S MR

The Leading eHealth Publisher

Revealing the Roles of Part-of-Speech Taggers in
Alzheimer’s Disease Detection: A Scientific Discovery
Using One-intervention Causal Explanation

Bingyang Wen, Ning Wang, K.P. Subbalakshmi, R. Chandramouli

Submitted to: JMIR Formative Research
on: January 27, 2022

Disclaimer: © The authors. All rightsreserved. Thisis a privileged document currently under peer-review/community
review. Authors have provided JMIR Publications with an exclusive license to publish this preprint on it's website for
review purposes only. While the final peer-reviewed paper may be licensed under a CC BY license on publication, at this
stage authors and publisher expressively prohibit redistribution of this draft paper other than for review purposes.

https://preprints.jmir.org/preprint/36590 [unpublished, peer-reviewed preprint]



JMIR Preprints Wen et d

Table of Contents

L@ T N F= Y =T o TN 1S o ] o] SO ST SO RSSRPRPRRN 5
ST o] o1 = L= T A =TSRSS 29
FIGUIBS ...ttt bbbtk bbb bbb b4 b b e b £ £ £ b e b bbb e b e b e b e b b e b bbb b e b b e b e bbb e b b e b e b e b b e bbb b e b b e bbbt eb b b s 30
FIGUIB L ettt ettt et e ettt s e e e e s e e e e e e es R e £ £ 2 A e 8 e e e £ LR e A oA S A e e RS A S LR SRR e LR E R4S e AR SRR SRRt et s e st et eeen et naes 31
FIGUIB 2. ettt ettt s et s E e e a2 28 E eSS 2 s e R e e e A2 LR e £ £ £ A2 AR e A e LR SRR £ e AR E eSS e A LR E RS E Rt et e Rt e e e s et enaes 32
FIGUIE 3 ettt ettt s et s ettt es e e s E e A2 e e 28R £ e AR R e e £ e LR e A e RS A e AR A A e LR SRR £ e LR SR £ S ee AR SRR e AR AR s e E et et ee e st et naes 33
FIGUIB A | ettt ettt s et e et st e 2o ee 28 E £ 2 s e R e e e A LR e A e e £ 4 e e R e R e S e LR SRk E e R R £ e e e A LR E RS AR R s s e e et s e nn et enes 34
FIGUIB D sttt ettt s ettt et s e e b e e s e e e e se 28 E e £ 28 e Ao e e A e LR e A e e S 42 AR R e A e e LA SRR e £ e AR e R £ S ae AR SRS EeR Rt e e bt ee e st et naes 35
FIGUIB B, ... ettt ettt s e e st e e ee e s E e £ e s E e e £ e LR oA e £ £ 42 e R e R £ e LR SR A e £ e LA e R e R4S e A e RS E R e EeR ks e st et es e st et etaes 36
FIGUIE 7 ettt ettt s ettt s e e e 28 E e e 228 E e £ 2R e Ao e e A e RS A e £ S A e RS A eSS E SR SRS E LR SRS e R e AR SRR SRRt et e et s e e st et naes 37
FIGUI B ettt ettt ettt s ettt e et s et e s E e eee 28 E 22 s R e e e e L8 e e e e £ 42 e R e A e A 2R SR ek e S e LR e R £ e e A e R e R e EeR Rt e st et es e st et enaes 38

https://preprints.jmir.org/preprint/36590 [unpublished, peer-reviewed preprint]



JMIR Preprints Wen et d

Revealing the Roles of Part-of-Speech Taggersin Alzheimer’s Disease
Detection: A Scientific Discovery Using One-intervention Causal
Explanation

Bingyang Wen' M Sc; Ning Wang' PhD; K_.P. Subbalakshmi® PhD; R. Chandramouli* PhD

'Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken US

Corresponding Author:

Bingyang Wen MSc

Department of Electrical and Computer Engineering
Stevens Institute of Technology

Room 315

524 River Street

Hoboken

us

Abstract

Background: Machine learning-based Alzheimer's detection using natural language processing has drawn increasing attention
because of its low cost compared with traditional methods. However, most of these models are black-boxes, and the decision
mechanisms of the Al are obscure. In some fields like medicine, this obscurity gets in the way of widespread adoption. This has
led to the development of a new class of techniques that are generally referred to as explainable Al (XAl). One approach to this
problem is counter-factual explanations which answer “what if” questions like “What would have happened to Y, had | not done
X7

Objective: This study aims to improve the transparency of a the-state-of-art language-based Alzheimer’s disease (AD) detection
model and discover linguistic biomarkers that are indicative of AD and hence can be used as tools for automated diagnosis of
AD.

Methods: In this paper, a new explainable artificial intelligence (XAl) method is proposed and named one-intervention
counterfactual explanation (OICE). This method works on the state-of-the-art language-based, deep learning method for AD
detection and provides an explanation of that method. The proposed OI CE incorporates causal factors among the features used in
the detection of AD, to provide more transparency of the Al’s decision. This is in contrast to conventiona counterfactual
explanation methods which do not incorporate causal mechanisms. An understanding of causal factors can go beyond mere
statistical correlation to provide a better understanding of the underlying physical phenomenon. The proposed OICE generates
counterfactual explanations from a predefined deep-based structural causal model (SCM). The proposed method generated
explanations of the Al’s decision by only intervening on one feature at atime. Since OICE provides explanations for individual
samples, we then analyze the counterfactual explanations statistically and define some metrics to quantify the effect of every
feature.

Results: We find 11 language level biomarkers for Alzheimer’s disease detection such as adverb, pronoun, noun, preposition,
etc. Previous work in psychology and NLP points out adverbs, pronouns, and nouns as potential biomarkers. Our study concurs.
We aso find new biomarkers that were not reported in previous studies, such as preposition, predeterminer, etc. Our results also
reveal how these biomarkers are involved in the diagnostic process from a causal perspective. For example, an on-average 20.2%
increase in predeterminer, causes determiner, verb (present particle), and grammatical particles change, resulting in flipping in
the diagnosis from control to Alzheimer's disease. This implies that predeterminer is potentially a strong indicator of the
individual’s health and can function as a strong biomarker.

Conclusions; Our findings show consistency with previous works in psychology and natural language processing (NLP).
Additionally, we offer a new explanation about how intervening a feature can affect the model's decisions using the pre-defined
SCM.

