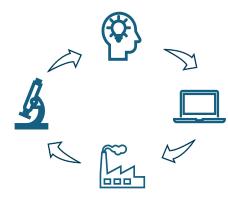
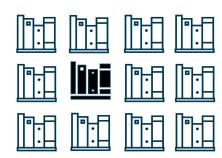


Wave Photonics is a Cambridge-based photonics company offering photonics IP and design services

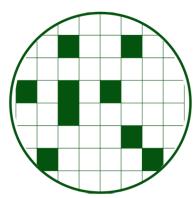
- Three founders (quantum photonics, stats, quant finance) thought that stats/optimisation could be used to improve integrated photonics
- A talented team:
 - Backgrounds spanning integrated photonics, high-performance computing, quantum photonics, statistics, optimisation and semiconductors
 - Prior experience from Toshiba, Microsoft, Cambridge Consultants, NPL and academic research



PDKs are required for PIC uptake, **but**


resource-intensive workflows, limited libraries, and poor tolerance to variation make customer uptake hard

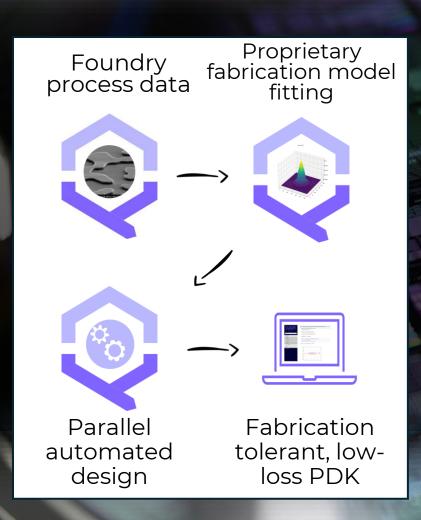
Development is Labour-Intensive


- Parameter sweeps or optimisation for each component
- Slow and expensive fabrication
- Requires optical testing for validation
- Multiple design iterations and continuous updates are needed

Narrow PDKs = Higher Costs for Customers

- PDK performance is a key differentiator for customers
- Dedicated runs require huge design efforts
- Quantum, bio and sensing customers are neglected
- Limited ADKs as standard

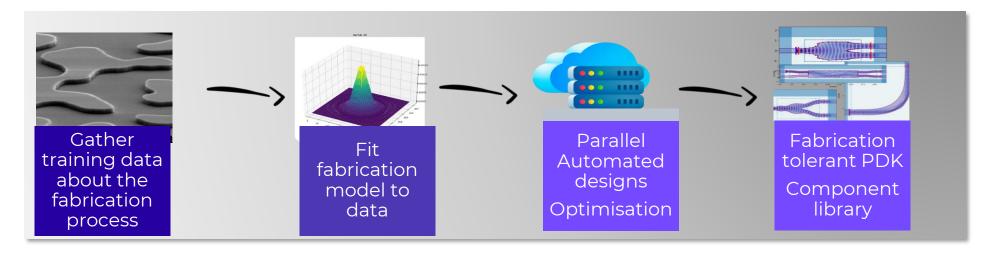
Fabrication-Intolerant Designs Reduce Yield/KGDs



- Designs based on parameter sweeps and basic variation models are highly sensitive to process changes
- Conventional designs leave performance on the table

Wave Photonics Mission: bring the barriers down for PIC development

From process data to PDK in 3 weeks

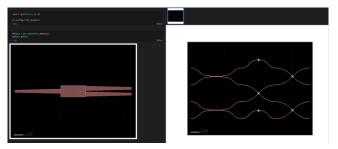


⑷∥ℚ╓∑и⊕⋺

- Proprietary process characterisation and variation modelling
- Built-in integrations with GDSFactory, Siemens, Cadence, Luceda, LDS, and (coming soon) Synopsys
- Validate with wafer-scale characterisation
- Rapid transition to new processes reoptimisation of PDK streamlines the transfer from R&D to a volume process

Core technology

Designing and adapting components for new **wavelengths** and **processes** without manual and iterative design.


- Proprietary fabrication-aware "Inverse Design" technology
- Combines process characterisation, process modelling, FDTD simulation and optimisation for automated component design
- Can adapt a whole PDK for a new process or wavelengths within weeks
- Components offer improved performance and tighter tolerances

PDK Integrates with EDA tools

- Support multiple EDA tools (Siemens L-Edit, GDSFactory, K-Layout, Cadence, LUCEDA IPKISS more to come) - Users do not need to change their workflow
- Every component is generated with an associated compact model for circuit simulation

PDK being used for circuit layout in GDSFactory

Siemens partnership for seamless L-Edit integration

Products and Services

Highly optimised and process variation-tolerant PDK IPs

- Most expansive wavelengths from visible to telecom bands
- Significant reduction of design iterations
- o seamless move from R&D fab to volume fab without major re-design

