to engage with the public and promote behaviors that improve the mobility of the city without the need to invest in new infrastructure

RESULTS

Decrease traffic congestion and overcrowding by 50%

