

Research services: Biotechnology and chemistry

Research centers: Tokyo area - Kashiwa, Saitama, Chiba Shonan iPark for office

Osaka area - Kobe, Kyoto

Established: October, 2014

Leadership:

Gaku Shimaoka: President and Representative Director, TechnoPro Inc.

• Masami Hayafune: Representative director, TechnoPro R&D Company, TechnoPro Inc.

Gene/Cell Expression vector transduced cell line, gene analysis

Neuroscience and Drug Discovery in public private partnership

TECHNOPRO www.technopro.com/rd/

Neuroscience and Drug Discovery

MEA assessment system and applications with;

- iPS cell-neuron, human
- MEA: Microelectrode array for detection of extracellular action potential
- AI: Proprietary Artificial intelligence and multivariate analysis for toxicity and pharmacology

(1) Drug phenotypic screening

- Toxicity and efficacy
- Phenotypic select → Prioritization for lead compounds

(2) Mechanism of action

- Ion channels and receptors for target molecule on neurons
- Assessment with AI and multivariate analysis
- Disease model assay (MEA, qPCR, Immunostaining)

(3) Pain study and neuromuscular disease

- Human iPSC-sensory/motor neuron
- Ion channels and receptors assessment and diseases models

(4) Relativity to animal study

- Solid and tangible assessment in vitro for the relativity
- Evidence for toxicity in human cells but no rodent

Pharmaceuticals
Biotech
Academia
Research
Institute
Food, Agricultural

Platform Technology based on Reports (Selected)

■ CNS: Seizure, Addiction

- Principal Component Analysis to Distinguish Seizure Liability of Drugs in Human iPSCell-Derived Neurons (Toxicological Sciences, 184:265, 2021)
- Can we panelize seizure? (Toxicological Sciences, 179:3, 2021)
- Toxicological evaluation of convulsant and anticonvulsant drugs in human induced pluripotent stem cellderived cortical neuronal networks using an MEA system (Scientific Reports, 8:10416, 2018)
- Evaluation of drug addiction using human iPSC-dopamine neuron (Japanese Society of Toxicology, 2022)

■ Sensory neuron: Pain assessment

- In vitro pain assay using human iPSC-derived sensory neurons and microelectrode array (Toxicological Sciences, 188:131, 2022)
- Motor neuron: Neuromuscular disease (In preparation for publication)
 - ALS and related diseases models with human iPSC-motor neurons
 - Efficacy for mutated neurons by gene-editing of a disease gene
 - Inhibition effect for accumulation of mutated proteins in patient motor neurons
- Axon propagation: Electrical footprint Versatile live-cell activity analysis platform for characterization of neuronal dynamics at single-cell and network level (Nature Communications, 11:4854, 2020)
- Artificial intelligence: Raster plots machine learning to predict the seizure liability of drugs and to identify drugs (Scientific Reports, 12:2281, 2022)
- **Drug response**: Physiological maturation and drug responses of human induced pluripotent stem cell-derived cortical neuronal networks in long-term culture (Scientific Reports, 6:26181, 2016)

■ Cell Culture

Neural network (CNS)

Cell	CNS	Sensory/Moto
Human iPSC-neuron	V	V
Rodent, primary	V	V

- Co-culture of iPSC-neuron with astrocyte
- Selected human iPSC-neuron from 50+ neuron lines
- Optimized iPSC-neuron balance at excitation-inhibition ratio

26400 electrodes

64electrodes

24-well/384 electrodes (16 electrodes/well)

Modality: Small Molecule, Oligonucleotide, Antibody, Protein, Cell, Tissue

G Tubulin beta III/Tuj1, Neuron R Synaptophysin, Presynaptic vesicles Y PSD-95, Synaptic region

nature

SCIENTIFIC REPORTS

■ Recording of Response

- Measurement of extracellular **action potential** in neural network and sensory/motor neurons in vitro by the MEA system adding test compounds
- Recording **spikes** and synchronized **burst** firings

Recording Action potential of ion influx on an extracellular field

Typical action potential waveform at electrodes, and periodically synchronized burst firing

Periodically synchronized burst firing (Scientific Reports 2022, 12:2281)

■ Analysis 1: Action potential

- Raster plot generated by spikes data

 → Visualization of neural response
- Burst histogram → Detection of neural activity
- Extracted effective **parameters** from 90+ for analysis of test compound profiles (Fine evaluation completed for physiologically active substances over 200)

■ Analysis 2: Multivariate Analysis

- PCA, Principal component analysis,
- Cluster analysis,
 - are performed using parameter sets extracted from statistically significant 90+ parameters of burst histogram.
- Phenotypic screening
- **Toxicity** assessment
- Prediction of targeting ion channels and receptors
- **Prioritization** of compounds
- Relativity between human and rodent

■ Analysis 3: Artificial Intelligence

[Deep learning]

- Image recognition with raster plot of positive controls
- Weighted pattern recognition extracting feature value
- The AI is created to pile up multi-layers of algorithm.

[Identification]

The AI identifies/classifies feature value between control and test compounds to toxicity risk and efficacy.

[Advantages]

- A wide range of accurate identification with 4000+ parameters.
- Hi-sensitive evaluation in weak neural firing.

1. Separated spike stamp table

2. Image Recognition

3. Pattern Recognition

Neural network

Pilocarpine, muscarinic R agonist

4. Identification

Kainic acid, glutamate R activator

info-rd@technopro.com
www.technopro.com/en/company/company_info
(in JPN) www.technopro.com/rd/services/contract/
lineup/pharmacological-evaluation/

Copyright © TechnoPro, Inc. All Rights Reserved.