FUEL-OIL-TO-GAS CONVERSION IN INDUSTRIAL-SIZE BOILERS DRIVEN BY CFD

Fifth International Conference on Fossil & Renewable Energy March 01-03, 2021 Antonio Gómez agomez@nabladot.com

INGENIERÍA COMPUTACIONAL DE FLUIDOS

NABLADOT

Introducing nablaDot

¿What is nablaDot? www.nabladot.com

It is a company at Zaragoza (Spain) that offer **simulation services (CFD)** to other companies in the energy, industrial, civil and wáter sectors

What we do?

NABLADOT::()

- High expertise in combustion and heat transfer
- Thermal power plants simulated ~10 GWe

- Coal, fuel-oil, natural gas, biomass, waste
- Ad-hoc simulation models for:
 - Air primary & secondary systems
 - Burners
 - Furnaces
 - Heat recovery zones
 - SCR

– Wet scrubbers (flue gas desulfurization units)

NABLADOT::()

THE PROBLEM

- Replace fuel oil by natural gas in a thermal power plant
- What we expect?
 - Furnace exit gas temperatura is likely to increase (NG flame emissivity is lower that that for Fuel-Oil)
 - Lower Boiler efficiency (higher H2O content in flue gas)
 - Heat Transfer characteristics will be impacted (highly dependent on unit design and configuration)

Problem description

O Questions

- Impact of the gas conversion in the boiler performance (flue gas and steam temperatures, heat distribution)
- New configuration of the boiler operation (Secondary Air System)?
- New design of the burner?
- New design of the radiant furnace?
- New design of the convective pass heat transfer?
- New attemperator steam mass flow?

THE APPROACH

Integral CFD model of the boiler

Reduced-Physics model secondary air system + CFD furnace & convective pass model

O Secondary air system:
O General conducts
O OFA conducts
O OFA inlets to furnace
O Burners
O Multiple dampers

• Characterisation of the air secondary system through multiple simulations (combination of dampers position)

O CFD results (velocity)

O CFD results (static pressure)

^o Building RPM

Adimensional pressure drop factors as a function of dampers position and duct geometry

Burner's Inner Inlet (t/h)

Total burners (t/h)

Level B

Level C

Level A

Level B

Level C

Level A

OFA (t/h)

refrig-main

refrig-ext

Pressure

CRA outlet Windbox B

Windbox C

Windbox A

refrig-interm

total

main

1

9.86

10.08

10.20

1

21.4

21.9

22.2

1

9.85

6.61

0.36

1.32

1.55

2

9.58 10.33

10.27

2

20.8

22.5

22.3

2

11.76

8.22

0.52

1.41

1.61

19.0 mbar

12.6 mbar

13.8 mbar

13.6 mbar

Real-time calculation <u>Deviation ~ 10-15%</u>

damper	63%	75%	100%	87%	63%			
OFA	1	2	3	4	5			
					Level A	175	175	175
Level A	100%	100%	100%		Level C	175	175	175
Level C	100%	100%	100%		Level B	175	175	175
Level B	100%	100%	100%			1	2	3
	1	2	3		Inner vanes	position		
Damper Duct (%)								
OFA	80%				Level A	200	200	200
	49%				Level C	200	200	200
Level C2	43%				Level B	200	200	200
Level C1	44%					1	2	3
Level B	40%				Central dam	per		
Dampers position (%)								
Mass now	200	vn						
Air Temperature	315	*C						
Ais Tassa sast	-0.5	mbar						
Pressure	1013	mbar						

3

10.05

10.54

10.17

3

21.8

22.9

22.1

3

12.98

9.29

0.75

1.36

1.58

Burner's Outer Inlet (t/h)

Level B

Level C

Level A

Level B

Level C

Level A

5

9.87

6.65

0.36

1.32

1.55

4

12.61

8.96

0.66

1.41

1.59

Air Rotation

1

11.57

11.83

11.96

1

0.63

0.63

0.63

2

11.24

12.12

12.05

2

0.63

0.63

0.63

3

11.79

12.36

11.93

3

-0.63

-0.63

-0.63

Dampers position Air mass flow, temperature

Air mass flow for each inlet Air rotation Pressure drop in the SAS

INPUT

O Coupling furnace and convective pass

^o Our model

	Chamber	Chamber, then HRZ	Chamber & HRZ	Our model
Tubes properties	Constant	lterate betwen models	Coupled	Coupled
Influence of combustion in the tubes	×	~	v	~
Influence of tubes in the combustion	×	~	×	~
Efficiency	×	~	×	~
Equations to transport	9	9 + 6+wS	9 + waterS	9
Mesh cells	~ 2 Million	~ 3M + 400M	~ 500 Million	~ 4 Million
Computational cost	х	(100X)*i	100000X	х

• How it works?