(IMIR Preprints 27/01/2022:36590)
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Revealing the Roles of Part-of-Speech Taggers in Alzheimer’s Disease
Detection: A Scientific Discovery Using One-intervention Causal
Explanation

Abstract

Background:

Recently rich computational methods that use deep learning (DL) or machine learning (ML)
have been developed using linguistic biomarkers for early-stage Alzheimer’s Disease (AD)
diagnosis. Moreover, some qualitative and quantitative studies have indicated that some part-
of-speech (PoS) features/tags could be good indicators of AD. However, there has not been a
systematic attempt to discover the underlying relationships between the PoS features and AD.
There has also not been any attempt to quantify the relative importance of these PoS features
in detecting AD.

Objective:

Our goal is to disclose the underlying relationship between PoS features and AD. Understand
whether PoS features are useful in AD diagnosis and explore which of the PoS features play a
vital role in the diagnosis.

Methods:

The DementiaBank, containing 1049 transcripts from 208 AD patients and 243 transcripts
from 104 elderly controls is used. 27 parts-of-speech (PoS) features from are extracted from
each record. Then, the relationship between AD and each of the PoS features is explored. A
transformer-based deep learning model for AD prediction using the PoS features is trained.
Then a global explainable artificial intelligence (XAI) method is proposed and used to discover
which PoS features were most important in AD diagnosis by the transformer based predictor.

A global (model-level) feature importance measure is derived as a summarization from the
local (example-level) feature importance metric, which is obtained using the proposed
casually-ware counterfactual explanation method. The unique feature of this method is that it
considers causal relations among PoS features and hence can preclude counterfactuals that are
improbable and hence result in more reliable explanations.

Results:

The deep learning-based AD predictor achieves an accuracy of 92.2% and an F1-score of 0.955
when distinguishing AD patients from healthy controls. The proposed explanation method
identified 12 PoS features as being important to the diagnosis of AD from healthy control. Of
these, 3 features have been identified by other researchers in previous work in psychology and
natural language processing (NLP). Nine other PoS features have not been previously
identified. We believe that this is an interesting finding that can be used in creating tests that
might aid in diagnosing AD. Note that although, our method is focused on PoS features, it
should be possible to extend to more types of features, perhaps even derived from other
biomarkers, like syntactic features.

Conclusions:
The high classification accuracy of the proposed deep-learner indicates that PoS features are
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strong clues in AD diagnosis. There are 12 PoS features that are strongly tied to AD and since
language is a non-invasive and potentially cheap method for detecting AD, this work shows
some promising directions in this field.

Keywords: explainable machine learning; Alzheimer’s disease; natural language processing,
causal inference.

Introduction
Background

Alzheimer's Disease (AD) is a serious and the most common dementia worldwide. In the US,
more than 5 million individuals are living with AD, and AD Related Dementia (ADRD), costing
the nation $244B in 2019. The National Academy of Sciences, the National Plan to Address
Alzheimer’s Disease, and the Affordable Care Act through the Medicare Annual Wellness,
identify earlier detection of ADRD as a core aim for improving brain health for millions of
Americans.

Traditionally, brief cognitive screening tests and biological marker methods (usually
neuroimaging [1-4] or cerebrospinal fluid examination [5]) have been used for identification.
However, these approaches tend to be invasive, expensive, and/or trigger patient compliance
problems. Alternatively, spoken language is a rich and inexpensive source of information in the
detection of cognitive status even at the early stage.

Robinson et al. have [6] showed that AD patients are more likely to have a reduction of
vocabulary size and difficulty in correctly using verbs and nouns. Croisile et al. [7] have showed
that AD patients give a shorter speech, more implausible details, and syntactically simplified
descriptions.

Recently, machine learning (ML) or deep learning (DL)-based automated early-stage AD
detection using linguistic features have been proposed and demonstrate outstanding diagnosis
accuracy. Eyigoz et al. [8] have demonstrated that a patient's language performance in
naturalistic probes can expose subtle early linguistic signs of progression to AD much before a
clinical diagnosis of the impairment. Khodabakhsh et al. [9] have studied the diagnosis of AD,
using speech features extracted from a spontaneous conversation and obtained 90% AD
detection accuracy. ML/DL-based methods allow for the use of latent features which go beyond
handcraft features and represent more sophisticated concepts. For example, word (sentence)
embeddings maps words (sentences) from a vocabulary to a vector of real numbers. Good
embeddings will encode similar concepts to adjacent vectors. Studies that use word
embeddings for AD diagnosis include [10-13]. In addition to the use of word embeddings, [10]
uses PoS features; [11] uses PoS features and sentence embeddings; [12] uses targeted
psycholinguistic, sentiment, and demographic features; In [13], recurrent neural networks
(RNN) are used to capture the temporal dynamics in speech recordings for improving the
diagnosis accuracy.

However, most previous works are performance-oriented and construct more complex models
with an increasing number of features and modalities. Though better diagnosis accuracy has
been achieved, they usually sacrifice transparency in the diagnosis-making process. This is
because most of these complex models are deep-learning-based, which are inherently opaque
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and not all the features are human interpretable. This is especially true if their influence on the
prediction is not well understood. This opaqueness and lack of understanding of the
contributions of individual features to the prediction has resulted in a reluctance by the clinical
community to use these methods in practice [14].

Explainable Artificial Intelligence (XAI) refers to methods that can reduce the opaqueness of
deep learning models. XAI methods can be classified according to various criteria. One
taxonomy is based on the format of explanation. Local explanation or example-based
explanation explains an individual prediction while the global explanation explains the model
behaviour (e.g., feature importance).

Beyond explaining the model’s internal mechanism, recent works have used XAI methods for
scientific discovery. XAI-based scientific discovery enables the discovery of insightful scientific
concepts from model explanations obtained by XAI methods. Ginsburg et al. [15] propose FINE
(feature importance in nonlinear embeddings) for the analysis of cancer patterns in breast
cancer tissue slides. FINE automatically determines the important features which revealed
previously unknown scientific attributes. Li et al. [16] have shown that similar concepts to
Kepler’s laws of planetary motion and the Newton’s law of universal gravitation can be
obtained by XAI methods.

Objectives

Our goal is to disclose the underlying relationship between PoS features and AD. Our work
firstly explores the predictive power of PoS features for AD diagnosis by using a well
performing transformer-based [17] model, which is trained to use PoS features for AD
diagnosis. If a feature does not impact the decision of this predictor, then it stands to reason
that this feature does not have much predictive power. Note that, though PoS features are used
in previous works for AD diagnosis, and impressive accuracies have been achieved, they are
usually combined with other features as inputs and hence the effect of PoS features alone is
unclear. In our study, we find that using only PoS features can still yield a high AD diagnosis
performance with 92.2% accuracy. Hence it is interesting to discover which PoS features play
vital roles in this prediction.

