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Abstract

Background: Machine learning-based Alzheimer's detection using natural language processing has drawn increasing attention
because of its low cost compared with traditional methods. However, most of these models are black-boxes, and the decision
mechanisms of the AI are obscure. In some fields like medicine, this obscurity gets in the way of widespread adoption. This has
led to the development of a new class of techniques that are generally referred to as explainable AI (XAI). One approach to this
problem is counter-factual explanations which answer “what if” questions like “What would have happened to Y, had I not done
X?”.

Objective: This study aims to improve the transparency of a the-state-of-art language-based Alzheimer’s disease (AD) detection
model and discover linguistic biomarkers that are indicative of AD and hence can be used as tools for automated diagnosis of
AD.

Methods: In this paper, a new explainable artificial intelligence (XAI) method is proposed and named one-intervention
counterfactual explanation (OICE).  This method works on the state-of-the-art language-based, deep learning method for AD
detection and provides an explanation of that method. The proposed OICE incorporates causal factors among the features used in
the detection of AD, to provide more transparency of the AI’s decision. This is in contrast to conventional counterfactual
explanation methods which do not incorporate causal mechanisms. An understanding of causal factors can go beyond mere
statistical correlation to provide a better understanding of the underlying physical phenomenon. The proposed OICE generates
counterfactual explanations from a predefined deep-based structural causal model (SCM). The proposed method generated
explanations of the AI’s decision by only intervening on one feature at a time. Since OICE provides explanations for individual
samples, we then analyze the counterfactual explanations statistically and define some metrics to quantify the effect of every
feature.

Results: We find 11 language level biomarkers for Alzheimer’s disease detection such as adverb, pronoun, noun, preposition,
etc. Previous work in psychology and NLP points out adverbs, pronouns, and nouns as potential biomarkers. Our study concurs.
We also find new biomarkers that were not reported in previous studies, such as preposition, predeterminer, etc. Our results also
reveal how these biomarkers are involved in the diagnostic process from a causal perspective. For example, an on-average 20.2%
increase in predeterminer, causes determiner, verb (present particle), and grammatical particles change, resulting in flipping in
the diagnosis from control to Alzheimer’s disease. This implies that predeterminer is potentially a strong indicator of the
individual’s health and can function as a strong biomarker.

Conclusions: Our findings show consistency with previous works in psychology and natural language processing (NLP).
Additionally, we offer a new explanation about how intervening a feature can affect the model's decisions using the pre-defined
SCM.
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Revealing  the  Roles  of  Part-of-Speech  Taggers  in  Alzheimer’s  Disease
Detection:  A  Scientific  Discovery  Using  One-intervention  Causal
Explanation

Abstract

Background: 
Recently rich computational methods that use deep learning (DL) or machine learning (ML)
have  been  developed  using  linguistic  biomarkers  for  early-stage  Alzheimer’s  Disease  (AD)
diagnosis. Moreover, some qualitative and quantitative studies have indicated that some part-
of-speech (PoS) features/tags could be good indicators of AD. However, there has not been a
systematic attempt to discover the underlying relationships between the PoS features and AD.
There has also not been any attempt to quantify the relative importance of these PoS features
in detecting AD.

Objective:
Our goal is to disclose the underlying relationship between PoS features and AD. Understand
whether PoS features are useful in AD diagnosis and  explore which of the PoS features play a
vital role in the diagnosis. 

Methods: 
The DementiaBank,  containing 1049 transcripts  from 208 AD patients  and 243 transcripts
from 104 elderly controls is used. 27 parts-of-speech (PoS) features from are extracted from
each record. Then,  the relationship between AD and each of the PoS features is explored. A
transformer-based deep learning model for AD prediction using the PoS features is trained.
Then a global explainable artificial intelligence (XAI) method is proposed and used to discover
which PoS features were most important in AD diagnosis by the transformer based predictor.  
A global (model-level) feature importance measure is derived as a summarization from the
local  (example-level)  feature  importance  metric,  which  is  obtained  using  the  proposed
casually-ware counterfactual explanation method. The unique feature of this method is that it
considers causal relations among PoS features and hence can preclude counterfactuals that are
improbable and hence result in more reliable explanations. 

Results: 
The deep learning-based AD predictor achieves an accuracy of 92.2% and an F1-score of 0.955
when distinguishing  AD  patients  from  healthy  controls.  The  proposed  explanation  method
identified 12 PoS features as being important to the diagnosis of AD from healthy control. Of
these, 3 features have been identified by other researchers in previous work in psychology and
natural  language  processing  (NLP).  Nine  other  PoS  features  have  not  been  previously
identified. We believe that this is an interesting finding that can be used in creating tests that
might  aid  in  diagnosing AD.  Note  that  although,  our  method is  focused on PoS features,  it
should  be  possible  to  extend  to  more  types  of  features,  perhaps  even derived  from other
biomarkers, like syntactic features. 

Conclusions:
The high classification accuracy of the proposed deep-learner indicates that PoS features are
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strong clues in AD diagnosis. There are 12 PoS features that are strongly tied to AD and since
language is a non-invasive and potentially cheap method for detecting AD, this work shows
some promising directions in this field.

Keywords:  explainable machine learning; Alzheimer’s disease;  natural  language processing,
causal inference.

Introduction

Background

Alzheimer's Disease (AD) is a serious and the most common dementia worldwide. In the US,
more than 5 million individuals are living with AD, and AD Related Dementia (ADRD), costing
the nation $244B in 2019. The National Academy of Sciences,  the National Plan to Address
Alzheimer’s  Disease,  and  the  Affordable  Care  Act  through  the  Medicare  Annual  Wellness,
identify earlier detection of ADRD as a core aim for improving brain health for millions of
Americans.

Traditionally,  brief  cognitive  screening  tests  and  biological  marker  methods  (usually
neuroimaging [1-4] or cerebrospinal fluid examination [5]) have been used for identification.
However, these approaches tend to be invasive, expensive, and/or trigger patient compliance
problems. Alternatively, spoken language is a rich and inexpensive source of information in the
detection of cognitive status even at the early stage.

Robinson  et  al.  have  [6] showed  that  AD  patients  are  more  likely  to  have  a  reduction  of
vocabulary size and difficulty in correctly using verbs and nouns. Croisile et al. [7] have showed
that AD patients give a shorter speech, more implausible details, and syntactically simplified
descriptions. 

