

Introduction to KIAST

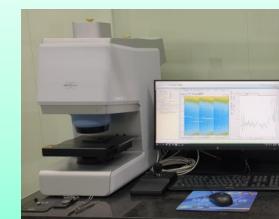
Korea Institute of Analytical Science and Technology

■ KIAST is in Seoul Korea

Collaboration Network

- Advisory Board Member of [EU IMPTOX](#) project
- Advisory Board Member of [EU PlasticsTrace](#) project
- Member of [US NSF DWTU Micro/Nanoplastics](#) Task Group

Since 2018


■ Lab. of Microplastics Analysis

TED-GC-MS
(TGA & 2TDS & GC-MS)

Py-GC-MS
(Py-3030D & GC-MS)

μFTIR-FPA
(LUMOS 2, Bruker Optics)

μRaman
(XploRA+, Horiba)

Sample pretreatment room
(Clean room, ULPA filter)

Analysis zone for Spectroscopy
(Clean booth, HEPA filter)

“Hazardous substances” Halogen, PAHs, BPA, SCCP/MCCP (IEC/TC 111)

- 2025 • IEC/TC 111/WG 3 (PFAS Task @ E&E) IEC/TR Proposed
IEC/PFAS TR NWIP Approved (2025.09)
- 2023 • IEC 62321-10 (PAHs by GC-MS) ED2 project started
- 2022 • IEC 62321-14 (SCCP/MCCP by GC-NCI-MS) NWIP passed
- 2021 • KEIT Funding project “International standardization for SCCP/MCCP & BPA (2021~2025)”
• KS C IEC 62321-10 (PAHs by GC-MS) published
- 2020 • KS C IEC 62321-3-2 (F, Cl, Br, (I) by C-IC) published (2nd ED)
• IEC 62321-10 (PAHs by GC-MS) IS published
• IEC 62321-3-2 (F, Cl, Br, (I) by C-IC) IS published (2nd ED)
- 2019 • IEC 62321-13 (BPA by LC, LC-MS) Project NWIP proposed
- 2018 • IEC/TC 111/WG 3 & JWG 14 Co-Convenor started
- 2017 • KS M 9721 (PAHs by GC-MS) published
- 2015 • IEC 62321-10 (PAHs by GC-MS) Project leader started
• IEC 62321-3-2 (Halogen by C-IC) revision started
- 2013 • IEC 62321-3-2 (Br by C-IC) IS published
- 2009 • IEC 62321-3-2 (Br by C-IC) Project leader started
• KS M 0180 (Halogen by C-IC) published
- 2008 • IEC/TC 111/WG 3 Halogen test method PWI proposed

“Microplastics” (TC 61/SC 14, TC 38, TC 147/SC 2&SC 6, IEC/SC 59D)

- 2025 • ISO/TC 61 NWIP Proposed (BPs in recycled plastics by LC-MS/MS) (@2025 ISO/TC 61/SC 5 & SC 14 Plenary) (2025.11)
- 2024 • Korea Research Foundation Project “Prospective Cohort Study on Microplastics on Perinatal Outcomes of Pregnant Women/Fetuses” (2024-2029) – Joint Research with Seoul National University Bundang Hospital
Member of US NSF DWTU Micro/Nanoplastics Task Group
- 2021 • ISO/TC 147(water quality)/SC 6(sampling)/WG 16 (microplastics) & IEC/TC 59/SC 59D(Laundry machine)/AG 17 (microplastics) Korean Delegate
MOTIE funding project “Development of microplastic sensor in living environment”(2021-2023)
- 2020 • ISO/TC 147(water quality)/SC 2/JWG 1 (microplastics) Korean Delegate
ISO/TC38(Textiles)/WG 34 (microplastics) Korean Delegate
MFDS funding project “Microplastics in foods” (2020~2021)
MoE funding project “Development of a pyrolysis-based quantitative analysis method for microplastics (<5 μ m)”
NIER funding project “Research on preparing a Korean Industrial Standard (KS) test method for microplastics in water”
- 2019 • ISO/TC 61(plastics)/SC 14/WG 4 (microplastics) Korean Delegate
- 2018 • “Development of microplastic analysis method in cosmetics” for MFDS official test methods

Microplastics Lab. (Clean Room)

TED-GC/MS

Py-GC/MS

μ-FTIR

μ-Raman

Inorganic (Heavy metal) Lab.

ICP-MS

ICP-OES

UV-VIS

ED-XRF

Halogen & Organic Lab.

Combustion-IC

HS-GC/MS

LC-MS/MS



Surface Analysis
SAICAS

Standard Organization	Technical Committee	Working Group / Project	Leadership	Period
IEC	TC 111 (Environmental standardization for electronic products and systems)	WG 3 (Test methods of certain substances)	Convener	2018~
		JWG 14 (Test methods of certain substances in plastics) Joint between TC 111 & ISO/TC 61/SC 5	Convener	2018~
		IEC 62321-3-2 (Halogen_F, Cl, Br, (I) by C-IC) ED2	Project leader	2009~
		IEC 62321-10 (PAHs by GC-MS) ED2		2014~
		IEC 62321-13 (BPA by LC, LC-MS, LC-MS/MS)		2019~
		IEC 62321-14 (SCCP/MCCP by GC-NCI-MS)		2021~
		PFAS Task		2025~
	SC 59D (Home laundry appliances)	AG Group 17 & WG 18 (Microplastics)	Korean Delegate	2021~
ISO	TC 61 (Plastic)/SC 14 (Environment)/WG4	Microplastics test method (Environmental)		2018~
	TC 147 (Water quality)/SC 2 (Methods)/JWG 1	Microplastics test method (Water)		2020~
	147 (Water quality)/SC 6 (Sampling)/WG 16	Sampling (general methods) for microplastics		2021~
	TC 38 (Textiles)/WG 34	Microplastics test method (Textiles)		2020~

KS

Standard	Standardization Organization	Number	Role	Year of publish
Determination of certain substances in electrotechnical products –Part 3-2: Screening – Fluorine, chlorine and bromine in polymers and electronics by combustion-ion chromatography (C-IC)	IEC/TC 111	IEC 62321-3-2:2020	Project leader	2020
Determination of certain substances in electrotechnical products – Part 10: Polycyclic aromatic hydrocarbons (PAHs) in polymers and electronics by gas chromatography-mass spectrometry (GC-MS)	IEC/TC 111	IEC 62321-10:2020	Project leader	2020
Determination of certain substances in electrotechnical products - Part 3-2: Screening - Fluorine, bromine and chlorine in polymer and electronics by combustion-ion chromatography (C-IC)	IEC/TC 111 KATS	KS C IEC 62321-3-2: 2020	Project leader	2020
Determination of certain substances in electrotechnical products - Part 10: Polycyclic aromatic hydrocarbons (PAHs) in polymers and electronics by gas chromatography-mass spectrometry (GC-MS)	IEC/TC 111 KATS	KS C IEC 62321-10: 2020	Project leader	2021