In order to understand the importance of any given feature for a particular problem, it is
important to study the effect this feature has globally, on all samples. To achieve this goal, we
use example-based explanation called counterfactual explanation (CFE) [18] on our predictor.
Example-based explanation gives explanations for individual data samples. Then, we analyze
the statistical summary of the counterfactual explanations of a group of data samples to show
the global effect of each input feature.

Conventionally, counterfactual explanation aims to answer “Why” questions such as “Why the
model's decision is Y’ or “What would have happened to Y, had I not done X?”. The first step in
obtaining the counterfactual explanation is to search for the counterfactual examples which are
defined as the examples obtained by applying minimal changes to the features of the original
example and having the predefined outputs. Then, the counterfactual explanations can be
extracted by comparing the differences between the original example and its counterfactual
examples. For example, if the model’s prediction is changed from AD patient to healthy control
as we manually increase the appearance of nouns by the minimal unit (e.g., 1) in a data sample,
then the counterfactual explanation would indicate that the number of nouns used is as an
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important factor in classifying the sample as being from an AD patient.

However, when generating counterfactual examples, the conventional counterfactual
explanations assume features are independent of each other. This can result in the
counterfactual examples that are not feasible in the real world. For example, an infeasible
counterfactual explanation can suggest that the number of nouns be decreased while the
number of adjectives be increased, which is anti-causal since adjective words are usually used
to decorate noun words and hence its appearance is supposed to increase or be unchanged as
the number of noun words increasing.

It is clear that conclusions drawn from potentially infeasible counterfactuals cannot be reliable.
Hence, it is important to develop a causally away counterfactual intervention method for our
purposes. We argue that the key point to making the generated counterfactual examples
feasible is to ensure the generation process of counterfactual examples obeys causal rules. That
is, as we generate counterfactual examples by making changes to some features, the causal
consequences of these changes (e.g., increase number of nouns cause the increase of number of
adjectives) have to be considered.

To generate feasible counterfactual examples, we propose to use a causal model, which
contains a directed graph that models the random variables by nodes and their causal relation
by directed edges. Each edge in the causal model also encodes the causal function f: P—C,
where C is any variable that is modeled in the causal model and P represents the variables that
cause variable C. Then one can generate counterfactual examples of the original example by
doing interventions in the causal model. Performing interventions is the process where some
variables within a sample are changed to fixed values and the rest of the variables are
generated according to the causal functions (e.g., f). A counterfactual sample can be regarded as
a counterfactual explanation if it can yield the predefined output.

To understand the significance of a single feature, we propose only to intervene on one feature
at a time for counterfactual generation. We hence name our proposed method: one-
intervention-causal-explanation (OICE). We then use the one-intervention counterfactual
examples to explain the importance of each feature by asking, “What would have happened to
the output, had I intervened on feature A?”. Moreover, using one-intervention can allow us to
systematically study the impact of the different features. Each feature (and its descendants)
that is impacted by the parent feature in this one-intervention approach, can be further
analyzed by the structural causal model (SCM). Finally, we define three metrics to quantify the
importance of features in the decisions.

Related Work
Counterfactual Explanation

Counterfactual explanations are a widely used method for generating explanations of a model's
decision and aim to answer “How the world would have to be different for a desirable outcome
to occur” [18]. By studying these counterfactual instances, one can explain why the model
arrives at the outcome, by comparing the difference between the hypothesis and the original
scenarios or a possible suggestion about how the desired outcome can be obtained by changing
some of the features. Generally, counterfactual explanations are generated by finding the
minimal changes that are needed to change the classification of this instance to the desired
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class. Wachter et al. [18] formulates a general form for finding the counterfactual explanations
CF
X

CF
X~ =argmax,. A

fulx =y dlx x(1)

where xis the query instance, f,is the classifier, y is the desired output, and d(-,") is a distance
function. In practice, maximization over 1 is done by iteratively solving for x'and increasing 1
until a sufficiently close solution is found.

The quality of counterfactual explanations is measured in terms of actionability, feasibility,
diversity, and sparsity. The meaning of each metric is stated as follow:
@ Actionability: A CFE that changes any immutable features (e.g., gender: male - female)
is un-actionable and vice versa.
@ Feasibility: Features that are changed by a CFE should be in a reasonable
range/population. An infeasible CFE could be changing the number of credit card from 5
to -1.
@ Diversity: The ability to generate diverse CFEs.
@ Sparsity: The number of features that are changed in CFES. Fewer changes/high sparsity
is favorable since humans can only extract limited information.

Most existing approaches in the literature of counterfactual explanations are dedicated to
improving the metrics mentioned above. Recent studies [19, 20] consider the distribution of
data and generate counterfactual instance from the relatively high-density region of the input
space. These methods improve the feasibility by avoiding unlikely or unrealistic counterfactual
instances under the data distribution. Ustun et al. [21] improves the actionability and
feasibility by allowing the counterfactual instances that optimize a user-specified cost function
and prevent counterfactuals from changing immutable variables like age, sex, gender. Russell
[22] proposes a Mixed Integer Programming (MIP) formulation to handle mixed data types and
offers counterfactual explanations for linear classifiers that respect the original data structure.
This formulation is guaranteed to find coherent solutions by only searching within the “mixed-
polytope” structure defined by a suitable choice of linear constraints.

The work most similar to ours is [23], which shifts the paradigm from nearest counterfactual
explanations to minimal interventions. Specifically, in [23], counterfactual examples are
generated by the predefined SCM and a set of possible interventions to reach the desired
outcomes. The optimal intervention set is obtained by choosing the one that induces the
minimum cost, where the cost is measured by a predefined cost function on the intervention
sets. Additionally, they prove the necessity of considering all inter-variable causal dependencies
and demonstrate efficiency on some toy datasets. We use a more complex SCM, known as
Causal Generative Neural Network (CGNN) [24], to capture the inter-variable causal
dependencies and generate counterfactual explanations by the intervention. We additionally
statistically analyze the derived explanations to inspect the global behaviour of the model.