Custom PDKs Design for target applications

 Choose a target wavelength and material platform and have a PDK in weeks rather than months

Pre-designed PIC packaging / fibre Interconnect templates

Significantly reduce NRE cost and design time

Testing

In-house 8-inch wafer scale characterisation capability

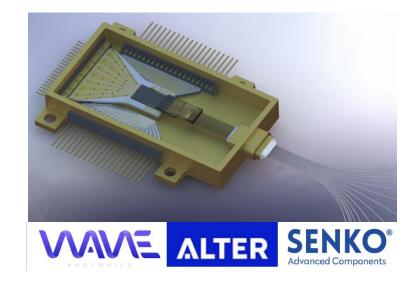
Wave PDK Management Platform

o All foundries' and Wave Photonics' PDKs are hosted under one platform

Full design service

 From device / system concept, architecture, component design, packaging, testing to foundry tape-out support

Packaging Design / Template

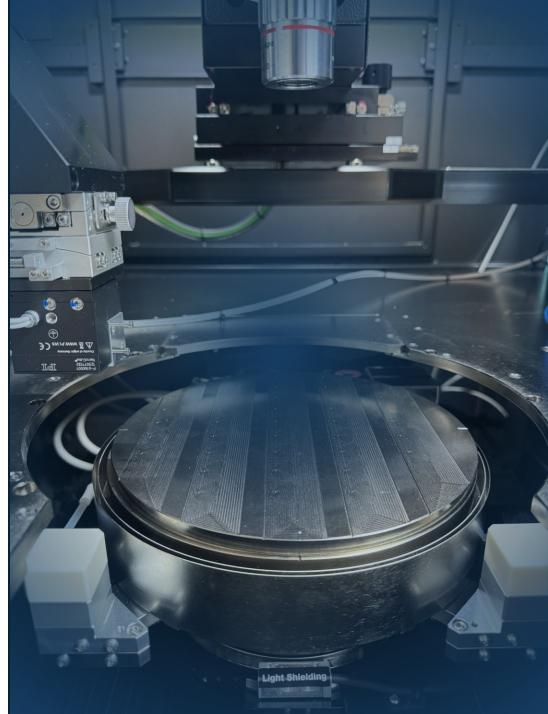

QPICPAC - PIC packaging is normally bespoke (expensive) and the final performance is not known. QPICPAC offers a turnkey solution which provides:

- Multiple optical, electronic and RF connections
- Performance and cost known in advance.
- No NRF and short lead times

This offering is being improved to facilitate low-loss edge the £2M EQUINOX Project

and polarisation coupling via the £1M PAQNet project and

Additional compatibility with PhiX packaging



In-house wafer-scale characterisation

- Automated characterisation capability for both individual PICs and full wafers.
- Highly parallelised to capture statistical data on component or circuit performance.

Product Development Service

Discovery

- Innovation
 Strategy /PIC Biz
 Case
- Requirement
- Costing /Economic model
- Supply Chain Appraisal and Management
- Partner Selection

Conceive

- Architecture
- Specification
- Prototyping
- Technology / IP Selection

Design/ Develop/ Implement

- PIC Architecture and Specification
- System design including possible electronics, software algorithm
- Concurrent circuit design, system modelling / simulation, optimisation – shorten time-tomarket significantly.

Realise

- Chip tape-out
- Validation, characterisation, qualification
- Fab & OSAT selection & support

Support

- Co-ordinate activities from design, manufacturing and foundry partners.
- Act as "gate keeper" to manage the design verification, optimisation, certification, upgrade, etc.

5-Phase Product Development

New capability - CPO and Transceiver IP Acquisition

- Phoelex (optical transceiver company) spent \$20M on developing highperformance transceivers – Wave Photonics acquired all of the company's IP
- Key IP in low energy modulation driven from a CMOS chip and the driving/processing electronics
- Wave is seeking partners high-speed electronics expertise for collaboration on CPO development

Example Phoelex transceiver

Case Studies

Example use cases

Wave Photonics' design capability for any platform or wavelength enables:

Atoms and ions

Cold atom systems

- Rb and other elements for atomic clocks and magnetic field/inertial sensing
- Quantum computing

Tapped ion systems

 Address multiple transitions with a single chip Environmental sensing

Water quality sensing

 Refractive index sensing for label-free detection of contaminants and biomarkers

Gas sensing

 SiN and Ge-on Si design for long wavelength sensing **Datacoms**

Fibre

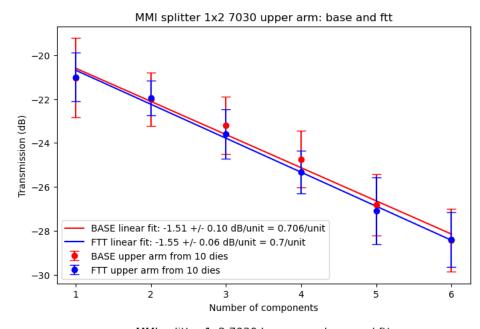
 Acquired IP in transceiver and CPO design