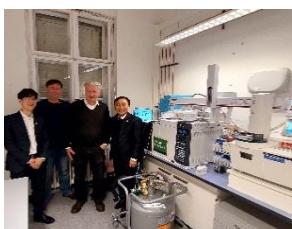
IEC 62321-series standards

Metal & Halogen
 • Pb, Cd, Hg, Cr
 • Cr(VI)
 • F, Cl, Br, I
 (To-be) Au, Ag, Pd, Pt, Al, Fe, Cu, Sn, Co, Ni, Sb, Si and P

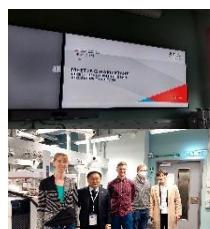
Organics
 • PBBs/PBDEs
 • Phthalates
 • HBCDD
 • PAHs
 • TCEP
 • Bisphenol-A
 • SCCP/MCCP
 • TBBPA
 • UV

- WG 3 Co-Convenors: Miyuki TAKENAKA (Japan) & Jaehak JUNG (Korea)
- JWG 14 Co-Convenors: Hairong ZHANG (China) & Jaehak JUNG (Korea)

Specification	Part name (Substances)	Project Leader	Instrument (N: Normative)	NWIP	IS Pub.	Now	
IEC 62321-1	General requirement	Richard (Intertek, UK)	-	2009	2013	IS Published	
IEC 62321-2 (Revision)	Disjointment including Mechanical Sampling	Youjiang Chen (USA)	-	2009 2018	2013 2021	IS Published IS Published	
IEC 62321-3-1	Screening by XRF (Pb, Cd, Cr, Hg, Br) → Add (Cl, P, Sb, Sn)	Dirk Wissmann (Germany)	XRF	2009 2019	2013 2025	IS Published IIS	
IEC 62321-3-2 ED2	Screening by C-IC (N : F, Cl, Br, Annex: I)	Jaehak Jung (Korea)	Combustion-IC (N) Oxygen Bomb-IC, flask-IC (Annex)	2009 2015	2013 (1.0) 2020 (2.0)	IS Published IS Published	
IEC 62321-3-3	Screening by Py/TD-GC-MS (Phthalate, PBB.PBDE)	Jaewoo Kim (Korea) Nakagawa (Japan)	Py(TD)-GC-MS	2015	2021	IS Published	
IEC 62321-3-4	Screening by HPLC-UV, TD-MS, TLC (Phthalate)	Chunyang Lu (China)	HPLC-UV, TD-MS, TLC (N) FT-IR (Annex)	2018	2023	IS Published	
IEC 62321-4 AMD	Hg	Miyuki (Japan)	ICP-OES, ICP-MS, CV-AAS, AFS, DMA	2009	2013	IS Published	
IEC 62321-5	Pb, Cd, Cr → added metals (Sb, As, Be, Co, Cu, Fe, Mn, Ni, Sn, Zn)	Miyuki (Japan)	ICP-OES, ICP-MS, AAS, AFS		2017	AMD Published	
IEC 62321-5 (revision)		Jinsook Lee (Korea)			2013 2029 (2.0)	IS Published WD	
IEC 62321-6	PBBs/PBDEs	Scott (USA)	GC-MS (N) HPLC, IAMS (Annex)		2015	IS Published	
IEC 62321-7-1	Cr(VI) in metal coatings	Sophia (USA)	UV-VIS		2015	IS Published	
IEC 62321-7-2	Cr(VI) in polymers	Claudia (Germany)	UV-VIS		2017	IS Published	
IEC 62321-8 ED2	Phthalate	Jaewoo Kim (Korea) K.Obayashi (Japan)	GC-MS, Py-GC-MS (N) LC-MS, IAMS (Annex)	2012 2021	2017 (1.0) 2026 (2.0)	IS Published CDV	
IEC 62321-9	HBCDD	Inseok Choi, Hyundoc Choi (Korea)	LC-MS and GC-MS	2015	2021	IS Published	
IEC 62321-10 ED2	PAHs	Jaehak Jung (Korea)	GC-MS	2015 2022	2020 (1.0)	IS Published	
IEC 62321-11★		Jaehak Jung (Korea) Kerstin Scharrer (Germany)			2026 (2.0)	CDV	
IEC 62321-12	PBB/PBDE/Phthalate	Qiuixin Huang (China)	GC-MS (N)	2018	2023	IS Published	
IEC 62321-13	Bisphenol-A	Gunyoung Ryu, Jaehak Jung (Korea)	LC-DAD, LC-MS, LC-MS/MS	2020	2026	FDIS	
IEC 62321-14	SCCP/MCCP	Juyang Kim (Korea), Xing Weibing (China)	GC-NCI-MS	2022	2026	FDIS	
IEC 62321-15	TBBPA	Hyundoc Kim (Korea)	GC-MS, LC-MS	2022	2026	CDV	
PWI-UV	Benzotriazole UV absorbers	Songsong Xiong (China), Jaehak Jung (Korea)	GC-MS	2026	2029	PWI	



RoHS/REACH Test method Standard



(2019 IEC/TC 111/WG 3 meeting
@ Shanghai, China)

Microplastics ISO & IEC Standardization Delegate Activities

UBA Germany

BAM Germany

BfR Germany

Microplastic test and analysis method standard development cooperation activities

(2022.11, Berlin, Germany)

Global Microplastics Advisor Activities

(EU **MPs** Scientific Advisory Board member, 2022)

- Microplastics in soils Symposium (UBA in Germany) 2022.10.19
- VAMAS workshop 2022.10.19

These projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 964827 (AURORA), No. 965173 (IMPTOX), No. 965196 (Plasticheal), No. 965367 (PlasticsFatE), and No. 964766 (Polyvisc).

► ISO/TC 61/SC 5 & SC 14 Experts (2025 Bangkok TH)

Regulating PFAS compounds for a safer environment

2024-09-02, IEC Editorial Team

Participants in the recent IEC PFAS workshop.

The restriction on the use of PFAS (Per- and polyfluorinated substances) is gaining traction worldwide. The United States, the European Union and other countries have begun regulating regulations.

What is PFAS and why does it need regulation?

Dr. Miyuki Takanaka, Chair of IEC Technical Committee 111 explained that PFAS are a group of synthetic fluorocarbon chemical compounds resistant to water, oil, heat and to chemicals. It has been widely used as a water repellent, a surface treatment agent, an emulsifier, a fire extinguishing agent, a coating agent, etc. While these properties are useful in products, many countries are considering regulations because the chemical compounds' persistent nature in our environment."