Recently,  machine  learning  (ML)  or  deep  learning  (DL)-based  automated  early-stage  AD
detection using linguistic features have been proposed and demonstrate outstanding diagnosis
accuracy.  Eyigoz  et  al.  [8]  have  demonstrated  that  a  patient's  language  performance  in
naturalistic probes can expose subtle early linguistic signs of progression to AD much before a
clinical diagnosis of the impairment. Khodabakhsh et al. [9] have studied the diagnosis of AD,
using  speech  features  extracted  from  a  spontaneous  conversation  and  obtained  90%  AD
detection accuracy. ML/DL-based methods allow for the use of latent features which go beyond
handcraft features and represent more sophisticated concepts. For example, word (sentence)
embeddings maps words (sentences)  from a vocabulary to  a vector  of  real  numbers.  Good
embeddings  will  encode  similar  concepts  to  adjacent  vectors.  Studies  that  use  word
embeddings for AD diagnosis include [10-13]. In addition to the use of word embeddings, [10]
uses  PoS  features;  [11]  uses  PoS  features  and  sentence  embeddings;  [12]  uses  targeted
psycholinguistic,  sentiment,  and  demographic  features;  In  [13],  recurrent  neural  networks
(RNN) are  used to  capture the  temporal  dynamics  in  speech recordings  for  improving the
diagnosis accuracy.

However, most previous works are performance-oriented and construct more complex models
with an increasing number of features and modalities. Though better diagnosis accuracy has
been achieved,  they usually sacrifice  transparency in  the  diagnosis-making process.  This  is
because most of these complex models are deep-learning-based, which are inherently opaque
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and not all the features are human interpretable. This is especially true if their influence on the
prediction  is  not  well  understood.  This  opaqueness  and  lack  of  understanding  of  the
contributions of individual features to the prediction has resulted in a reluctance by the clinical
community to use these methods in practice [14]. 

Explainable Artificial Intelligence (XAI) refers to methods that can reduce the opaqueness of
deep  learning  models.  XAI  methods  can  be  classified  according  to  various  criteria.  One
taxonomy  is  based  on  the  format  of  explanation.  Local  explanation  or  example-based
explanation explains an individual prediction while the global explanation explains the model
behaviour (e.g., feature importance).  

Beyond explaining the model’s internal mechanism, recent works have used XAI methods for
scientific discovery. XAI-based scientific discovery enables the discovery of insightful scientific
concepts from model explanations obtained by XAI methods. Ginsburg et al. [15] propose FINE
(feature importance in  nonlinear embeddings) for the analysis  of  cancer patterns in  breast
cancer  tissue  slides.  FINE automatically  determines  the  important  features  which revealed
previously unknown scientific attributes.  Li  et al.  [16] have shown that similar concepts to
Kepler’s  laws  of  planetary  motion  and  the  Newton’s  law  of  universal  gravitation  can  be
obtained by XAI methods. 

Objectives

Our goal is to disclose the underlying relationship between PoS features and AD.  Our work
firstly  explores  the  predictive  power  of  PoS  features  for  AD  diagnosis  by  using  a  well
performing  transformer-based  [17]  model,  which  is  trained  to  use  PoS  features  for  AD
diagnosis. If a feature does not impact the decision of this predictor, then it stands to reason
that this feature does not have much predictive power. Note that, though PoS features are used
in previous works for AD diagnosis, and impressive accuracies have been achieved, they are
usually combined with other features as inputs and hence the effect of PoS features alone is
unclear. In our study, we find that using only PoS features can still yield a high AD diagnosis
performance with 92.2% accuracy. Hence it is interesting to discover which PoS features play
vital roles in this prediction.

In  order  to  understand the  importance of  any given feature  for  a  particular  problem,  it  is
important to study the effect this feature has globally, on all samples. To achieve this goal, we
use example-based explanation called counterfactual explanation (CFE) [18] on our predictor.
Example-based explanation gives explanations for individual data samples. Then, we analyze
the statistical summary of the counterfactual explanations of a group of data samples to show
the global effect of each input feature.

Conventionally, counterfactual explanation aims to answer “Why” questions such as “Why the
model's decision is Y” or “What would have happened to Y, had I not done X?”. The first step in
obtaining the counterfactual explanation is to search for the counterfactual examples which are
defined as the examples obtained by applying minimal changes to the features of the original
example  and  having  the  predefined  outputs.  Then,  the  counterfactual  explanations  can  be
extracted by comparing the differences between the original example and its counterfactual
examples. For example, if the model’s prediction is changed from AD patient to healthy control
as we manually increase the appearance of nouns by the minimal unit (e.g., 1) in a data sample,
then the counterfactual explanation would indicate that the number of nouns used is as an
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important factor in classifying the sample as being from an AD patient. 

However,  when  generating  counterfactual  examples,  the  conventional  counterfactual
explanations  assume  features  are  independent of  each  other.  This  can  result  in  the
counterfactual  examples  that  are  not  feasible  in  the  real  world.  For  example,  an infeasible
counterfactual  explanation  can  suggest  that  the  number  of  nouns  be  decreased  while  the
number of adjectives be increased, which is anti-causal since adjective words are usually used
to decorate noun words and hence its appearance is supposed to increase or be unchanged as
the number of noun words increasing. 

It is clear that conclusions drawn from potentially infeasible counterfactuals cannot be reliable.
Hence, it is important to develop a causally away counterfactual intervention method for our
purposes.  We  argue  that  the  key  point  to  making  the  generated  counterfactual  examples
feasible is to ensure the generation process of counterfactual examples obeys causal rules. That
is,  as we generate counterfactual examples by making changes to some features,  the causal
consequences of these changes (e.g., increase number of nouns cause the increase of number of
adjectives) have to be considered. 

To  generate  feasible  counterfactual  examples,  we  propose  to  use  a  causal  model,  which
contains a directed graph that models the random variables by nodes and their causal relation
by directed edges.   Each edge in the causal model also encodes the causal function f:  P→C,
where C is any variable that is modeled in the causal model and P represents the variables that
cause variable C. Then one can generate counterfactual examples of the original example by
doing interventions in the causal model. Performing interventions is the process where some
variables  within  a  sample  are  changed  to  fixed  values  and  the  rest  of  the  variables  are
generated according to the causal functions (e.g., f). A counterfactual sample can be regarded as
a counterfactual explanation if it can yield the predefined output. 

