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Vision: Specialised Robotic Systems for Challenging Environments
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Background: Train Maintenance Challenge

CyberFluids robot
By Brunel University London

Brunel University London




Background: What’s CyberFluids Robot?

7-DoF Robotic System for autonomous passenger train fluid servicing (e.g., fuel, controlled
emission toilets (CET), wheel sand, etc)

4 DoFs for positioning (along Y- and Z-axes) and orienting (yaw and pitch);

« 3 DoFs for three 1-DoF manipulation arms (along X-axis) with different end-effectors.
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Problem: Misalignments in autonomous robotic servicing

1. unlatching/replacing 2. Fluid port insertion
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* In outdoor environments of train maintenance, robot workspace is unstructured.
« Autonomous locating of fluid ports may not accurate.
« There will always be misalignments between the robot and the train fluid ports.

« Compliant end-effectors are required for flexible coupling and gripping.
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Problem: Misalignments in autonomous robotic servicing

CyberFluids robot Maximum Insertion Force vs Misalignments

NOMINAL: 5mm parallel misalignment = 700 N insertion force
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OPTIMISED: 5mm parallel misalignment = 400 N insertion force
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[Eshraghi et al. (2020)]

Eshraghi, K., et al. (2020). ‘Preliminary study on end-effector compliance in automated fluid coupling for trains’ Proceedings of TMCE 2020, (pp. 205-216). Dublin.




Problem: Misalignments in autonomous robotic servicing

CyberFluid coupling under misalignments
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Potential Solution: Active vs Passive

Active compliance Passive compliance
Sensing and controller required No additional requirements
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+ Cost-effective: No additional sensing required:

« Easy-to-maintenance: No electronics, etc.




Literature: Remote Centre Compliant (RCC) Peg-in-Hole (PiH) end-effectors
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Mechanism Authors Parallel Angular Clearance
Compliant stage McCallion 1978 1-2mm 1.5-2.5° 0.01-0.02 mm
Flexure RCC Watson 1982 1 mm 1° 0.01 mm
ESP type RCC Whitney 1984 2mm 1° 0.01-0.02 mm
CHVRCC Haskia 2001 0.4 -2mm
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Methodology: A new outlook and approach to passive compliance design problems
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Practical and unstructured robot environments
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Complex geometry
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/ shape Design performance

Robust Robust Noise factors

Performance Design 4) Uncertainty

Min (Mean; Variance )
Subject to:
Xmin = X = Xmax

Zmin <z< Zmax

Eshraghi, K., Wang, M. and Mares, C. (2023) ‘Towards robust and effective passive compliance design of end-effectors for robotic train fluid servicing’, Machines, 11(11), p. 997.



Case study 1: Development of new end effector + parametric analysis

RCC End effector design Proposed FEA model (35 hours) Proposed PRBM (0.1 hours)
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Eshraghi, K., et al. (2020). ‘Preliminary study on end-effector compliance in automated fluid coupling for trains’ Proceedings of TMCE 2020, (pp. 205-216). Dublin.




Case study 2: Development of new end effector + parametric analysis

RCC End effector design FEA model Parametric analysis
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CyberFluids+: Easy-Adaptive & Cost-Effective Robotic Train Fluid Service
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CyberFluids design
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Misalignment (Reduction in sensing and DoFs)
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Vision-Based PiIH Operation in Dynamic Environments
.

A 3-stage Vision-based Localization Methodology for Efficient
Automatic Charging of Electric Vehicles in Dynamic Environments

Qi1 Chen, Mingfeng Wang, Huan Zhao, Weihua Li, Kai Wu

Brunel University London
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