Recent posts

New IEC Report on semantic interoperability

Regulating PFAS compounds for a safer environment

Cyber security for critical infrastructure

Protecting IoT devices from cyber-attacks

Blog digest

Sign up to receive selected content

Annex A: Workshop for PFAS regulations and test methods in the E&E industry

Wednesday, 29 May 2024, 14:00-17:00 (Singapore time (UTC+8))
Place: IEC Asia-Pacific Regional Centre
TC 111 WG 3 and JWG 14 meeting and Webinar

Programme

14:00-14:10 Welcome remarks Dr. Jashash JUNG and Dr. Miyuki TAKANAKA, TC 111WG 3 Co-Conveners

14:10-14:30 Introduction of TC 111 activity and contribution for achieving SDGs Dr. Miyuki TAKANAKA, TC 111 Chair

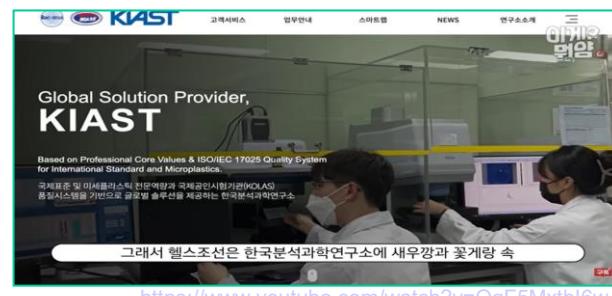
14:30-14:50 PFAS analysis for E&E parts, on the difficulties and challenges from the Dr. Miyuki TAKANAKA, TC 111 Chair

14:50-15:10 Coffee break

15:10-15:30 Standardized Guide for "Selecting and Applying Analytical Methods to Evaluate PFAS in Consumer & Related Products (Recorded lecture)" Dr. Miyuki TAKANAKA, TC 111 Chair

15:30-15:50 The development of EN 17651-2, -1 and ISO 27702 for PFAS analysis (Web Lecture) Dr. Miyuki TAKANAKA, TC 111 Chair

15:50-16:10 Current Activities of ISO 24640 Parts 1 and 2 for PFAS analysis in forensics (Web Lecture) Dr. Jashash KIM, ISO/CD 24640 Project leader


16:10-16:50 Panel Discussion: Possibility of IEC 63231 series for the PFAS screening and Dr. Jashash JUNG, TC 111WG 3 Co-Conveners

16:50-17:00 Q&A

Facilitator: Jashash JUNG and Miyuki TAKANAKA
IEC/TC 111WG 3 Co-Conveners

► IEC PFAS Workshop @IEC APRC in Singapore, 2024.05.29)

(2023 EU 3rd Imptox Public Workshop, 2023.03.10-12)

<https://www.youtube.com/watch?v=oqF5MxtbI6w>

<https://www.youtube.com/watch?v=kYwZR2YF0Lc&t=1994s>

- [KBS] Synthetic Fiber Clothing Threatens the Sea - **Detection of microplastics in laundry wastewater** (2018.12.25)
- [tvN] Comparative Analysis of Bottled Water and Tap Water (2019.02.13)
- [SBS] The uncoated golf ball becomes microplastic for our table (2021.6.22)
- [SBS] Water is life. Acrylic scrubbers and microplastics (2021. 8.14)
- [SBS] First detection of MPs in meat blood absorption pads (2021.10.20)
- [SBS] (Morning Wide) "When you dip a tea bag, does 'this' come out!" (2022.02.28)
- [JTBC] Documentary Plus "Plastic Free City" (2022.02.27)
- [MK] Microplastics in paper cups "Plastics Pandemic" (2022.04.20)
- [TBC] News Factory "Environmental pollution of fast fashion, EU regulation" (2022.04.27)
- [MBN] Microplastic detection in Omega 3 (2022.08.08)
- [KBS] The Secret of the Elderly, the Micro-pandemic Part 1-The Disaster That Started, Microplastics (2022.10.12)
- [Health Chosun] Microplastics detected in shrimp crackers and crabs. (2023.07.13)
- [SBS] Water is life. I ate plastic today too.(2024. 3.22)

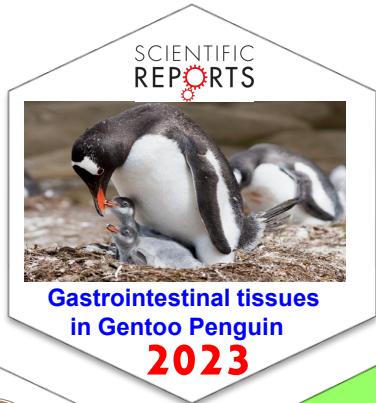
- [KOFST] 20th National Life Science Talk Lounge (**Microplastics in bottled water: What is the impact on health?**) (2024.05.17)
- [Korea Daily] Tracking: The sea has become hell. Grilled hairtail, crab soup, and raw black sea bream Today, too, we ate plastic. (2024.08.14)

Introduction to KIAST

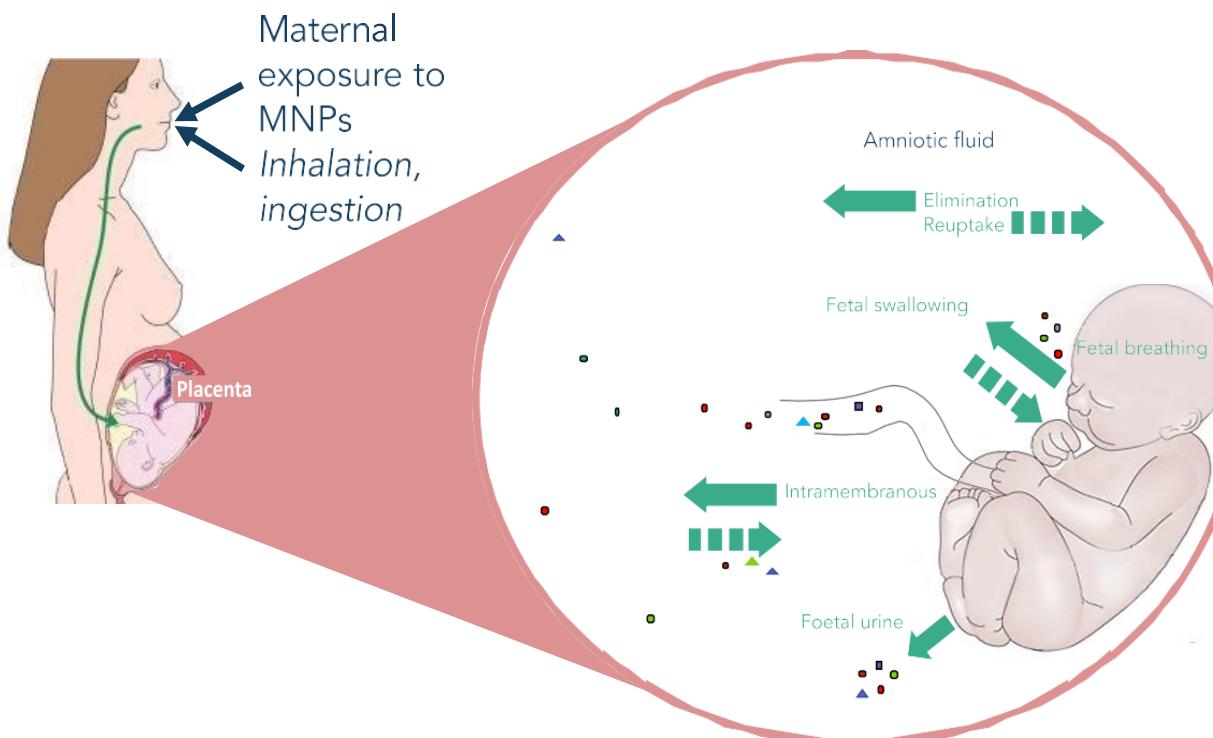
Recent microplastic detection issues
(2018-2024 by KIAST)