Methods

For scientific discovery purposes, our method incorporates three phases: knowledge learning,
knowledge extraction, and knowledge verification. As shown in Fig. 1, in the knowledge
learning phase, we use a transformer-based classifier to learn the underlying mechanism
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between PoS features and AD; In the knowledge extraction phase, we use our proposed XAI
method, OICE to extract the learned mechanism. Specially, OICE would quantitatively indicate
the importance of PoS features used by the model in AD classification; The extracted
knowledge (i.e., feature importance) would be verified with findings of previous works in phase
3. A model that is verified to have high consistency with previous findings is more plausible and
hence is more likely to bring reliable insights about the underlying mechanism among PoS
features and AD.

<
G
06’/3 Features recognized in previous works
5.
%

Features not recognized in previous works

Input Features

Variable Importance

Phase 1: Knowledge Learning Phase 2: Knowledge Extraction Phase 3: Knowledge Verification

Figure 1 Method Overview. Procedures of using XAI for scientific discovery.

In the following sections, we will describe in detail the methods we used in the first two phases.
We verify the extracted knowledge (phase 3) in the Result Section. We first introduce the
dataset followed by the structure of the transformer-based classifier. Then we introduce the
proposed model explanation method, OICE. Finally, we describe details in implementing the
introduced methods.

Dataset Description

DementiaBank [25] is a database of multimedia interactions for the study of

communications in dementia patients. This dataset comprises of the transcripts of individuals
(dementia and control) who are given four tasks: (1) Cookie theft description: participants in both the
control group and dementia group were given a picture of a child attempting to steal a cookie and
asked to describe what they saw. (2) Word fluency: which measured their fluency (dementia group
only); (3) Recall: participants tested on their memory recall (dementia group only) and (4) Sentence
construction: where they were tested on sentence construction (dementia group only). In total, the
corpus contains 1049 transcripts from 208 AD patients and 243 transcripts from 104 elderly control
individuals for a total of 1292 t'ranscripts. Two examples of DementiaBank dataset are illustrated in
Table 1. In this study, we use all the transcripts described above.

The transcripts were tokenized into single word tokens, and each token is computed with PoS tags
using NLTK toolkit [27]. Upon each transcript, we generate a PoS feature vector with the counts of
27 PoS tags. The names and the meanings of the 27 PoS features are introduced in Table 2.
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Table 1 Two examples of DementiaBank data sample. In our experiment, we analyze the PoS features that are extracted from the
speech records.

Label Speech Record

Healthy Control okay, well the mother is drying the dishes, the
sink is overflowing, um the little girl’s reaching
for a cookie, and her brother’s taking cookies
out of the cookie jar, and the stool is going to f
knock him on the floor laughs, he’s going to fall
on the floor because the stool’s not uh what,
with gravity, whatever, uh the uh curtains are
blowing I think, that’s all I can see

AD Patient I would like to have a lead pencil, the tree is
blossoming, I hope my child doesn't hafta go to
the hospital , I hope my child doesn't hafta go to
the hospital, I shouldn't say that because we
have a daughter who's pregnant, and I do want
her to go to the hospital, okay then, this winter
has been a very cold one, the doctor said [, I sat
in the chair by a the doctor, brief, I'm not, I
forgot to try make them brief, the bureau
drawer stands open

Ethical Consideration

We use the Dementiabank dataset which is archived by TalkBank. TalkBank is subject to its own
Code of Ethics (detailed in [26]) which supplements but does not replace the generally
accepted professional codes of American Psychological Associatgion Code of Ethics and
American Anthropological Association Code of Ethics.

Transformer-based AD Classification Model

Recently we proposed a transformer-based [11] classifier to exploit PoS features, as shown in Fig. 2.
In our architecture we use the multi-head attention (MHA) module and the encoder structure of the
transformer to process these features. Our motivation for this stems from the success of this
architecture in creating state-of-the-art language embeddings as demonstrated in [11]. This
architecture comprises of a self-attention module that captures the intra-feature relationships; an
attention layer together with a following 1-D CNN layer. The MHA module is the same as that
proposed in [11] for the popular transformer architecture. Let R=[r1,r2,1 ,rn} be the set of records,
then T, is the " record in the dataset. We compute PoS features for each record. Let P ={ |22 pn}
be the set of PoS feature vectors and p, be the " vector in the PoS matrix. We use h Multi-Head-
Attention (MHA) layers on P={p,,p,.I,p,| to capture the relationship between the PoS features.

The MHA transforms Pto another matrix of n-dimensional vectors A={q,,qa,,I,a,} . The MHA
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module is followed by a 1-layer CNN and a SoftMax layer to get the final classification.

Table 2 PoS features & meanings

Tag Meaning

NN common nouns

PRP personal pronoun

VBG verb, gerund or present participle
UH interjection

NNS noun, plural

MD modal

JJIR adjective, comparative

VB verb, base form

IN preposition or subordinating conjunction
I] adjective

RP particles

PRP$  possessive pronoun

CC coordinating conjunction

CD cardinal number

PDT predeterminer

NNP proper noun, singular

TO to

DT determiner

RB adverb

VBZ verb, 3" person singular present
VBN verb, past participle

WP wh-pronoun

VBP verb, non-3" person singular present
]IS adjective, superlative

VBD verb, past tense

EX existential there

WP$ possessive wh-pronoun

https://preprints.jmir.org/preprint/36590
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Original Dataset

:

POS Feature

Self Attention
: K V Q

v

>  Add & Norm

Feed Forward

Y

> Add & Norm

!

Attention Layer

l

A Single Convolution
Layer

}

Softmax Layer

v

(v]

Figure 2 The proposed transformer-based classifier that uses the PoS features of the patient/control’s description.

Feature Self Attention

One Interventional Counterfactual Explanation (OICE)

To derive an explanation, OICE first calculates the counterfactual explanations for each single
sample. Each single counterfactual explanation can be simply seen as a vote for features’
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importance by each sample. Then, OICE groups these counterfactual explanations to
summarize the global explanation about feature importance. In this subsection, we first outline
the preliminary information on structural causal models (SCM), which is an essential element
for obtaining counterfactual explanations. We then describe how we learn an SCM from the
data. Next, we discuss how we formulate the OICE and how OICE generates individual
counterfactual explanations by using the pretrained SCM. Then, we introduce the metrics that
we propose to measure the feature importance (global explanation) according to a group of
counterfactual explanations.