To understand the significance of a single feature, we propose only to intervene on one feature
at  a  time  for  counterfactual  generation.  We  hence  name  our  proposed  method:  one-
intervention-causal-explanation  (OICE).  We  then  use  the  one-intervention  counterfactual
examples to explain the importance of each feature by asking, “What would have happened to
the output, had I intervened on feature A?”. Moreover, using one-intervention can allow us to
systematically study the impact of the different features. Each feature (and its descendants)
that  is  impacted  by  the  parent  feature  in  this  one-intervention  approach,  can  be  further
analyzed by the structural causal model (SCM). Finally, we define three metrics to quantify the
importance of features in the decisions.

Related Work

Counterfactual Explanation

Counterfactual explanations are a widely used method for generating explanations of a model's
decision and aim to answer “How the world would have to be different for a desirable outcome
to  occur”  [18].  By studying these counterfactual  instances,  one can explain why the model
arrives at the outcome, by comparing the difference between the hypothesis and the original
scenarios or a possible suggestion about how the desired outcome can be obtained by changing
some  of  the  features.  Generally,  counterfactual  explanations  are  generated  by  finding  the
minimal changes that are needed to change the classification of this instance to the desired
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class. Wachter et al. [18] formulates a general form for finding the counterfactual explanations
xCF :  

xCF
=argmaxx ' λ ( f w ( x ' )− y' )+d ( x , x ')(1)

where x is the query instance, f w is the classifier, y '  is the desired output, and d (∙ ,∙)   is a distance
function. In practice, maximization over λ  is done by iteratively solving for x ' and increasing λ
until a sufficiently close solution is found. 

The quality of  counterfactual  explanations is  measured in  terms of  actionability,  feasibility,
diversity, and sparsity. The meaning of each metric is stated as follow:

● Actionability: A CFE that changes any immutable features (e.g., gender: male →  female)
is un-actionable and vice versa.

● Feasibility:  Features  that  are  changed  by  a  CFE  should  be  in  a  reasonable
range/population. An infeasible CFE could be changing the number of credit card from 5
to -1.

● Diversity: The ability to generate diverse CFEs.
● Sparsity: The number of features that are changed in CFES. Fewer changes/high sparsity

is favorable since humans can only extract limited information.

Most  existing  approaches  in  the  literature  of  counterfactual  explanations  are  dedicated  to
improving the metrics mentioned above. Recent studies [19, 20] consider the distribution of
data and generate counterfactual instance from the relatively high-density region of the input
space. These methods improve the feasibility by avoiding unlikely or unrealistic counterfactual
instances  under  the  data  distribution.  Ustun  et  al.  [21]  improves  the  actionability  and
feasibility by allowing the counterfactual instances that optimize a user-specified cost function
and prevent counterfactuals from changing immutable variables like age, sex, gender. Russell
[22] proposes a Mixed Integer Programming (MIP) formulation to handle mixed data types and
offers counterfactual explanations for linear classifiers that respect the original data structure.
This formulation is guaranteed to find coherent solutions by only searching within the “mixed-
polytope” structure defined by a suitable choice of linear constraints.

The work most similar to ours is [23], which shifts the paradigm from nearest counterfactual
explanations  to  minimal  interventions.  Specifically,  in  [23],  counterfactual  examples  are
generated  by the  predefined  SCM and  a  set  of  possible  interventions  to  reach the  desired
outcomes.  The  optimal  intervention  set  is  obtained  by  choosing  the  one  that  induces  the
minimum cost, where the cost is measured by a predefined cost function on the intervention
sets. Additionally, they prove the necessity of considering all inter-variable causal dependencies
and demonstrate  efficiency on some toy datasets.  We use a  more complex SCM,  known as
Causal  Generative  Neural  Network  (CGNN)  [24],  to  capture  the  inter-variable  causal
dependencies and generate counterfactual explanations by the intervention. We additionally
statistically analyze the derived explanations to inspect the global behaviour of the model.  

Methods

For scientific discovery purposes, our method incorporates three phases: knowledge learning,
knowledge  extraction,  and  knowledge  verification.  As  shown  in  Fig.  1,  in  the  knowledge
learning  phase,  we  use  a  transformer-based  classifier  to  learn  the  underlying  mechanism
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between PoS features and AD; In the knowledge extraction phase, we use our proposed XAI
method, OICE to extract the learned mechanism. Specially, OICE would quantitatively indicate
the  importance  of  PoS  features  used  by  the  model  in  AD  classification;  The  extracted
knowledge (i.e., feature importance) would be verified with findings of previous works in phase
3. A model that is verified to have high consistency with previous findings is more plausible and
hence is  more likely to bring reliable insights about the underlying mechanism among PoS
features and AD.

Figure 1 Method Overview. Procedures of using XAI for scientific discovery.

In the following sections, we will describe in detail the methods we used in the first two phases.
We  verify  the  extracted knowledge (phase 3)  in  the  Result  Section.  We  first  introduce  the
dataset followed by the structure of the transformer-based classifier. Then we introduce the
proposed model explanation method, OICE. Finally, we describe details in implementing the
introduced methods. 

Dataset Description

DementiaBank [25] is a database of multimedia interactions for the study of 
communications  in  dementia  patients.  This  dataset  comprises  of  the  transcripts  of  individuals
(dementia and control) who are given four tasks: (1) Cookie theft description: participants in both the
control group and dementia group were given a picture of a child attempting to steal a cookie and
asked to describe what they saw. (2) Word fluency: which measured their fluency (dementia group
only); (3) Recall: participants tested on their memory recall (dementia group only) and (4) Sentence
construction: where they were tested on sentence construction (dementia group only). In total, the
corpus contains 1049 transcripts from 208 AD patients and 243 transcripts from 104 elderly control
individuals for a total of 1292 t`ranscripts. Two examples of DementiaBank dataset are illustrated in
Table 1. In this study, we use all the transcripts described above.
The transcripts were tokenized into single word tokens, and each token is computed with PoS tags
using NLTK toolkit [27]. Upon each transcript, we generate a PoS feature vector with the counts of
27 PoS tags. The names and the meanings of the 27 PoS features are introduced in Table 2. 
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Table 1 Two examples of DementiaBank data sample. In our experiment, we analyze the PoS features that are extracted from the
speech records.