2018

2019


2020

2021


2022

2023

2024

KIAST provides testing/analysis services for samples derived from the human and various biological specimens. After pretreating samples derived from the human body, they are filtered, and qualitative and quantitative analyses are performed on the filtered samples. (Using by μ -FTIR, μ -Raman, Py-GC-MS & TED-GC-MS)

CUSP international conference: 14 September 2023
| Matthew.Boyles@iom-world.org

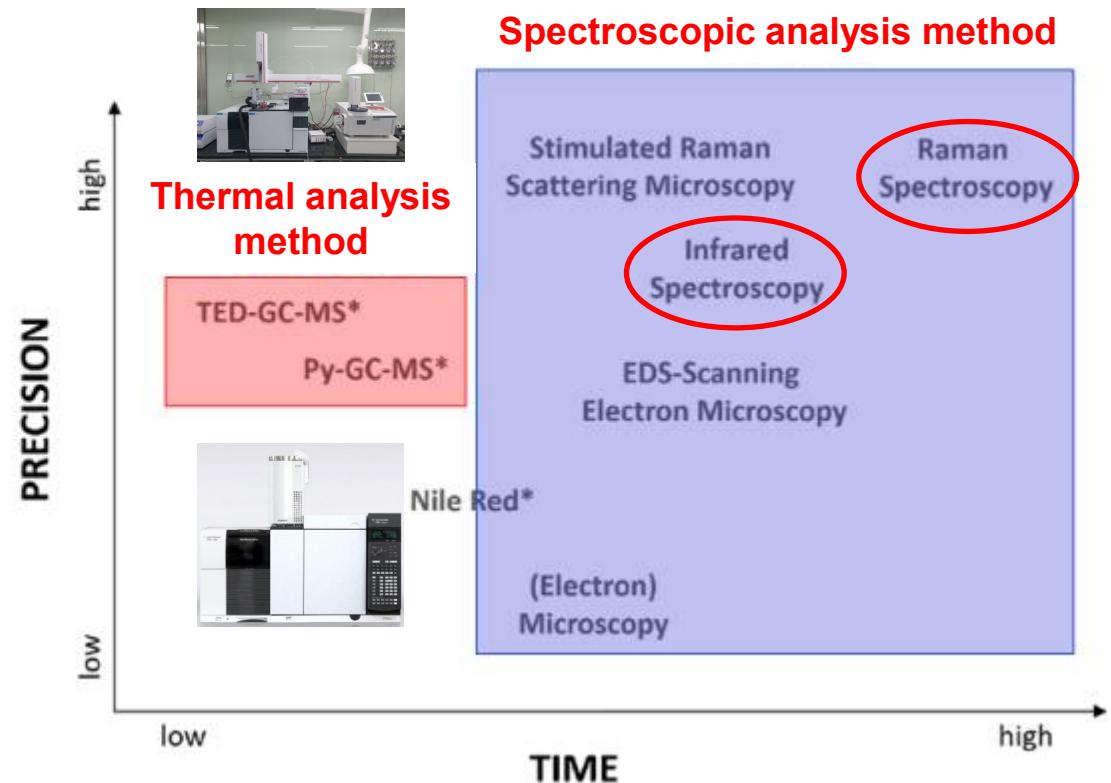
❖ Human-derived sample matrices

for developing Micro & Nanoplastics analysis methods.

- Blood
- Placenta
- Uterus/endometrium/ovary
- Cord blood
- Amniotic fluid
- Adipose tissue
- Breast milk
- Eyeball
- Others

- “First assessment of microplastic exposure from heated liquid herbal medicine: Packaging breakdown and ingestion risk” *Ecotoxicology and Environmental Safety* 303 (2 025) 119069. doi.org/10.1016/j.ecoenv.2025.119069.
- “Interlaboratory Comparison Reveals State of the Art in Microplastic Detection and Quantification Methods” *Anal. Chem.* April 17, 2025. doi.org/10.1021/acs.analchem.4c0 5403.
- “Detection of microplastics in pterygium tissue: Implications for environmental hazards” *Eur J Ophthalmol.* 2025 Jan 6:11206721241310467. doi: 10.1177/1120672124131 0467.
- “Microplastic particles in human blood and their association with coagulation markers” *Scientific Reports* 2024 14:30419 <https://doi.org/10.1038/s41598-024-81931-9>
- “Microplastic contamination in artificial tears in South Korea: Potential for direct ocular exposure” *Contact Lenses and Anterior Eye* 12 November 2024, 102325 <https://doi.org/10.1016/j.clae.2024.102325>
- “Determination of Microplastics in Omega-3 Oil Supplements” *Foods/MDPI* 2024, 13(10), 1434; doi.org/10.3390/foods13101434
- “Microplastics in gastrointestinal tracts of gentoo penguin (*Pygoscelis papua*) chicks on King George Island, Antarctica” *Scientific Reports* 2023 Aug 10;13(1):13016. doi: 10.1038/s41598-023-39844-6.
- “Detection of microplastic traces in four different types of municipal wastewater treatment plants through FT-IR and TED-GC-MS” *Environmental Pollution* Volume 333, 15 September 2023, 122017, doi.org/10.1016/j.envpol.2023.122017
- “Identification and characterization of microplastics in nasal irrigation fluids: a preliminary study” *International Forum of Allergy and Rhinology* 2023, doi: 10.1002/alr.23 239.
- Analysis of microplastics in various foods and assessment of aggregate human exposure via food consumption in Korea” *Environmental Pollution* 322 (2023) 121153
- “Comparative profiling and exposure assessment of microplastics in differently sized Manila clams from South Korea by μFTIR and Nile Red staining” *Marine Pollution Bulletin* 181 (2022) 113846
- “Microplastics in Food: A Review on Analytical Methods and Challenges” *Int. J. Environ. Res. Public Health* 2020, 17, 6710; doi:10.3390/ijerph17186710
- “Determination of fluorine in Krill oils by combustion-ion chromatography”, *Korea Anal. Sci. Technol.*, Vol. 33, No. 6, 2020
- “Identification of Microplastics in Sea Salts by Raman Microscopy and FT-IR Microscopy”, *Korea Anal. Sci. Technol.*, Vol. 32, No. 6, 243-251, 2019
- “Determination of Microplastics in Cosmetics” *Ministry of Food and Drug Safety (MFDS)*, 2019
- “Determination of PFOS in LDPE and the Result for Proficiency Testing” *Korean Chemical Society*, 2013, Vol. 57, No. 1
- “Rapid identification of brominated flame retardants by using direct exposure probe mass spectrometry” *Microchemical Journal* 91 (2009) 140–146
- **KS M 9721:2017**, Determination of PAHs (polycyclic aromatic hydrocarbons) in polymer materials
- **IEC 62321-3-2:2020 (2nd Edition)**, Determination of certain substances in electrotechnical products –Part 3-2: Screening – **Fluorine, chlorine and bromine** in polymers and electronics by combustion-ion chromatography (C-IC)
- **IEC 62321-10:2020**, Determination of certain substances in electrotechnical products – Part 10: **Polycyclic aromatic hydrocarbons (PAHs)** in polymers and electronics by gas chromatography-mass spectrometry (GC-MS)