Structural Causal Model

In this section, we review the concepts of structural causal models (SCM) and interventions. An
SCM, M, can be represented by a triplet, M:{X,F,U:I?, that contains a set of endogenous
variables, X={X,,X,,I,X,}, a set of causal mechanisms, F={F,F,,I,F,}, and a set of
exogenous variables, u={U,,U,IU,}, where each U is independently drawn from
distribution, U. Any endogenous variable X; can be obtained by its causal mechanism F; as
X,=F;(PA;,U;),where U, U and PA, denotes the parent nodes of X, and PA,€ X [X{;.

In our case, the endogenous variables are the random variables of the PoS features. The causal
effect between two PoS features in hence encoded in the causal mechanisms between them
(can be null if no causal relation between them). The exogenous variables are seen as the set of
unknown factors that can cause PoS features.

We denote an intervention in SCM by a do-operator do(:). Intervening the set of X to the value
¢ can be then described as dO({XFG}iEI) where [ is a set of indices of the subset of endogenous
variables to be intervened upon. By intervention, causal relations and causal mechanisms
defined in the original SCM can be changed. Endogenous variables from | can be obtained by
do(X,:a) rather than XiZFl-(PA,-,U,-) . Therefore, by performing the intervention, the original
SCM M can be changed to a post-intervention SCM M, .

Structural Causal Model via Generative Network

We use the CGNN proposed in [24] to represent the SCM since it does not limit the types of
causal mechanisms (e.g., linear or non-linear). Given a causal graph, a CGNN can be trained to
learn the causal mechanisms underlying the causal graph by reducing the Max Mean
Discrepancy (MMD) [28] between the ground-truth data and the generated data. CGNN
generates each endogenous variable by X,=F!(PA,U,), where F' is a generative neural
network parameterized by f,. For simplicity, we use F, to represent F?’ in the rest of paper. U,

are random samples drawn from Gaussian distribution. Fig. 3 illustrates an example of
constructing SCM by CGNN.
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v e ([ X, =F(U)
X, = F,(Uy)
Us @ { X3 =F3(Xy,U3)
Xy = Fy(Xy, X3, Uy)

U, e (X5 = F5(X2, X4, Us)

Figure 3 Example of a Structural Causal Model (SCM). Left: causal graph, right: causal mechanisms. As for CGNN, each causal
mechanism is implemented with a generative neural network.

The weights of causal mechanisms (i.e, f,) are updated to minimize the MMD between the
ground-truth samples and the samples generated by the CGNN. In our experiment, we discover
the causal relations from the dementiabank dataset by using the PC algorithm [29]. PC
algorithm is a constraint-based causal discovery method, under the assumption of causal
sufficiency (i.e., no latent confounders). We discover causal relations among PoS features from
the dementiabank dataset rather than use generic PoS causal rules as the former would better
capture the causal relations among PoS features in the dementia group.

Explanation by Minimal Intervention

We now introduce some notations and discuss the formulation of OICE. Let x"€R‘ denote the
original factual sample and x“ €R’ denote the counterfactual sample that is obtained by a set
of interventions [. Here, we re-define I={I,,I,,...,I,} to be an intervention set that has the
same length as the sample X . For each element [, if I.=0, it denotes no intervention on xf (the
i" element of x'), otherwise do intervention xf:I,-. Generally, any sample x (both factual and
counterfactual) can be generated by the SCM (X,F,U) using the equation: x=G(U",I;F),
where G represents a sequence of processes to generate x. G contains a causal graph and the
corresponding causal mechanisms between variables. The variables of a sample, X are
generated in sequence from root to leaf of the causal graph. Generating factual sample x', can
be done by setting all the elements in [ to zero. For a given x, its corresponding exogenous

variables U° can be obtained by inverting the generating process: U'=G'(x"; F'/.

We formulate the problem of one-intervention counterfactual explanation as searching for the
optimal I' that results in a counterfactual example x“, which would flip the outcome from y to
y'. One-intervention is implemented by fixing the IIl, to be 1. It is formulated as:

I'=1h(G|U*,I; F||-yT', subject to 111,=1(2)

where I is the predictive model. In most cases, the model h is a probabilistic model, we then
select the optimal solutions I' as the one that results in counterfactual examples that can

achieve a certain degree of certainty to be y (e.g., h(G(UF,I;F)) is 80% certain to be y ). By

doing so, multiple optimal solutions are obtained, which contain different intervened features.
Note that the same kind of intervened features may have different intervention values.
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Consequently, we further distill our optimal solutions set by only keeping one solution for each
subset with the same intervention that causes the minimum distance weighted by Median
Absolute Deviation (MAD) [18].

Note that OICE implicitly assumes the causal relation from variables x* to outcomes y by the
predictive model h. However, OICE does not rely on this relation to generate counterfactual
examples x“.Model h in OICE only helps to solve the optimization problem stated in Eq. 1.

Metrics for Measuring Importance

So far, we have introduced how to obtain explanations for individual instances by OICE. We
then make the inference of model's global behaviour (i.e., importance of features) by
statistically analyzing the explanations derived from a batch of samples. In the section, we
introduce some metrics to measure the impact of intervening a feature to cause a flip in the
outcome. The impact of features can be further associated with its importance for a machine
learning model in making a decision.

Let S:{Sm,S(Z),...,S(”)} represents a set of n samples that belong to class y (ie,

h(Si):y,fori=1,2,...,n ). In our case, the problem is a binary classification problem, and the
classes are: “control” or “Alzheimer’s”. Let C“J denote the counterfactual explanation of the {
sample obtained by intervening on the feature k and hence h( )# y . To measure the impact on

flipping the outcome that is caused by intervening feature k, we introduce our first metric,
Impact Score (IS). IS, can be interpreted as the proportion of counterfactual samples for which
feature k must be intervened to flip the outcome and is defined as:

I,
n

IS,=

(3)

where I,={i: h(C );éy i=1,2,...,n} is a set that contains the indices of samples in § that have a
counterfactual explanation obtalned by intervening on feature k. The IS score describes the
overall impact and does not consider the cost of the intervention (i.e.,, how much a feature has
been increased or decreased). Accordingly, we introduce another metric, weighted impact score
(WIS), to measure the impact made by changing the unit value of a feature. This measure trades
off the impact with the cost of impact. wIS can be used to compare among the features. Features
with higher wiS value have more importance in flipping the outcome. To define wIS, we first
introduce the parameter, cost of impact (CI), to measure the average absolute change that must
be made to achieve the impact (i.e., impact score). Using subscript | to index the |" feature of a
sample § or C)', the cost of impact (CI) for feature k can be defined as follow:

L $ letios]

‘Ik| €1,
where R, is the range of feature k. Next, we deflne the weighted Impact Score as follows:
IS,
wilS,= Cl, “(5)

Note that the wiS defined in Eq. 5 does not consider the trends of change 1n a feature (1e
increasing or decreasing). To take care of this, we separate WIS, into wIS," and WIS, o
represent the weighted impact score for increasing and decreasing the value of feature k
respectively. They are calculated using the following rules: (i) if all the trends of change (i.e.,

sign( CS(i?j_S(ji) )) are same, then wIS, is calculated using Eq. 5 where ¢ is + if the changes are

Cl=r ,j=kACI,€[0,1](4)
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positive and - for negative. (ii) if both positive changes and negatives change exist, wl S and
wlS,* are calculated using a modified version of Eq.4 so that the summation is done only on
the positive and negative changes and do normalization respectively. Additionally, the impact
score introduced above measures the overall importance of changing both the intervened
feature and its descendent features (caused by intervention on this feature).