Label Speech Record
Healthy Control okay, well the mother is drying the dishes, the

sink is overflowing, um the little girl’s reaching
for a cookie,  and her brother’s  taking cookies
out of the cookie jar, and the stool is going to f
knock him on the floor laughs, he’s going to fall
on the floor  because the  stool’s  not  uh what,
with gravity,  whatever,  uh the uh curtains are
blowing I think, that’s all I can see

AD Patient I  would like  to have a lead pencil,  the tree  is
blossoming, I hope my child doesn't hafta go to
the hospital , I hope my child doesn't hafta go to
the  hospital,  I  shouldn't  say  that  because  we
have a daughter who's pregnant, and I do want
her to go to the hospital, okay then, this winter
has been a very cold one, the doctor said I, I sat
in  the  chair  by  a  the  doctor,  brief,  I'm  not,  I
forgot  to  try  make  them  brief,  the  bureau
drawer stands open

Ethical Consideration

We use the Dementiabank dataset which is archived by TalkBank. TalkBank is subject to its own
Code  of  Ethics  (detailed  in  [26])  which  supplements  but  does  not  replace  the  generally
accepted  professional  codes  of  American  Psychological  Associatgion  Code  of  Ethics  and
American Anthropological Association Code of Ethics. 

Transformer-based AD Classification Model

Recently we proposed a transformer-based [11] classifier to exploit PoS features, as shown in Fig. 2.
In our architecture we use the multi-head attention (MHA) module and the encoder structure of the
transformer  to  process  these  features.  Our  motivation  for  this  stems  from  the  success  of  this
architecture  in  creating  state-of-the-art  language  embeddings  as  demonstrated  in  [11].  This
architecture  comprises  of  a  self-attention module that  captures  the  intra-feature  relationships;  an
attention layer together with a following 1-D CNN layer.  The MHA module is the same as that
proposed in [11] for the popular transformer architecture. Let R={r1 ,r2 , I , rn }  be the set of records,
then ri  is the ith  record in the dataset. We compute PoS features for each record. Let P={p1, p2 , I , pn }

be the set of PoS feature vectors and pi  be the ith  vector in the PoS matrix. We use h Multi-Head-
Attention (MHA) layers on P={p1, p2 , I , pn }  to capture the relationship between the PoS features.
The MHA transforms  P to  another  matrix  of  n -dimensional  vectors  A={a1 , a2 , I , an } .  The MHA
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module is followed by a 1-layer CNN and a SoftMax layer to get the final classification.

                                                                                                      Table 2 PoS features & meanings

Tag Meaning

NN common nouns

PRP personal pronoun

VBG verb, gerund or present participle

UH interjection

NNS noun, plural

MD modal

JJR adjective, comparative

VB verb, base form

IN preposition or subordinating conjunction

JJ adjective

RP particles

PRP$ possessive pronoun

CC coordinating conjunction

CD cardinal number

PDT predeterminer

NNP proper noun, singular

TO to

DT determiner

RB adverb

VBZ verb, 3rd person singular present

VBN verb, past participle

WP wh-pronoun

VBP verb, non-3rd person singular present

JJS adjective, superlative

VBD verb, past tense

EX existential there

WP$ possessive wh-pronoun
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Figure 2 The proposed transformer-based classifier that uses the PoS features of the patient/control’s description.

One Interventional Counterfactual Explanation (OICE)

To derive an explanation, OICE first calculates the counterfactual explanations for each single
sample.  Each  single  counterfactual  explanation  can  be  simply  seen  as  a  vote  for  features’
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importance  by  each  sample.   Then,  OICE  groups  these  counterfactual  explanations  to
summarize the global explanation about feature importance.  In this subsection, we first outline
the preliminary information on structural causal models (SCM), which is an essential element
for obtaining counterfactual explanations. We then describe how we learn an SCM from the
data.  Next,  we  discuss  how  we  formulate  the  OICE  and  how  OICE  generates  individual
counterfactual explanations by using the pretrained SCM. Then, we introduce the metrics that
we propose to measure the feature importance (global explanation) according to a group of
counterfactual explanations.

Structural Causal Model
In this section, we review the concepts of structural causal models (SCM) and interventions. An
SCM,  M ,  can be represented  by a  triplet,  M=⟨ X , F ,U ⟩ ,  that  contains  a  set  of  endogenous
variables,  X={X1 , X2 , I , Xd } ,  a  set  of  causal  mechanisms,  F={F1, F2 , I , Fd } ,  and  a  set  of
exogenous  variables,  U={U 1 ,U 2 , I ,U d } ,  where  each  U i  is  independently  drawn  from
distribution,  U .  Any endogenous variable  X i  can be obtained by its causal mechanism  Fi  as
X i=F i(P A i ,U i) , where U i U  and P A i  denotes the parent nodes of X i  and P A i∈ X {X ¿i . 

In our case, the endogenous variables are the random variables of the PoS features. The causal
effect between two PoS features in hence encoded in the causal mechanisms between them
(can be null if no causal relation between them). The exogenous variables are seen as the set of
unknown factors that can cause PoS features. 

We denote an intervention in SCM by a do-operator do(⋅) . Intervening the set of X  to the value
a  can be then described as do( {X i=a}i∈I )  where I  is a set of indices of the subset of endogenous
variables  to  be  intervened  upon.  By  intervention,  causal  relations  and  causal  mechanisms
defined in the original SCM can be changed. Endogenous variables from I  can be obtained by
do( X i=a)  rather than X i=F i(P A i ,U i) . Therefore, by performing the intervention, the original
SCM M  can be changed to a post-intervention SCM M I .

Structural Causal Model via Generative Network
We use the CGNN proposed in [24] to represent the SCM since it does not limit the types of
causal mechanisms (e.g., linear or non-linear). Given a causal graph, a CGNN can be trained to
learn  the  causal  mechanisms  underlying  the  causal  graph  by  reducing  the  Max  Mean
Discrepancy  (MMD)  [28]  between  the  ground-truth  data  and  the  generated  data.  CGNN
generates  each  endogenous  variable  by  X i=F i

θi(P A i , U i) ,  where  Fi
θi  is  a  generative  neural

network parameterized by θi . For simplicity, we use Fi  to represent Fi
θi  in the rest of paper. U i

are  random  samples  drawn  from  Gaussian  distribution.  Fig.  3  illustrates  an  example  of
constructing SCM by CGNN. 
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Figure 3 Example of a Structural Causal Model (SCM). Left: causal graph, right: causal mechanisms.  As for CGNN, each causal
mechanism is implemented with a generative neural network.

