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Background: Train Maintenance Challenge

Train 
maintenance 

Wheel 
profile

Axles 

Fluids Cleaning 

Brake 
pads 

CyberFluids robot

By Brunel University London 



Brunel University London 

Background: What’s CyberFluids Robot?

7-DoF Robotic System for autonomous passenger train fluid servicing (e.g., fuel, controlled 

emission toilets (CET), wheel sand, etc)

• 4 DoFs for positioning (along Y- and Z-axes) and orienting (yaw and pitch);

• 3 DoFs for three 1-DoF manipulation arms (along X-axis) with different end-effectors.
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Fluid port locations on a BR Class 168 rail vehicle (top) and across similar vehicles (bottom)



Problem: Misalignments in autonomous robotic servicing 

Robotic fluid servicing 
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• In outdoor environments of train maintenance, robot workspace is unstructured. 

• Autonomous locating of fluid ports may not accurate.

• There will always be misalignments between the robot and the train fluid ports.

• Compliant end-effectors are required for flexible coupling and gripping.   
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Maximum Insertion Force vs MisalignmentsCyberFluids robot 

OPTIMISED: 5mm parallel misalignment ≈ 400 N insertion force
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Eshraghi, K., et al. (2020). ‘Preliminary study on end-effector compliance in automated fluid coupling for trains’ Proceedings of TMCE 2020, (pp. 205-216). Dublin.

NOMINAL: 5mm parallel misalignment ≈ 700 N insertion force

[Eshraghi et al. (2020)]

Problem: Misalignments in autonomous robotic servicing 



Problem: Misalignments in autonomous robotic servicing 

Springs for compliance 

Fluid coupler 
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CyberFluid coupling under misalignments
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Misalignments introduce significant insertion force 

(e.g., approx. 10 times with 5mm parallel misalignment)
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Potential Solution: Active vs Passive

Active compliance 

Sensing and controller required

Passive compliance

No additional requirements 
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• Cost-effective: No additional sensing required:

• Easy-to-maintenance: No electronics, etc.



Literature: Remote Centre Compliant (RCC) Peg-in-Hole (PiH) end-effectors 

Mechanism Authors Parallel Angular Clearance 

Compliant stage McCallion 1978 1-2mm 1.5-2.5° 0.01-0.02 mm

Flexure RCC Watson 1982 1 mm 1° 0.01 mm

ESP type RCC Whitney 1984 2mm 1° 0.01-0.02 mm

CHVRCC Haskia 2001 0.4 – 2mm 0-5 <0.375 mm 

Train fluid servicing PiH

3D complex 

geometry 

Small deflection/ 

Linear assumptions

2D simple 

shapes

Nonlinear large 

deformations 

Clearance = 0.05mm Clearance = 0.5mm

Insertion force



Methodology: A new outlook and approach to passive compliance design problems

Eshraghi, K., Wang, M. and Mares, C. (2023) ‘Towards robust and effective passive compliance design of end-effectors for robotic train fluid servicing’, Machines, 11(11), p. 997.
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Case study 1: Development of new end effector + parametric analysis 

Proposed FEA model (35 hours) Proposed PRBM (0.1 hours)

Model comparison 

RCC End effector design 

Experimental end effector Compliant stage 

[Eshraghi et al. (2023)]

Eshraghi, K., et al. (2020). ‘Preliminary study on end-effector compliance in automated fluid coupling for trains’ Proceedings of TMCE 2020, (pp. 205-216). Dublin.

15 mm + 5 deg ≈ 150 N insertion force



Case study 2: Development of new end effector + parametric analysis 

FEA model Parametric analysis RCC End effector design 
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CyberFluids+: Easy-Adaptive & Cost-Effective Robotic Train Fluid Service

Funded by: Industry Partners:
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Vision-Based PiH Operation in Dynamic Environments
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Thanks for your attention!
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