It is important to understand how much each changed feature contributes to flipping the
outcome. Consequently, we introduce another metric, called pure impact score (PIS), to quantify
the importance of every changed feature within the counterfactual explanations obtained by
the same intervention.

Hence, the PIS for a feature is calculated by subtracting the impact (on flipping the outcome)
caused by its child nodes from the IS score of this feature. As the weighted impact score
representing the change of impact score per unit change of the value of the feature, the impact
of each child node is m can be hence quantified as the average of the changes of the m’s values
multiply by the weighted impact score of m. The impact caused by feature m when m is causally
affected by feature k is defined as follows:

lt=s

) 1 .
1yl o
+X U———wIS, . )

PIS'=wIS, " H
While the pure impact score for the intervened feature k, PIS; , is defined as:

]
PIS{=IS,~ Y, PIS](7)

meCH,
where CH, is the set of indices of the child nodes of feature k. The value of PIS, is then
normalized over IS, to represent the percentage of effort for flipping the outcome.

Implementation Details

Model Settings

In our experiments, we have 6 layers for the multi-head attention (MHA) module. We used stochastic
gradient descent + momentum (SGD + Momentum) as the optimizer for training. Since the
DementiaBank is an unbalanced dataset, we added a class weight correction by increasing the
penalty for misclassifying the less frequent class

During model training to reduce the effect of data bias. The class weight correction ratio used in this
paper is 7:3. We randomly split the original data into 81% training, 9% validation and 10% testing
over multiple seeds. Our proposed model achieves a high accuracy of 92.2%, F1 score of 0.952,
precision of 0.935, recall of 0.971, and AUC of 0.971 on the DementiaBank dataset.

PoS Features Causal Relation Discovery

As mentioned earlier, we use the PC Algorithm [29] to discover the intra-feature dependencies.
The causal graphs returned by the PC Algorithm contain undirected edges. We hence further
revise the returned graph by orienting the undirected edges. The edges are oriented according
to our knowledge of the linguistic features. For example, we make the causal direction NN->]]
since NN (nouns) causes the use of J] (adjectives). The full causal graph for the 27 linguistic
features used in our experiment is illustrated in Fig. 4.
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Problem Solver

Solving the I, norm constraints in Eq.2 is a non-trivial task. However, the parts-of-speech (PoS)
features used by the proposed classifier are all integers and within narrow ranges. It makes it
possible to solve our problem by exhausting all the solutions and then select the optimal ones.
Gradient-based methods can be used for solving continuous values. In the work, we focus on
classifying the text into Alzheimer’s disease or control and is hence discrete. Additionally, we set the

certainty parameter to 80%, this implies all solutions, I, that satisfy ||h(G(UiF‘,I;F))—y'||2<a,
where a=0.04, are considered optimal. The value of « is chosen to reflect 80% certainty.

@@®@@

022%e,
®
@@@@@

& T
LT

Figure 4 Causal Graph for 27 Linguistic features. The starting variable of each directed edge represents the cause, and the ending
variable represents the effect.

Results
Predictive Power of PoS Features

Table 3 Evaluation of the trained AD diagnosis model.

Accuracy Precision Recall F1-Score 1 AUC
92.2% 0.935 0.971 0.955 0.971

All PoS features described in Table 2 are used for model training. The models’ performance has been
evaluated using the accuracy, precision, recall, Fl1-score and area under the receiver operating
characteristic curve (AUC) metrics. All these scores are reported in Table 3. The high performance
illustrates that PoS features extracted from speech can help to distinguish AD patients from the
health controls. This finding encourages us to move forward to explore which of the PoS features is
playing vital role.
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Knowledge Extracted from Model Explanation

In this section, we continue to reveal the significant PoS features that direct the model’s
decision. We analyze the counterfactual examples from a statistical perspective and analyze the
important features derived from this analysis. We study the counterfactual explanations for a
control sample (i.e.,, an individual without Alzheimer). The important features are derived by
analyzing which feature plays a vital role in misclassifying a control sample as an Alzheimer's
patient. In this experiment, we report the results of 210 of 243 controls. These 210 control
samples were classified correctly by the classifier. The optimal counterfactual explanation for
all the 210 results can be achieved by only intervening one feature. Other samples are excluded
because of misclassification.

Impact Score for 27 PoS Features

9

8
s
a
3
z
m ——-.---___
o

IN  PRP RP  VBG PDT NNP Il NN VBD RB VB WP NNS CC DT TO VBP MD VBZ PRPS VBN UH EX € UR NS WP$

Figure 5 The impact score (IS) for 27 PoS features. Feature with higher IS value denotes more samples successfully flipping the
model’s outcome by intervening on it.
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Weighted Impact Score for 27 PoS Features
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Figure 6 The weighted impact score (WIS) for 27 PoS features. Features with higher values denote more importance for machine
learning in making decisions.

We plot the both the impact score and weighted impact score for all PoS features in Fig. 5 and
Fig. 6. We regard the top twelve features (IN, PRP, RP, VBG, PDT, NNP, J], NN, VBD, RB, VB and
WP) as our primary findings about important PoS features in AD diagnosis. The selection
considers PoS features that have both high IS scores and wIS scores. Features with low IS scores
indicates that few samples adopt them for flipping the model’s output which is less reliable as
the lack of agreement by the majority. In Fig.7, we also illustrate the examples of AD and
healthy control from original dataset and the counterfactual examples (explanation) in a spider
plot. It shows that, the generated counterfactual examples capture the difference of PoS
features between AD patients and healthy controls. The PoS features, we used in this work are
shown in Table 2. Further information of those features can be found in [30], [31].
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== Counterfactuals of Healthy Control (Classified as AD)
IN =#= Examples of AD
1l VB ==a— Examples of Healthy Control

PRP

VBG NN

PDT WP
NNP VED
RE

Figure 7 Spider plot of samples for AD patients, healthy control and counterfactual samples (classified as AD patients).