Implemented through UDF Ansys Fluent: ~3000 lines of code

^o Geometric model

- Physical properties
- Topological properties

- Resolution: 5 cm

CFD furnace & convective pass model

^o 3D mathematical model • Conservation equations for: **O**Mass ^o Momentum ^oEnthalpy **O** Mixture fraction ο k-ε realizable turbulent model • Equilibrium PDF O Langrangian framework for particles (if it is needed)

DO radiation model (WSGGM for absorption coefficients)

CFD furnace & convective pass model

• Results obtained: integral assessment

Steam temperature Tubes (metal) temperature Heat transfer Flue gas temperature Flue gas velocity O2 concentration NOx concentration

APPLICATION & RESULTS

Problem description

o Questions

- Impact of the gas conversion in the boiler performance (flue gas and steam temperatures, heat distribution)
- New configuration of the boiler operation (Secondary Air System)?
- New design of the burner?
- New design of the radiant furnace?
- New design of the convective pass heat transfer?
- New attemperator steam mass flow?

O Lower temperatures at the furnaceO Shorter flame

Natural gas

Fuel-Oil

^o Shorter flame

^o Gas injectors end before the swirler

Fuel-Oil

o Lower NOx

Natural gas

O Combustion results

Variable	Gas Natural (CFD)	Fuel-Oil (CFD)
O2 outlet concentration (% vol)	1.06%	1.32%
Flue gas outlet temperature (°C)	382	357
NOx outlet concentration (mg/Nm3, dry, 3%O2)	73	192

Natural gas vs. Fuel Oil – Thermal performance

NABLADOT::()

O Lower efficiency

Steam /Liquid Mass flow	kg/s - Gas	kg/s - FO
Economizer	58.1	61.8
Steam generated at water walls	58.1	61.8
Attemperator	7.5	6.4
Superheater	65.6	67.0
Reheater	65.6	67.0
Bank tubes	Heat Transfer (Gas) (MW)	Heat Transfer (FO) (MW)
Economizer	5.6	5.3
Superheater	63.0	62.0
Reheater	27.6	28.2
Water walls	86.3	91.6
Total	182.5	187.1

Natural gas vs. Fuel Oil – New case

^o Remove burner swirler

Increase air through burners changing dampers position (ROM SAS). TA through OFA is reduced from 22.4% to 14.2%
Longer flame and more intense combustion at the furnace

Natural gas vs. Fuel Oil – New case - Temperature (°C)

NABLADOT::()

• More intense combustion at the furnace• Longer flame

Natural gas

o Lower NOx

Natural gas

Fuel-Oil

O Combustion results

Variable	Gas Natural (CFD)	Fuel-Oil (CFD)
O2 outlet concentration (% vol)	1.37%	1.32%
Flue gas outlet temperature (°C)	365	357
NOx outlet concentration (mg/Nm3, dry, 3%O2)	77	192

Natural gas vs. Fuel Oil – New case - Thermal performance

NABLADOT::()

o Lower efficiency

Steam /Liquid		
Mass flow	kg/s - Gas	kg/s - FO
Economizer	58.1	61.8
Steam generated at water walls	58.1	61.8
Attemperator	7.5	6.4
Superheater	65.6	67.0
Reheater	65.6	67.0
Bank tubes	Heat Transfer (Gas) (MW)	Heat Transfer (FO) (MW)
Bank tubes Economizer	Heat Transfer (Gas) (MW) 5.2	Heat Transfer (FO) (MW) 5.3
Bank tubes Economizer Superheater	Heat Transfer (Gas) (MW) 5.2 61.7	Heat Transfer (FO) (MW) 5.3 62.0
Bank tubes Economizer Superheater Reheater	Heat Transfer (Gas) (MW) 5.2 61.7 29.6	Heat Transfer (FO) (MW) 5.3 62.0 28.2
Bank tubes Economizer Superheater Reheater Water walls	Heat Transfer (Gas) (MW) 5.2 61.7 29.6 88.0	Heat Transfer (FO) (MW) 5.3 62.0 28.2 91.6

CONCLUSIONS

o Questions

- Impact of the gas conversion in the boiler performance (flue gas and steam temperatures, heat distribution)
 - Lower heat transfer at the furnace. Efficiency decreases by 3.0%. More heat transfer at the convective pass.
- New configuration of the Secondary Air System?
 - It will be needed to improve the heat transfer at the furnace. Furthermore, there are margin to low the TA by OFA since NOx emissions are lower with natural gas.
- New design of the burner?
 - Yes, the current burner can introduce natural gas but only as an auxiliary support. The flame is too short, and removing the swirler reduces the control of the flame

• New design of the radiant furnace?

- Probably not. Adjusting the configuration of the SAS, we can improve the heat transfer at the radiant furnace.
- New design of the convective pass heat transfer?
 - Probably not. Adjusting the configuration of the SAS and the attemperator steam mass flow, we can control the effects of a higher heat transfer at the convective pass.
- New attemperator steam mass flow?
 - Yes, we have to increase the attemperator steam mass flow to avoid an excessive steam temperature due to higher heat transfer at the convective pass

Q&A

0 Q&A

Nabladot, S.L. <u>www.nabladot.com</u> agomez@nabladot.com

http://www.nabladot.com

WTCZ torre Oeste planta 11, Avenida María Zambrano, Zaragoza

976 076 623

hablemos@nabladot.com