The weights of causal mechanisms (i.e.,  θi ) are updated to minimize the MMD between the
ground-truth samples and the samples generated by the CGNN. In our experiment, we discover
the  causal  relations  from  the  dementiabank  dataset  by  using  the  PC  algorithm  [29].  PC
algorithm  is  a  constraint-based  causal  discovery  method,  under  the  assumption  of  causal
sufficiency (i.e., no latent confounders). We discover causal relations among PoS features from
the dementiabank dataset rather than use generic PoS causal rules as the former would better
capture the causal relations among PoS features in the dementia group. 

Explanation by Minimal Intervention
We now introduce some notations and discuss the formulation of OICE. Let xF∈Rd  denote the
original factual sample and xCF∈Rd  denote the counterfactual sample that is obtained by a set
of interventions  I .  Here,  we re-define  I={I 1 , I 2 ,…, I d }  to be an intervention set that has the
same length as the sample xF . For each element Ii , if Ii=0 , it denotes no intervention on x i

F  (the

ith  element of  xF ), otherwise do intervention x i
F
=Ii . Generally, any sample  x  (both factual and

counterfactual) can be generated by the SCM  ⟨ X ,F ,U ⟩  using the equation:  x=G(U F , I ; F) ,
where G represents a sequence of processes to generate x . G contains a causal graph and the
corresponding  causal  mechanisms  between  variables.  The  variables  of  a  sample,  x ,  are
generated in sequence from root to leaf of the causal graph. Generating factual sample xF , can
be done by setting all the elements in  I  to zero.  For a given xF , its corresponding exogenous
variables UF  can be obtained by inverting the generating process: UF

=G−1 ( xF ; F−1 ) . 

We formulate the problem of one-intervention counterfactual explanation as searching for the
optimal I¿  that results in a counterfactual example xCF , which would flip the outcome from y  to
y ' .  One-intervention is implemented by fixing the ‖ I ‖0  to be 1 . It is formulated as:

                           I¿
=‖h (G (U F , I ; F ) )− y ' ‖

2
, subject to  ‖ I ‖0=1(2)

where h  is the predictive model. In most cases, the model  h  is a probabilistic model, we then
select  the  optimal  solutions  I¿  as  the  one that  results  in  counterfactual  examples  that  can
achieve a certain degree of certainty to be  y '  (e.g.,  h (G (U F , I ; F ))  is 80% certain to be  y ' ). By
doing so, multiple optimal solutions are obtained, which contain different intervened features.
Note  that  the  same  kind  of  intervened  features  may  have  different  intervention  values.
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Consequently, we further distill our optimal solutions set by only keeping one solution for each
subset  with  the same intervention that  causes  the  minimum distance  weighted  by Median
Absolute Deviation (MAD) [18].

Note that OICE implicitly assumes the causal relation from variables xF  to outcomes y  by the
predictive model  h .  However,  OICE does not rely on this relation to generate counterfactual
examples xCF . Model h  in OICE only helps to solve the optimization problem stated in Eq. 1.

Metrics for Measuring Importance
So far, we have introduced how to obtain explanations for individual instances by OICE. We
then  make  the  inference  of  model’s  global  behaviour  (i.e.,  importance  of  features)  by
statistically  analyzing the explanations derived from a batch of samples.  In the section,  we
introduce some metrics to measure the impact of intervening a feature to cause a flip in the
outcome. The impact of features can be further associated with its importance for a machine
learning model in making a decision. 
Let  S={S (1) , S(2) , …, S(n)

}  represents  a  set  of  n  samples  that  belong  to  class  y  (i.e.,
h (S i )= y , for i=1,2 ,…, n ). In our case, the problem is a binary classification problem, and the

classes are: “control” or “Alzheimer’s”. Let  C k
( i)  denote the counterfactual explanation of the  ith

sample obtained by intervening on the feature k  and hence h (C k
(i))≠ y . To measure the impact on

flipping the outcome that is caused by intervening feature  k ,  we introduce our first metric,
Impact Score (IS). I Sk  can be interpreted as the proportion of counterfactual samples for which
feature k  must be intervened to flip the outcome and is defined as:

I Sk=
|I k|

n
(3)

where I k={i :h (C k
(i))≠ y ,i=1,2 ,…,n }  is a set that contains the indices of samples in S  that have a

counterfactual explanation obtained by intervening on feature  k .  The  IS score describes the
overall impact and does not consider the cost of the intervention (i.e., how much a feature has
been increased or decreased). Accordingly, we introduce another metric, weighted impact score
(wIS), to measure the impact made by changing the unit value of a feature. This measure trades
off the impact with the cost of impact. wIS can be used to compare among the features. Features
with higher  wIS  value have more importance in flipping the outcome. To define  wIS, we first
introduce the parameter, cost of impact (CI), to measure the average absolute change that must
be made to achieve the impact (i.e., impact score). Using subscript j  to index the jth  feature of a
sample S (i)  or C k

( i) ,  the cost of impact (CI) for feature k  can be defined as follow:

C I k=
1

|I k|
∑
i∈ I k

❑

❑
|C k , j

(i)
−S j

(i )|
Rk

, j=k∧C I k∈ [ 0,1 ](4)

where Rk  is the range of feature k . Next, we define the weighted Impact Score as follows:

wI Sk=
I Sk

C I k

(5)

Note that the  wIS defined in Eq. 5 does not consider the trends of change in a feature (i.e.,
increasing or decreasing).  To take care of this,  we separate  wI Sk  into  wI Sk

+¿ ¿  and  wI Sk
−¿¿  to

represent  the  weighted  impact  score for  increasing  and  decreasing  the  value  of  feature  k
respectively. They are calculated using the following rules: (i) if all the trends of change (i.e.,
sign( Ck , j

(i)
−S j

(i)  )) are same, then wI Sk
δ  is calculated using Eq. 5 where δ  is + if the changes are
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positive and - for negative. (ii) if both positive changes and negatives change exist, wI Sk
+¿ ¿  and

wI Sk
−¿¿  are calculated using a modified version of Eq.4 so that the summation is done only on

the positive and negative changes and do normalization respectively. Additionally, the impact
score  introduced  above  measures  the  overall  importance  of  changing  both  the  intervened
feature and its descendent features (caused by intervention on this feature). 