1. Test Methods for Microplastics & Nanoplastics

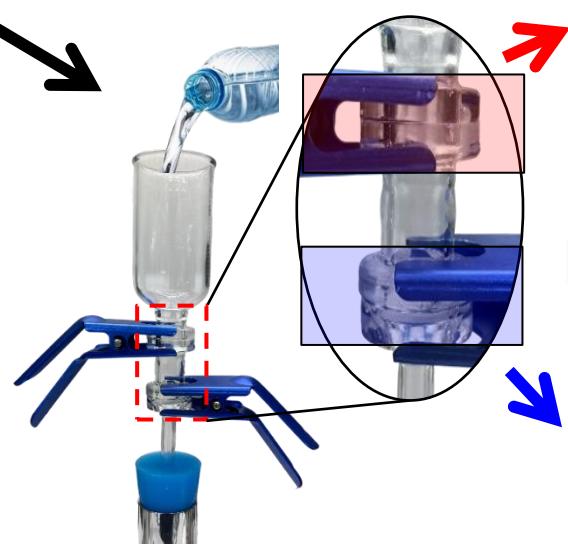


Muxia@Camino De Santiago in Spain
Photo by Jaehak Jung, (June 2017)

Analysis method according to the size and amount of MPs

Analysis method according to analysis time and precision

P.M. Anger et al. / Trends in Analytical Chemistry 109 (2018) 214e226


A

Nano (& sub-micron) Plastics (5 ~ 0.3 μm) for Drinking Water by TED-GC-MS (KIAST)

Sampling

At least 40 L

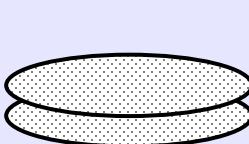
Bottled water

Beverages

Cascade filtering

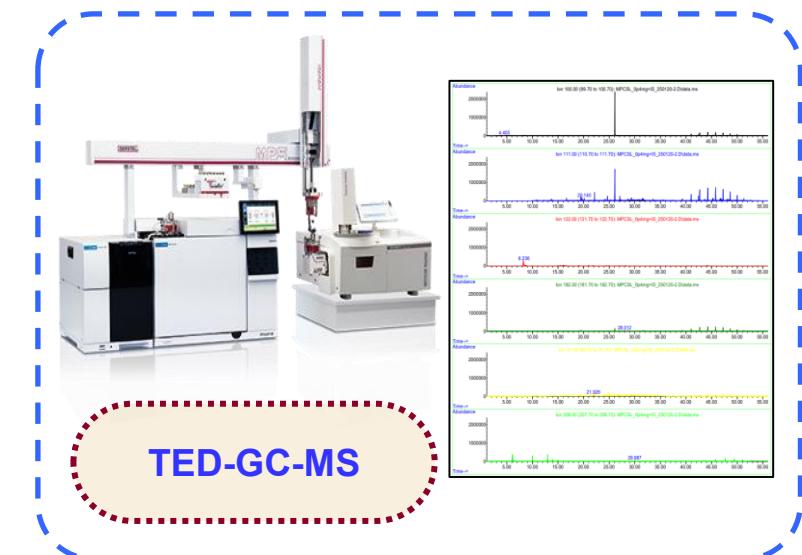
1st stage

5 μm
(stainless filter)



Particles on the filter
($\geq 5 \mu\text{m}$)

2nd stage


0.3 μm
(Quartz fiber filter)

Particles on the filters
($\geq 0.3 \mu\text{m}$)

Analysis

In accordance with ISO/DIS 16094-3 (MPs by TED-GC-MS)

Sequential filtering with 5 μm stainless filter and 0.3 μm Quartz fiber filter

1. Test Methods for Microplastics & Nanoplastics

In accordance with ISO/DIS 16094-3
For NMP analysis (5 μm to 0.3 μm)

A

Analysis of nano- and submicron plastics (5–0.3 μm) in drinking water using by TED-GC-MS

Analysis by
TED-GC-MS

Bottled water (PET)		Analysis results			
A 500 mL {80 bottles} Total 40 L	Type	5~0.3 μm	> 5 μm	LOD*	
	PE	N.D.	N.D.	1.5 μg	
	PP	N.D.	N.D.	0.4 μg	
	PS	N.D.	N.D.	0.08 μg	
	PET	N.D.	N.D.	0.09 μg	
	PMMA	1.6 μg	N.D.	0.1 μg	
B 500 mL {80 bottles} Total 40 L	Type	5~0.3 μm	> 5 μm	LOD	
	PE	N.D.	N.D.	1.5 μg	
	PP	N.D.	N.D.	0.4 μg	
	PS	N.D.	N.D.	0.08 μg	
	PET	N.D.	0.13 μg	0.09 μg	
	PMMA	N.D.	N.D.	0.1 μg	
C 500 mL {80 bottles} Total 40 L	Type	5~0.3 μm	> 5 μm	LOD	
	PE	6.8 μg	2.0 μg	1.5 μg	
	PP	N.D.	N.D.	0.4 μg	
	PS	N.D.	N.D.	0.08 μg	
	PET	N.D.	0.19 μg	0.09 μg	
	PMMA	N.D.	N.D.	0.1 μg	

* LOD: limit of detection (ISO/DIS 16094-3) of KIAST

vs.

