

We make satellites more valuable

Supported by:

Satellites do not deliver the best value

Unused capacity and inefficient software – unrealized revenue/margin potential of in orbit compute

Satellite over ocean

Upto 70% of the time

Satellite at night

About 50% of the time

Cloud cover

Variable

95% of the pixels downloaded from satellites are useless

CEO - leading satellite data aggregator

No standard — one-off engineering needed: time and effort

Cyber risk

More valuable satellites

+50%

More efficient capacity utilization

In orbit processing can save USD 200K / year

80%

Faster access to space

Reduce engineering time from 7 months per satellite to 7 weeks for ALL satellites

20x+

Increase in payload security

- Secure-by-design software architecture
- Significant Defense opportunities

Value created by technology without comparable

validated with

Built for satellitesNo customization required

Security & isolation built in

New markets need new Operating System capabilities

Large and growing market: **>6BN** addressable

Multiple entry points + defense

Satellite Hardware Manufacturer

Satellite Integrator

Satellite Constellation Operator

Satellite Edge Computing Software Developer

Competitive landscape

Low Cost

Leading with innovation: Low-cost, efficient and scalable, secure-by-design OS for shared payloads

Low

SUITABILITY FOR SHARED PAYLOADS

High

Tractions & milestones

Fundraising needs

Raising

800k€+ seed

20% off next round – SAFE

Cap - \$20M

Angel funding from industry executives (Thales, OHB)

Milestones to Achieve

- Sign up 4-6 pilot clients;
- Submit 3 grant applications (non dilutive funding \$1.5M)

Build the foundation for Series A round (early 2026)

Potential exits:

2025 March 15 – Transporter 13

Clustergate ready to take off

Exciting Times!

In orbit & ready for customers

Contact:

Miklos Tomka

miklos@parsimoni.co

Tel: +33 6 52 45 37 60

web: parsimoni.co

Appendix

Revenue forecast

Target by 2027

Conservative
Revenues: 6M\$

After 2027

- **Accelerating growth**
- 2031 Conservative target:

130M\$+

(also from SataaS platform)

Advisors and angel investors

Advisor Name / position:	Advisor Type	Comments
Matthieu Bernou, CTO OHB Greece	Satellite as a Service Expert	Also invested in Parsimoni
Idris Habbassi, Director Marketing Hydrosat (ex. Spire – Director Strategy)	Satellite Strategist	
Guillaume Lerouge, Thales Digital Factory Business Development	Thales Startup Specialist	Also invested in Parsimoni
Anil Madhavapeddy, University of Cambridge, Professor of Planetary Computing	User of satellite data / market expert	Predicts Parsimoni will completely change the satellite ecosystem by making it accessible to all

Satellite-as-a-Service platform

Customer validation – Thales TAS

Use-case: Satellite on-board AI image analysis software

Goals:

- 1. Replace **Docker** with **SpaceOS**
- 2. Same functional results & flexibility
- 3. Improvements in efficiency & cybersecurity

Results:

- Executable code is **20x** smaller
- Software is more secure (isolation)
- Easy Software deployment and update

Business model

Seed stage - projects

- Q4/2025

Pilot projects – revenue per project

Grant projects – as part of a consortium (replicate the EU results)

Growth stage - product

2026-2027

- Setup cost
- Ongoing service support cost

Alternatively

Software as a service

Replicate models from others:

Ubuntu Core (IoT OS)

Docker (Cloud technology)

Expansion stage – also platform

2027-

Payment – based on value created (3x customer revenue up -> x\$ in revenue)

Platform fee for SataaS offer

SpaceOS

SpaceOS

SpaceOS + Platform

Significant Unused Capacity – Example of EO

Satellite over ocean

Upto 70% of the time

Satellite at night

About 50% of the time

Cloud cover

Variable

Case study – Methane emission monitoring satellite

TODAY	TOMORROW – FIRST LEVEL OF BENEFITS	LATER
- On board compute – most of the time idle	 On board compute used for cloud detection; high level analytics 	- On board compute available for new revenue sources
- Image processing – exclusively on ground	 On ground image processing accelerated (and volume reduced) 	- Actionable insights sent to ground
- Very costly data downlink cost	- Savings of \$100K to \$200K per satellite on downlink cost	Further optimized downlink costsIncremental revenues

Faster Access To Space with more efficient unikernel OS

Satellite builder - Generic OS

Requires customization:

- Costly engineering time
- Not always optimal outcome (efficiency, Security)

Engineering time – reduced by 80%

Outcome – better, guaranteed by a team of OS experts

Satellite software developer: No standard: One-off engineering

Duplication of efforts

- High cost
- Innovation speed reduced

Develop once, run on any satellite.
Faster to space, innovation accelerated

Security By Design – Reduced Cyber Risk

Most satellites are easy to hack

The question is not "if" but "when"

- Memory-safe programming language blocks
 70-80% of zero-day attacks
- Compact size reduced attack surface (20x smaller vs. some alternatives)
- Formal verification: mathematic proof
- (Optional) quantum crypto protocols
 - SECURE BY DESIGN
- SECURITY BUILT INTO THE FABRIC OF THE OS