Table 4 Impact Cost in percentage and the direction of change for all 27 PoS features. A smaller CI value denotes smaller changes

are needed.
PoS feature name Cost of Impact (CI) value
NN /P 16.9%
NNS 1€ 30.0%
MD ¢ 9.0%
TR 83.3%
PRP ! 18.1%
VB ! 69.3%
IN 1} 5.5%
Jj ! 16.5%
RP 1 16.7%
PRP$ 1 30.3%
CCt 48.7%
CD 1 75.6%
VBG | 20.7%
PDT ¢ 20.2%
UH 1 33.3%
NNP 1 29.5%
TO 1 57.4%
DT | 13.6%
RB ! 49.6%
VBZ | 12.5%
VBN 86.7%
WP 1 67.1%
VBP ¢ 73.8%
7IS 1 100%
VBD ¢ 37.1%
EX 1 67.2%
WPS$ 100%

*Please refer Table 2 for all abbreviations for the feature names.
*The down-arrow indicates the decreasing the values.
‘The up-arrow indicates increasing the values.
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We then analyze the important features, to answer the question:
How exactly does intervening a feature cause the outcome to flip?

To answer the above question, we need to consider the children features of the intervened
feature given by the SCM. More specifically, knowing that the counterfactual examples have
moved across the decision boundary (i.e., the outcome has flipped), we examine how each
changed feature (i.e., intervened features and its children) affects this movement of the original
examples towards or away from the decision boundary. We use the normalized PIS (in terms of
percentage) to quantify this effect. Positive PIS denotes moving the original examples towards
the decision boundary and vice versa. In Fig. 8, we show four representative features as
examples and illustrate how changes in each feature contribute to flipping the outcome.

To complete the explanation that we promised at the beginning of this section, we use cost of
impact (CI) to quantitatively describe the average minimal changes that must be done to flip the
outcome. In Table 4, we report CI and the changing direction (an up-arrow means an increase
in the value is required while a down-arrow means a decrease is required). Take NN (nouns)
for example, reducing the use of it by 16.88% of the total range of NN (nouns) feature, will
make the classifier flip the final decision.

—
= o DT )4 PiIs=11.24%
I PIS =11.03% g

IPIS = 85.38% VBZ>-| PIS = 3.58%

(a) Impact Analysis for VBG

I=pis = 19.41%

PIS=7.73%

PIS = 100%

(g) Impact Analysis for VBD

1 =PIS =0.4%

J=PIS=107%

PIS = -7.4%

(j) Impact Analysis for WP

Figure 8 Explanations for the representative features: For an intervened feature: the red down-arrow indicates a decrease of value is
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required for flipping the outcome, for a child node (feature): the red down-arrow indicates the changing direction caused by the
intervention. The same rule applies to the green up-arrow (an increase of value) and the orange horizontal line (no change of value)
(a)-(d) Cooperative: We consider the features to be “cooperative” if both the intervened feature and its descendent features contribute
to flip the outcome. (e)-(h) Dominant: we define the feature as dominant if the intervened feature significantly contributes to flip the
outcome while its descendent features make no or opposite contribution. (i)-(j) Idling: We define the intervened feature as “idling” if
it itself only contributes to flip the outcome slightly while the child features make a significant contribution. (k)-(1) Inverse: We term
the feature “inverse” if the change of the intervened feature moves the original instances away from the decision boundary, but it
causes other features to significantly push the original instances forward to the decision boundary.

Now, we combine the results from both Table 4 and Fig. 6 to offer explanations for all important
features. For clarity, in the following explanation, we do not imply the words “increase”,
“decrease” or “change” as the actions that can modify the values of features. These three words
are used to represent the pattern of how much the divergence of a feature from its real value
can affect the decision of the model. We use “contribution” or “contribute” to denote the
positive effort (measured by PIS) or process to flip the outcome. As an opposite to “flip the
outcome”, we use the terminology “consolidate the outcome” to denote that changing a feature
causes the outcome to move further away from the decision boundary.

@® VBG: Decreasing the value of VBG by 20.66% causes both values of DT and VBZ to
decrease. The decrements of VBG, DT, and VBZ contribute to flipping the outcome.

@® PDT: Increasing PDT by 20.21% causes VBG, DT and RP to decrease or remain
unchanged. VBG and DT contribute significantly to flip the outcome, while PDT makes
partial contributions.

@ NNP: Increasing NNP by 29.46% will cause DT to decrease. Increasing NNP contributes
significantly to flipping the outcome, while the resulting decrements of DT make a
partial contribution.

@® VB: Increasing VB by at least 69.25% will cause RB and WP to change or remain
unchanged and cause TO to increase. The changes of VB, RB, and TO contribute
significantly to flip the outcome. The changes in WP makes small contributions.

® JJ: Increasing JJ by at least 16.51% will cause NNP and UH to increase or remain
unchanged, and cause RB to change or remain unchanged. Even though the change of
NNP and RB consolidate the outcome, increasing J] can significantly contribute to
flipping the outcome. Additionally, the change of UH makes a negligible contribution
compared with the increment of J].

@® PRP: Increasing PRP by at least 18.09% will cause WRB to increase or remain
unchanged, and cause VB, IN, RB, VBP, and VBD to change or remain the same. However,
by analyzing the PIS for the changes in these features, we conclude that PRP contributes
significantly to flipping the outcome.

@® VBD: Increasing VBD by at least 37.11% will not cause PRP and TO change. We conclude
that VBD solely contributes to flipping the outcome.

@® RB: RB does not have any descendants. We conclude that increasing RB by 49.62% will
cause a flip in the outcome.

@® NN: Decreasing NN by 16.88% can cause CD, DT and ]] to decrease or stay unchanged.
Though the change of NN does not contribute to flipping the result, the resultant
changes of CD and DT are enough to flip the outcome.

@® WP: Increasing WP by 67.1% can cause RB and VBP to increase, decrease or stay
unchanged. Though the changes of WP and RB do not contribute to flipping the result,
the resultant change of VBP are enough to flip the outcome.