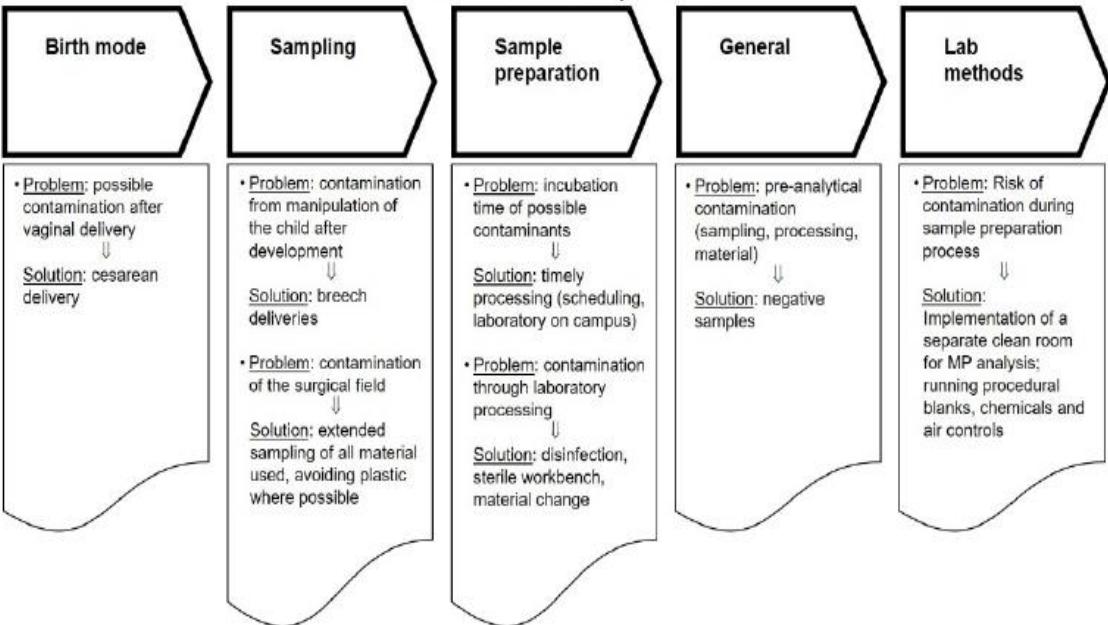
Paper Pack Water (PE coated)		Analysis results			
D 500 mL {80 bottles} Total 40 L	Type	5~0.3 μm	> 5 μm	LOD	
	PE	N.D.	N.D.	1.5 μg	
	PP	N.D.	N.D.	0.4 μg	
	PS	N.D.	N.D.	0.08 μg	
	PET	N.D.	N.D.	0.09 μg	
	PMMA	N.D.	N.D.	0.1 μg	
E 500 mL {80 bottles} Total 40 L	Type	5~0.3 μm	> 5 μm	LOD	
	PE	1.6 μg	5.2 μg	1.5 μg	
	PP	N.D.	N.D.	0.4 μg	
	PS	N.D.	N.D.	0.08 μg	
	PET	N.D.	N.D.	0.09 μg	
	PMMA	N.D.	N.D.	0.1 μg	
F 500 mL {80 bottles} Total 40 L	Type	5~0.3 μm	> 5 μm	LOD	
	PE	11 μg	7.7 μg	1.5 μg	
	PP	N.D.	N.D.	0.4 μg	
	PS	N.D.	N.D.	0.08 μg	
	PET	N.D.	N.D.	0.09 μg	
	PMMA	N.D.	N.D.	0.1 μg	

1. Recent Issues about Microplastics

Detection of microplastics in human-related samples

Since 2020, various studies on MNPs for human samples have continued to increase and move toward Nanoplastics!

Human sample	Pre-treatment chemical	Filtering	Analysis	Detection range	Reference
amniotic fluid, placenta	H ₂ O ₂	50 µm metal	µFTIR	> 50 µm	Braun et al.(2021)
feces	Fenton's, HNO ₃	13 µm metal	µFTIR	20–800 µm	Zhang et al.(2021)
blood	Proteinase K, CaCl ₂ , H ₂ O ₂	0.7 µm GFF	Py-GC-MS	Total mass	Leslie et al.(2022)
sputum	HNO ₃ , ZnCl ₂	0.8 µm silver	µFTIR, LDIR	20–500 µm	Huang et al.(2022)
breast milk	KOH	1.2 µm GFF	µRaman	2–12 µm	Ragusa et al.(2022)
lung tissue	H ₂ O ₂	0.2 µm Al ₂ O ₃	µFTIR	20–500 µm	Jenner et al.(2022)
liver tissue, kidney, spleen	KOH, NaClO, H ₂ O ₂	0.8 µm silver	µRaman	3.3–30.1 µm	Horvatits et al.(2022)
placenta, breast milk, meconium, newborn feces	HNO ₃	13 µm metal	LDIR	20–500 µm	Liu et al.(2022),(2023)
lower extremity vein tissue	H ₂ O ₂	0.02 µm Al ₂ O ₃	µFTIR	> 5 µm	Rotchell et al.(2023)
placenta	KOH	10 µm metal	LDIR	20–500 µm	Zhu et al.(2023)
piss	KOH	1.2 µm GFF	µRaman	4–15 µm	Pironti et al.(2023)
amniotic fluid, placenta	KOH	1.0 µm GFF	µFTIR	20–50 µm	Halfar et al.(2023)
blood	Proteinase K, CaCl ₂ , H ₂ O ₂	0.3 µm GFF	Py-GC-MS	Total mass	Marthinus et al.(2024)
atheromas and cardiovascular	Enzyme others	0.2 µm Al₂O₃	Py-GC-MS, SEM/TEM	Total mass	Raffaele et al.(2024)
brain, liver & kidney	KOH others	0.1 µm Al₂O₃	Py-GC-MS, TEM	Total mass	Matthew et al. (2024)
blood	Proteinase K, Pancrelipase, CaCl ₂ , H ₂ O ₂	0.3/0.7 µm GFF	Py-GC-MS	Total mass	Cassandra et al.(2025)


B Human(blood, organs) samples Pretreatment!

Key 1: QA/QC for protecting cross contamination in human sampling & laboratory environment

Article

Detection of Microplastic in Human Placenta and Meconium in a Clinical Setting

Thorsten Braun ^{1,2,*}, Loreen Ehrlich ², Wolfgang Henrich ¹, Sebastian Koeppel ³, Ievgeniia Lomako ³, Philipp Schwabl ^{4,†} and Bettina Liebmann ^{3,†}

Contamination issues as a challenge in quality control and quality assurance in microplastics analytics

Joana C. Prata ^{a,*}, Vanessa Reis ^a, João P. da Costa ^a, Catherine Mouneyrac ^b, Armando C. Duarte ^a, Teresa Rocha-Santos ^a

- Protection equipment made of natural materials (e.g. cotton);
- Room with controlled ventilation and minimal personal;
- Minimum weekly cleaning schedule of the room;
- Conducting all work in the laminar flow hood or equivalent;
- Aluminum foil capping solutions and samples and proper storage.