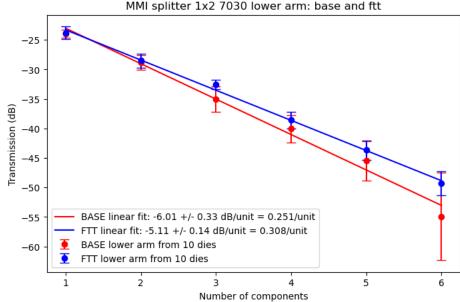
Free space

 Phased arrays for custom wavelengths (850nm, 940nm, 1064nm etc.) Novel materials

Rapid photonics design for novel material platforms

 GaAs, GaN, TFLN, AlN, SiN, SOI, SiC

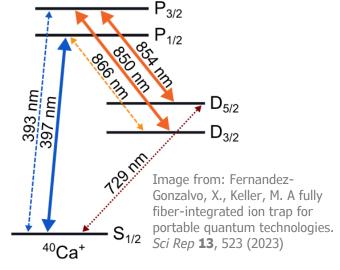



PDKs with increased fabrication tolerance

Comparison to conventional inverse design: MMI splitter 70:30 at a visible wavelength

- Measured data from 10 dies in a wafer
- Relative to conventional inverse design, we see:
 - 2x lower loss
 - 2x lower performance variation
 - Achieved target ratio on first fabrication run

	Loss	Split ratio	Variability (upper arm)	Variability (lower arm)
Without our fabrication	0.19 dB 4.3%	74:26	2.4%	7.6%
model				
With our	< 0.1dB	69.5:30.5	1.3%	3.2%
fabrication	< 2.3%			
model				



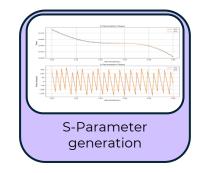
Silicon Nitride for Quantum (SiNQ) PDK – 493-1550nm

- The world's most expansive PDK PDK for 33 wavelengths containing 1,056 elements
- Building upon work with Oxford Ionics trapped ion quantum computing company. Developed PDK on new SiN process.
- Wave's optimisation pipeline was used to accelerate process development
- CORNERSTONE MPW runs on 200nm SiN starting this year

Wavelengths and Systems Supported by the SiNQ PDK

Covers 33 wavelengths from 493nm – 1550nm

Wavelengths and systems supported


λ(nm)	Fibre	Emitter(s)/System	λ(nm)	Fibre	Emitter(s)/System
493	SM450	Ba+ cooling	807	780HP	WSe2
532	SM450	NV spin, CsPbBr3 nanocrystal	850	780HP	Comms, Free space comms
552	SM450	PbV – Lead vacancy	852	780HP	Cs cooling
589	SM450	Na+ cooling	854	780HP	Ca+ repump
602	SM450	GeV – Germanium vacancy	866	780HP	Ca+ repump
614	SM450	Ba+ qubit transition	880	780HP	Nd3+ rare earth
619	SM450	SnV – Tin vacancy	895	780HP	Cs cooling
637	630HP	NV centre ZPL peak	920	780HP	InAs/GaAs QDs
645	630HP	hBN colour centre	980	1060XP	Yb3+ rare earth
650	630HP	Ba+ repump, NV centres	1033	1060XP	Sr+ repump
674	630HP	Sr+ qubit manipulation	1064	1060XP	SPDC pump
700	630HP	NV centre phonon sideband	1092	1060XP	Sr+ repump
729	630HP	Ca+ qubit	1127	1060XP	3C-SiC DV colour centre
738	630HP	SiV – Silicon vacancy	1310	SMF28	InAs/GaAs QDs, datacoms
780	780HP	GaS/AlGaAs QDs, Rb cooling	1468	SMF28	3C-SiC NV colour centre
785	780HP	DBT anthracene	1550	SMF28	InAs/InP QDs, Er3+, datacoms
795	780HP	Rb cooling	Your	System	Here: info@wavephotonics.com

Wave PDK Management Platform

Key Features

- All foundries' and Wave Photonics' PDKs are hosted under one platform and are easily accessible with built-in tiered access right control.
- Automated process with very little or none human intervention.
- S-Params generated for every PDKs enable circuit simulation.
- EDA Tools compatibility support major EDA tools such as Cadence, Simens L-edit, Luceda IPKISS and open-source GDS Factory, etc.
- Built-in IP management tools to effectively protect, assign / share or license IPs.
- Provide complete design solution with packaging and testing services (from multiple partners).
- Automated up-to-date documentation generation.