@® RP: Increasing RP by 16.67% causes VBG and VBZ to decrease and NNP to either
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decrease or remain unchanged. The changes of RP consolidate the outcome. However,
increasing RP can still flip the outcome since intervening on RP will cause the
descendent features to change. These changes significantly contribute to flipping the
outcome.

@® IN: On an average, either increasing or decreasing IN by 5.53% can cause CD, DT, EEX,
PRP, VBG, and VBN to change or remain unchanged. Among all the descendants of IN,
the change of CD, EX, PRP, and VBN make negligible contributions to flipping the result.
The change of IN consolidates the outcome, and the major contributions to flipping the
outcome are influenced significantly by decreasing VBG and slightly, by decreasing DT.

Discussion
Principal Findings

Firstly, the high performance of the AD diagnosis model on PoS features indicates that PoS
features have a rich of clues of speech/language impairments that happens in AD patients.
Later by explaining the model using our proposed OICE XAI method, we reveal several
important linguistic biomarkers in early-stage Alzheimer’s disease detection. Some of the
findings are consistent with the prior findings in psychology and NLP:

@ Adverb (RB) is highly relevant to semantic impairment: [32] claims that adverb shows a
deictic purpose, which is more common in aphasics with a semantic impairment, and
further in [33], adverb was proved to have higher correlations with a diagnosis of AD.
Our one intervention method shows that increasing the usage of RB, causes the same
speech to be classified as a patient (from a control). Hence, our experiments align with
previous findings that increased use of adverbs is an indicator of AD.

@ Increased pronoun (PRP) usage is an important sign of semantic dementia: [34] shows
that dementia patients with semantic dementia produced an increased number of
pronouns than controls. The result is in line with our conclusion that increasing the
number of PRP in a control's speech classifies it as a speech sample of a dementia
patient.

@® Noun (NN) naming deficits indicate cognitive deficits: AD patients show graceful
degradation of using living and non-living nouns [35]. We see the same decline in noun
usage when shifting from a control sample to a dementia sample.

The consistency between findings of this study and previous studies implies the model possibly
learns useful clues about PoS feature. It somewhat supports the point that the rest of the not
studied features can offer new insights. To sum up, three of twelve important features (i.e., RB,
PRP, and NN) found by our method are consistent with prior findings. We additionally find
another eight important features that have not been reported yet, which are IN, RP, VBG, PDT,
NNP, J], VBD, VB and WP. Our work also seems to suggest that the most important feature may
be IN or the use of prepositions. Further clinical studies may be necessary to verify this insight.

Limitations and Further Study

For the scope of work that we consider here, we do not see any limitations; however, we do believe
that there is good scope for further study in this area. More modalities can be used in designing an
Alzheimer’s disease predictor. These modalities could include brain imagery and other traditional
bio-markers. The OICE method can then be applied to all the features used to detect AD leading to a
much more nuanced understanding of the causal relations of these biomarkers. This could then lead
to clinical trials that test these findings. A subset of non-invasive biomarkers may then emerge as
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important in predicting AD and this might in turn lead to easier to implement screens for the disease.

Conclusions

In this work, we propose a novel counterfactual explanation method, called one-intervention
counterfactual explanation (OICE), to analyze the dominant linguistic features, specifically PoS
features, that can be used for AD disease detection. We propose three metrics to evaluate the
contributions of these features to the final decision of the model. We collect the explanations
from the AD detection model of high accuracy and analyze these explanations by the metrics
we define. The features declared as important in the detection of AD by our methods are
consistent with previous works in psychology and the NLP, such as adverb, pronoun, and noun.
We also find a few other features that are important, and which have not yet been reported.
Finally, by leveraging the structural causal model, we further explain how these important
features affect the decision-making process.

Data Availability

The DementiaBank Dataset [25] used in this work is password protected and restricted to
members of the DementiaBank consortium group. Accessibility to this dataset can be granted
after joining DementiaBank consortium group as a member. For details about accessing the
dataset, please refer to [25].
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Abbreviations

XAIL explainable artificial intelligence

DL: deep learning

ML: machine learning

SCM: structural causal model

NLP: natural language processing

AD: Alzheimer’s disease

ADRD: Alzheimer’s disease Related Dementia
OICE: one-intervention counterfactual explanation
CGNN: causal generative neural network
MMD: Max Mean Discrepancy

MAD: Median Absolute Deviation

IS: impact score

CIL: cost of impact

wliS: weighted impact score

PIS: pure impact score
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Method Overview. Procedures of using XAl for scientific discovery.
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The proposed transformer-based classifier that uses the PoS features of the patient/control’ s description.
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Example of a Structural Causal Model (SCM). Left: causal graph, right: causal mechanisms. Asfor CGNN, each causal
mechanism isimplemented with a generative neural network.

Us

. o [ X, =F(Uy)
X7 = F,(Up)
U, o X3 = F3(X4,U3)
X4 = F4(X1,X3,U,)

, @ Xs = Fs(Xz, Xy, Us)

-

https://preprints.jmir.org/preprint/36590 [unpublished, peer-reviewed preprint]



JMIR Preprints Wen et d

Causal Graph for 27 Linguistic features. The starting variable of each directed edge represents the cause, and the ending
variable represents the effect.
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The impact score (1S) for 27 PoS features. Feature with higher IS value denotes more samples successfully flipping the model’ s
outcome by intervening on it.
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The weighted impact score (wlS) for 27 PoS features. Features with higher values denote more importance for machine

learning in making decisions.
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Spider plot of samplesfor AD patients, healthy control, and counterfactual samples (classified as AD patients).
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Explanations for the representative features: For an intervened feature: the red down-arrow indicates a decrease of valueis
required for flipping the outcome, for a child node (feature): the red down-arrow indicates the changing direction caused by the
intervention. The same rule applies to the green up-arrow (an increase of value) and the orange horizontal line (no change of
value) (a)-(d) Cooperative: We consider the featuresto be “ cooperative” if both the intervened feature and its descendent
features contribute to flip the outcome. (e)-(h) Dominant: we define the feature as dominant if the intervened feature
significantly contributesto flip the outcome while its descendent features make no or opposite contribution. (i)-(j) Idling: We
define the intervened feature as “idling” if it itself only contributes to flip the outcome slightly while the child features make a
significant contribution. (k)-(I) Inverse: We term the feature “inverse” if the change of the intervened feature moves the
original instances away from the decision boundary, but it causes other features to significantly push the original instances

forward to the decision boundary.
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