It  is  important  to  understand  how  much  each  changed  feature  contributes  to  flipping  the
outcome. Consequently, we introduce another metric, called pure impact score (PIS), to quantify
the importance of every changed feature within the counterfactual explanations obtained by
the same intervention.

Hence, the PIS for a feature is calculated by subtracting the impact (on flipping the outcome)
caused  by its  child  nodes  from the  IS score  of  this  feature.  As  the  weighted  impact  score
representing the change of impact score per unit change of the value of the feature, the impact
of each child node is m  can be hence quantified as the average of the changes of the m ’s values
multiply by the weighted impact score of m . The impact caused by feature m  when m  is causally
affected by feature k  is defined as follows:

PI Sk
m
=wI Sm

+¿× 1
|I k|

∑
i∈ I k

+¿
¿

❑
|Ck , j

(i)
−S j

( i)|
Rk

−wI Sm

−¿× 1
|I k|

∑
i∈ I

k
−¿

¿

❑
|Ck , j

( i) −S
j
( i)|

R k

(6)¿

¿

While the pure impact score for the intervened feature k , PI Sk
k , is defined as:

PI Sk
k
=I Sk− ∑

m∈C H k

❑

PI Sk
m
(7)

where  C H k  is  the set of indices of the child nodes of feature k.  The value of  PI Sk
m  is  then

normalized over I Sk to represent the percentage of effort for flipping the outcome.

Implementation Details

Model Settings 
In our experiments, we have 6 layers for the multi-head attention (MHA) module. We used stochastic
gradient  descent  +  momentum  (SGD  +  Momentum)  as  the  optimizer  for  training.  Since  the
DementiaBank  is  an  unbalanced  dataset,  we  added  a  class  weight  correction  by  increasing  the
penalty for misclassifying the less frequent class 
During model training to reduce the effect of data bias. The class weight correction ratio used in this
paper is 7:3. We randomly split the original data into 81% training, 9% validation and 10% testing
over multiple seeds. Our proposed model achieves a high accuracy of 92.2%, F1 score of 0.952,
precision of 0.935, recall of 0.971, and AUC of 0.971 on the DementiaBank dataset.

PoS Features Causal Relation Discovery
As mentioned earlier, we use the PC Algorithm [29] to discover the intra-feature dependencies.
The causal graphs returned by the PC Algorithm contain undirected edges. We hence further
revise the returned graph by orienting the undirected edges. The edges are oriented according
to our knowledge of the linguistic features. For example, we make the causal direction NN->JJ
since NN (nouns) causes the use of JJ (adjectives). The full causal graph for the 27 linguistic
features used in our experiment is illustrated in Fig. 4. 

https://preprints.jmir.org/preprint/36590 [unpublished, peer-reviewed preprint]



JMIR Preprints Wen et al

Problem Solver

Solving the  l0  norm constraints in Eq.2 is  a  non-trivial  task.  However,  the parts-of-speech (PoS)
features  used by  the proposed classifier  are  all  integers  and within  narrow ranges.  It  makes  it
possible to solve our problem by exhausting all  the solutions and then select the optimal ones.
Gradient-based  methods  can  be  used for  solving  continuous  values.  In  the  work,  we  focus  on
classifying the text into Alzheimer’s disease or control and is hence discrete. Additionally, we set the

certainty  parameter  to  80%,  this  implies  all  solutions,  I ,  that  satisfy  ‖h (G (U { F } , I ; F ))− y ' ‖
2
<α ,

where α=0.04 , are considered optimal. The value of α  is chosen to reflect 80% certainty.

Figure 4 Causal Graph for 27 Linguistic features. The starting variable of each directed edge represents the cause, and the ending
variable represents the effect.

Results

Predictive Power of PoS Features

Table 3 Evaluation of the trained AD diagnosis model. 

Accuracy Precision Recall F1-Score ↑ AUC
92.2% 0.935 0.971 0.955 0.971

All PoS features described in Table 2 are used for model training. The models’ performance has been
evaluated  using  the  accuracy,  precision,  recall,  F1-score  and  area  under  the  receiver  operating
characteristic curve (AUC) metrics. All these scores are reported in Table 3. The high performance
illustrates that PoS features extracted from speech can help to distinguish AD patients from the
health controls. This finding encourages us to move forward to explore which of the PoS features is
playing vital role.
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Knowledge Extracted from Model Explanation

In  this  section,  we  continue  to  reveal  the  significant  PoS  features  that  direct  the  model’s
decision. We analyze the counterfactual examples from a statistical perspective and analyze the
important features derived from this analysis. We study the counterfactual explanations for a
control sample (i.e., an individual without Alzheimer). The important features are derived by
analyzing which feature plays a vital role in misclassifying a control sample as an Alzheimer's
patient. In this experiment, we report the results of 210 of 243 controls. These 210 control
samples were classified correctly by the classifier. The optimal counterfactual explanation for
all the 210 results can be achieved by only intervening one feature.  Other samples are excluded
because of misclassification. 

Figure 5 The impact score (IS) for 27 PoS features. Feature with higher IS value denotes more samples successfully flipping the
model’s outcome by intervening on it.  

Figure 6 The weighted impact score (wIS) for 27 PoS features. Features with higher values denote more importance for machine
learning in making decisions. 

We plot the both the impact score and weighted impact score for all PoS features in Fig. 5 and
Fig. 6. We regard the top twelve features (IN, PRP, RP, VBG, PDT, NNP, JJ, NN, VBD, RB, VB and
WP) as  our  primary findings  about  important  PoS  features  in  AD diagnosis.  The  selection
considers PoS features that have both high IS scores and wIS scores. Features with low IS scores
indicates that few samples adopt them for flipping the model’s output which is less reliable as
the lack of  agreement  by the majority.  In  Fig.7,  we also illustrate  the  examples  of  AD and
healthy control from original dataset and the counterfactual examples (explanation) in a spider
plot.  It  shows  that,  the  generated  counterfactual  examples  capture  the  difference  of  PoS
features between AD patients and healthy controls. The PoS features, we used in this work are
shown in Table 2.  Further information of those features can be found in [30], [31].
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Figure 7 Spider plot of samples for AD patients, healthy control and counterfactual samples (classified as AD patients). 