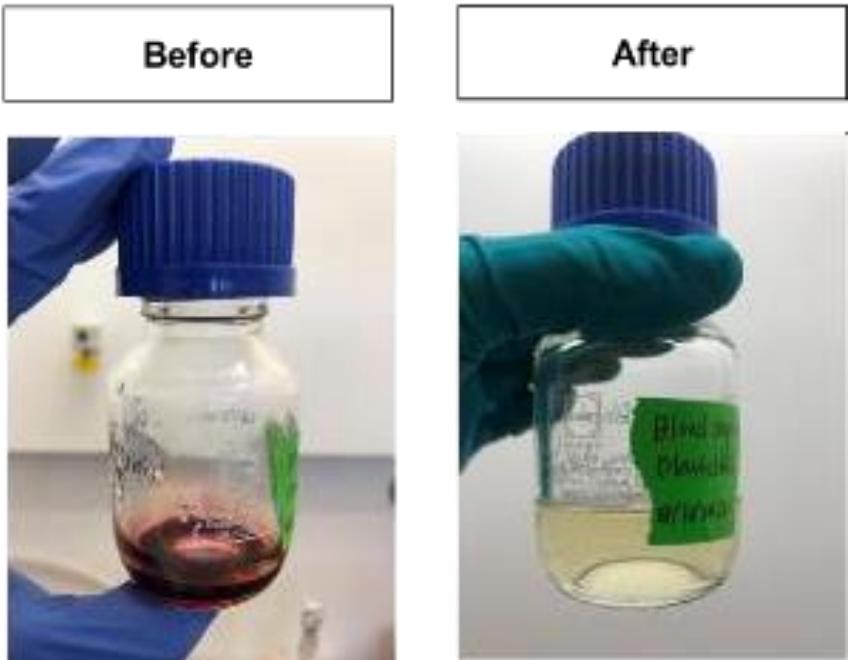
- All glass and metal materials;
- Prior washing of materials with acid and filtered water;
- Washing of materials between samples;
- Filtration of all working solutions;
- Decontamination of filters (e.g. at 450°C for 3 hours).

- Field blanks during sample collection;
- Procedural blanks during sample treatment;
- Open filters to control for air contamination.

B

Human(blood, organs) samples Pretreatment!

Key 2: Organic matter removal


1st step
Enzymatic
Digestion

2nd Step
Chemical
digestion

- Protease
- Lipase...