Table 4 Impact Cost in percentage and the direction of change for all 27 PoS features. A smaller CI value denotes smaller changes
are needed.

PoS feature name Cost of Impact (CI) value
NN ↓ b 16.9%
NNS ↑ c 30.0%
MD ↑ 9.0%
JJR ↑ 83.3%
PRP ↑ 18.1%
VB ↑ 69.3%
IN ↑↓ 5.5%
JJ ↑ 16.5%
RP ↑ 16.7%
PRP$ ↑ 30.3%
CC ↑ 48.7%
CD ↑ 75.6%
VBG ↓ 20.7%
PDT ↑ 20.2%
UH ↑ 33.3%
NNP ↑ 29.5%
TO ↑ 57.4%
DT ↓ 13.6%
RB ↑ 49.6%
VBZ ↓ 12.5%
VBN ↑ 86.7%
WP ↑ 67.1%
VBP ↑ 73.8%
JJS ↑ 100%
VBD ↑ 37.1%
EX ↑ 67.2%
WP$ ↑ 100%

aPlease refer Table 2 for all abbreviations for the feature names.
bThe down-arrow indicates the decreasing the values.
cThe up-arrow indicates increasing the values. 
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We then analyze the important features, to answer the question:

              How exactly does intervening a feature cause the outcome to flip?

To answer the above question,  we need to consider the children features of the intervened
feature given by the SCM. More specifically,  knowing that the counterfactual examples have
moved across  the decision boundary (i.e.,  the outcome has  flipped),  we examine how each
changed feature (i.e., intervened features and its children) affects this movement of the original
examples towards or away from the decision boundary. We use the normalized PIS (in terms of
percentage) to quantify this effect. Positive PIS denotes moving the original examples towards
the  decision  boundary  and  vice  versa.  In  Fig.  8,  we  show  four  representative  features  as
examples and illustrate how changes in each feature contribute to flipping the outcome.

To complete the explanation that we promised at the beginning of this section, we use cost of
impact (CI) to quantitatively describe the average minimal changes that must be done to flip the
outcome. In Table 4, we report CI and the changing direction (an up-arrow means an increase
in the value is required while a down-arrow means a decrease is required). Take NN (nouns)
for example, reducing the use of it by 16.88% of the total range of NN (nouns) feature, will
make the classifier flip the final decision.

Figure 8 Explanations for the representative features: For an intervened feature: the red down-arrow indicates a decrease of value is
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required for flipping the outcome, for a child node (feature): the red down-arrow indicates the changing direction caused by the
intervention. The same rule applies to the green up-arrow (an increase of value) and the orange horizontal line (no change of value)
(a)-(d) Cooperative: We consider the features to be “cooperative” if both the intervened feature and its descendent features contribute
to flip the outcome. (e)-(h) Dominant: we define the feature as dominant if the intervened feature significantly contributes to flip the
outcome while its descendent features make no or opposite contribution.  (i)-(j) Idling: We define the intervened feature as “idling” if
it itself only contributes to flip the outcome slightly while the child features make a significant contribution. (k)-(l) Inverse: We term
the feature “inverse” if the change of the intervened feature moves the original instances away from the decision boundary, but it
causes other features to significantly push the original instances forward to the decision boundary.

Now, we combine the results from both Table 4 and Fig. 6 to offer explanations for all important
features.  For  clarity,  in  the  following  explanation,  we  do  not  imply  the  words  “increase”,
“decrease” or “change” as the actions that can modify the values of features. These three words
are used to represent the pattern of how much the divergence of a feature from its real value
can  affect  the  decision  of  the  model.  We  use  “contribution”  or  “contribute”  to  denote  the
positive effort (measured by  PIS) or process to flip the outcome. As an opposite to “flip the
outcome”, we use the terminology “consolidate the outcome” to denote that changing a feature
causes the outcome to move further away from the decision boundary.

● VBG: Decreasing the value of  VBG by 20.66% causes  both values  of  DT and VBZ to
decrease. The decrements of VBG, DT, and VBZ contribute to flipping the outcome.

● PDT: Increasing  PDT  by  20.21%  causes  VBG,  DT  and  RP  to  decrease  or  remain
unchanged. VBG and DT contribute significantly to flip the outcome, while PDT makes
partial contributions.

● NNP: Increasing NNP by 29.46% will cause DT to decrease. Increasing NNP contributes
significantly  to  flipping  the  outcome,  while  the  resulting  decrements  of  DT  make  a
partial contribution.

● VB: Increasing  VB  by  at  least  69.25%  will  cause  RB  and  WP  to  change  or  remain
unchanged  and  cause  TO  to  increase.  The  changes  of  VB,  RB,  and  TO  contribute
significantly to flip the outcome. The changes in  WP makes small contributions.

● JJ: Increasing  JJ  by  at  least  16.51%  will  cause  NNP  and  UH  to  increase  or  remain
unchanged, and cause RB to change or remain unchanged. Even though the change of
NNP  and  RB  consolidate  the  outcome,  increasing  JJ  can  significantly  contribute  to
flipping the outcome. Additionally,  the change of UH makes a negligible contribution
compared with the increment of JJ.

● PRP: Increasing  PRP  by  at  least  18.09%  will  cause  WRB  to  increase  or  remain
unchanged, and cause VB, IN, RB, VBP, and VBD to change or remain the same. However,
by analyzing the PIS for the changes in these features, we conclude that PRP contributes
significantly to flipping the outcome.

● VBD: Increasing VBD by at least 37.11% will not cause PRP and TO change. We conclude
that VBD solely contributes to flipping the outcome.

● RB: RB does not have any descendants. We conclude that increasing RB by 49.62% will
cause a flip in the outcome.

● NN: Decreasing NN by 16.88% can cause CD, DT and JJ to decrease or stay unchanged.
Though  the  change  of  NN  does  not  contribute  to  flipping  the  result,  the  resultant
changes of CD and DT are enough to flip the outcome.

● WP: Increasing  WP  by  67.1%  can  cause  RB  and  VBP  to  increase,  decrease  or  stay
unchanged. Though the changes of WP and RB do not contribute to flipping the result,
the resultant change of VBP are enough to flip the outcome.

● RP: Increasing  RP  by  16.67%  causes  VBG  and  VBZ  to  decrease  and  NNP  to  either
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decrease or remain unchanged. The changes of RP consolidate the outcome. However,
increasing  RP  can  still  flip  the  outcome  since  intervening  on  RP  will  cause  the
descendent features to change.  These changes significantly contribute to flipping the
outcome.

● IN: On an average, either increasing or decreasing IN by 5.53% can cause CD, DT, EEX,
PRP, VBG, and VBN to change or remain unchanged. Among all the descendants of IN,
the change of CD, EX, PRP, and VBN make negligible contributions to flipping the result.
The change of IN consolidates the outcome, and the major contributions to flipping the
outcome are influenced significantly by decreasing VBG and slightly, by decreasing DT.

Discussion

Principal Findings

Firstly,  the high performance of the AD diagnosis model on PoS features indicates that PoS
features have a rich of clues of speech/language impairments that happens in AD patients.
Later  by  explaining  the  model  using  our  proposed  OICE  XAI  method,  we  reveal  several
important  linguistic  biomarkers  in  early-stage  Alzheimer’s  disease  detection.  Some  of  the
findings are consistent with the prior findings in psychology and NLP:

● Adverb (RB) is highly relevant to semantic impairment: [32] claims that adverb shows a
deictic purpose, which is more common in aphasics with a semantic impairment, and
further in [33], adverb was proved to have higher correlations with a diagnosis of AD.
Our one intervention method shows that increasing the usage of RB, causes the same
speech to be classified as a patient (from a control). Hence, our experiments align with
previous findings that increased use of adverbs is an indicator of AD.

● Increased pronoun (PRP) usage is an important sign of semantic dementia: [34] shows
that  dementia  patients  with  semantic  dementia  produced  an  increased  number  of
pronouns than controls.  The result is in line with our conclusion that increasing the
number of  PRP in a  control's  speech classifies  it  as  a  speech sample  of  a  dementia
patient.

● Noun  (NN)  naming  deficits  indicate  cognitive  deficits:   AD  patients  show  graceful
degradation of using living and non-living nouns [35]. We see the same decline in noun
usage when shifting from a control sample to a dementia sample.

The consistency between findings of this study and previous studies implies the model possibly
learns useful clues about PoS feature. It somewhat supports the point that the rest of the not
studied features can offer new insights. To sum up, three of twelve important features (i.e., RB,
PRP, and NN) found by our method are consistent with prior findings.  We additionally find
another eight important features that have not been reported yet, which are IN, RP, VBG, PDT,
NNP, JJ, VBD, VB and WP. Our work also seems to suggest that the most important feature may
be IN or the use of prepositions. Further clinical studies may be necessary to verify this insight.

Limitations and Further Study
 
For the scope of work that we consider here, we do not see any limitations; however, we do believe
that there is good scope for further study in this area. More modalities can be used in designing an
Alzheimer’s disease predictor. These modalities could include brain imagery and other traditional
bio-markers. The OICE method can then be applied to all the features used to detect AD leading to a
much more nuanced understanding of the causal relations of these biomarkers. This could then lead
to clinical trials that test these findings. A subset of non-invasive biomarkers may then emerge as
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important in predicting AD and this might in turn lead to easier to implement screens for the disease.

Conclusions

In this work, we propose a novel counterfactual explanation method, called one-intervention
counterfactual explanation (OICE), to analyze the dominant linguistic features, specifically PoS
features, that can be used for AD disease detection. We propose three metrics to evaluate the
contributions of these features to the final decision of the model. We collect the explanations
from the AD detection model of high accuracy and analyze these explanations by the metrics
we define.   The features declared as important in the detection of AD by our methods are
consistent with previous works in psychology and the NLP, such as adverb, pronoun, and noun.
We also find a few other features that are important, and which have not yet been reported.
Finally,  by leveraging the structural  causal  model,  we further  explain  how these important
features affect the decision-making process. 

Data Availability 

The DementiaBank Dataset  [25]  used in this  work is  password protected and restricted to
members of the DementiaBank consortium group. Accessibility to this dataset can be granted
after joining DementiaBank consortium group as a member. For details about accessing the
dataset, please refer to [25].
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Abbreviations

XAI: explainable artificial intelligence
DL: deep learning
ML: machine learning
SCM: structural causal model
NLP: natural language processing
AD: Alzheimer’s disease
ADRD: Alzheimer’s disease Related Dementia
OICE: one-intervention counterfactual explanation
CGNN: causal generative neural network
MMD: Max Mean Discrepancy 
MAD: Median Absolute Deviation
IS: impact score
CI: cost of impact
wIS: weighted impact score
PIS: pure impact score
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The proposed transformer-based classifier that uses the PoS features of the patient/control’s description.
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Example of a Structural Causal Model (SCM). Left: causal graph, right: causal mechanisms. As for CGNN, each causal
mechanism is implemented with a generative neural network.
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Causal Graph for 27 Linguistic features. The starting variable of each directed edge represents the cause, and the ending
variable represents the effect.
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The impact score (IS) for 27 PoS features. Feature with higher IS value denotes more samples successfully flipping the model’s
outcome by intervening on it.
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The weighted impact score (wIS) for 27 PoS features. Features with higher values denote more importance for machine
learning in making decisions.
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Spider plot of samples for AD patients, healthy control, and counterfactual samples (classified as AD patients).
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Explanations for the representative features: For an intervened feature: the red down-arrow indicates a decrease of value is
required for flipping the outcome, for a child node (feature): the red down-arrow indicates the changing direction caused by the
intervention. The same rule applies to the green up-arrow (an increase of value) and the orange horizontal line (no change of
value) (a)-(d) Cooperative: We consider the features to be “cooperative” if both the intervened feature and its descendent
features contribute to flip the outcome. (e)-(h) Dominant: we define the feature as dominant if the intervened feature
significantly contributes to flip the outcome while its descendent features make no or opposite contribution. (i)-(j) Idling: We
define the intervened feature as “idling” if it itself only contributes to flip the outcome slightly while the child features make a
significant contribution. (k)-(l) Inverse: We term the feature “inverse” if the change of the intervened feature moves the
original instances away from the decision boundary, but it causes other features to significantly push the original instances
forward to the decision boundary.
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