- H_2O_2

Appreciation

CUSP

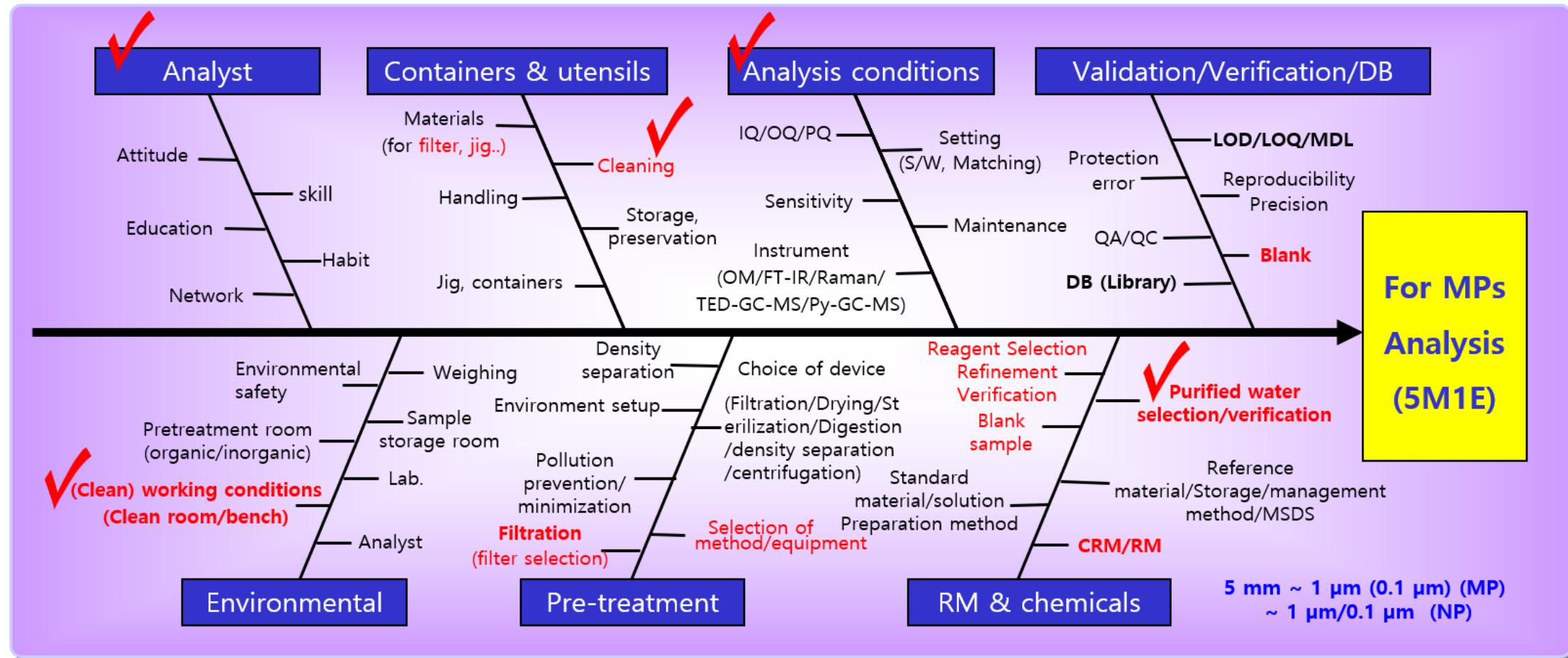
Guyu Peng

UFZ HELMHOLTZ
Centre for Environmental Research

Lorenzo Scibetta

VU

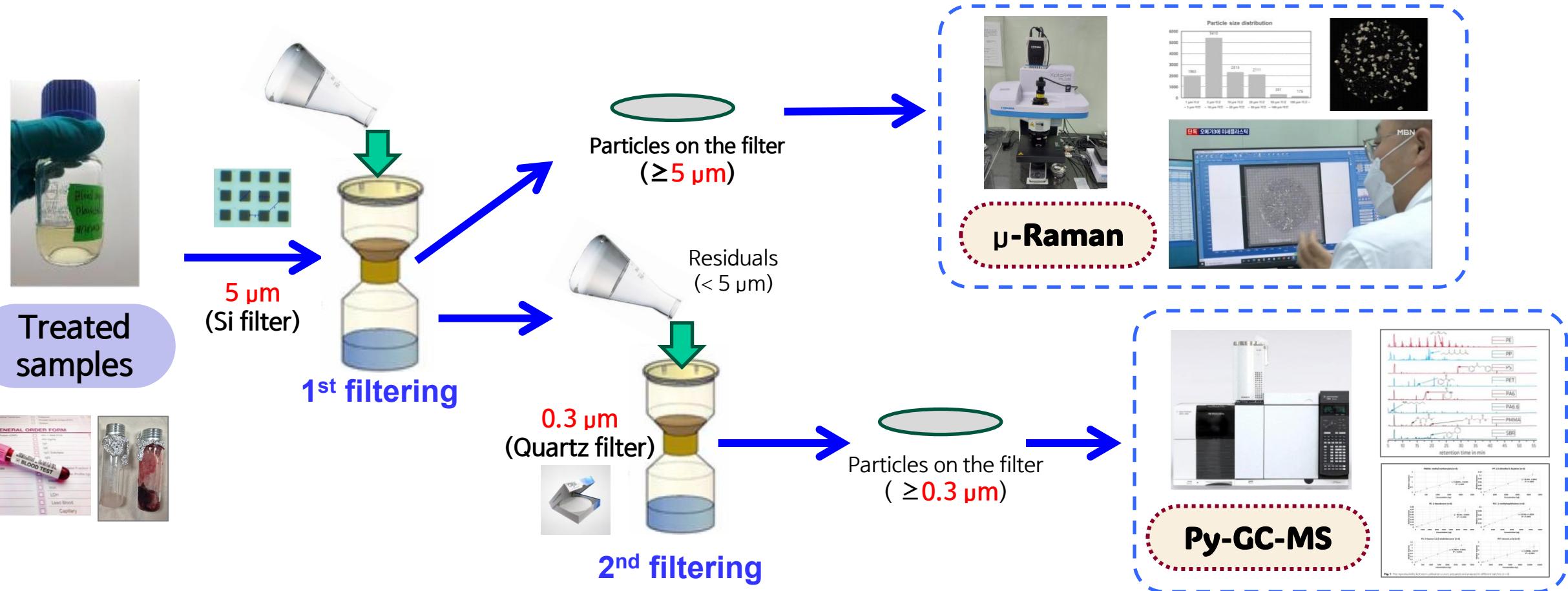
Develop/optimize sample pre-treatment method through
cooperation with CUSP Cluster
(Helmholtz Centre for Environmental Research (UFZ) & Vrije Universiteit Amsterdam)


1. Test Methods for Microplastics & Nanoplastics

Pretreatment for human samples (blood, organs)

For NMP analysis (5 μ m to 0.3 μ m)

B


In order to perform sampling, sample preparation, and qualitative and quantitative analysis of Microplastics & Nanoplastics ranging in size from μ m to nm, the laboratory must be operated after reviewing all factors that may affect the quality of the laboratory (cross-contamination, etc)

※ Cause & Effect Diagram, Fish-bone Diagram, Ishikawa Diagram

B Human(blood, organs) samples Pretreatment!

Key 3: Human(blood, organs) samples Pretreatment!(filtering)

After filtering with 5 μ m Si filter, the residuals are filtered with 0.3 μ m Quartz filter (2nd filter).

1. Test Methods for Microplastics & Nanoplastics

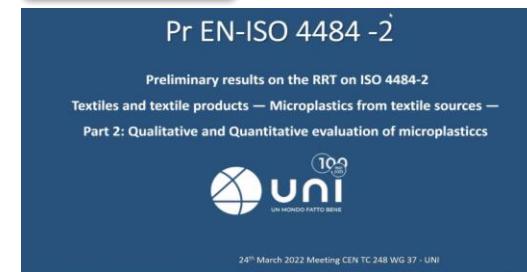
Participant for ILC (2020-2024)

2020

Microplastic in Water by JRC



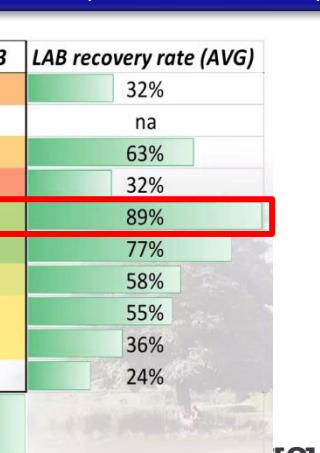
Timeline


Table 1: Results of determination of number ($n = 20$) and mass concentration ($n = 14$) per litre and indicative ranges.				
Parameter	Average	SD	RSD [%]	Indicative range, rounded
Number / L	797	151	19	500 – 1100
Mass / L	293 μ g	41 μ g	14	210 – 370 μ g

Number of PET particles reported

2022

ISO/TC 38 (CEN/TC 248), RRT (ILC) on microfibers in textile samples.



Accuracy

Sample 1	Sample 2	Sample 3	Control	Average	sample1	sample2	sample3	LAB recovery rate (AVG)
R1	R2	R3	R1	R2	R3	R1	R2	R3
lab01						37%	24%	36%
lab02						na	na	na
lab03						79%	65%	45%
lab04						0%	75%	20%
lab07						70%	113%	83%
lab09						73%	72%	88%
lab10						83%	25%	66%
lab11						52%	58%	55%
lab13						36%	16%	56%
lab17						na	24%	na
recovery rate (AVG)		54%	52%	56%				

uni

KIAST: lab07 (FT-IR & Raman)

1. Test Methods for Microplastics & Nanoplastics

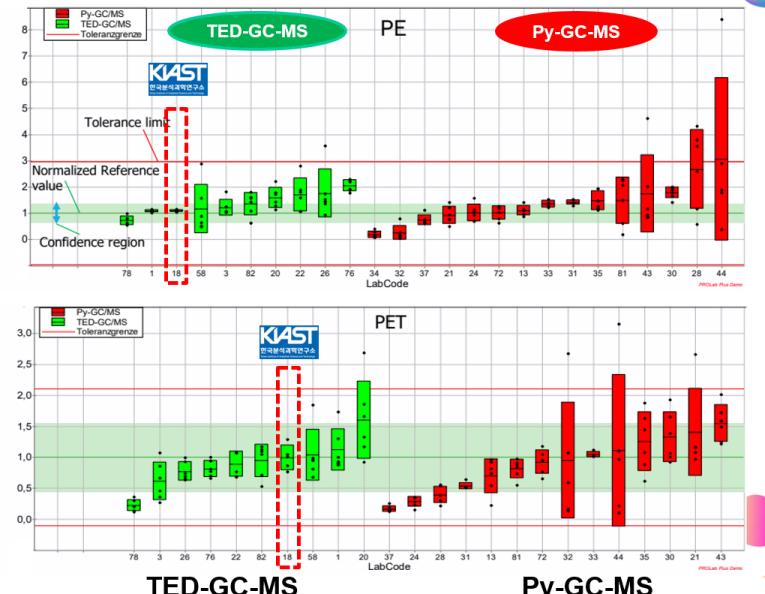

Participant for ILC (2020-2025)

2023

Microplastic in Water by VAMAS

AIM: validation of detection methods

- 4 methods: μ -IR (FTIR + LDIR), μ -Raman, TED-GC/MS and Py-GC/MS
- 6 samples (each 2 tablets, PE+PET) + blank samples
- Individual concentrations for spectroscopic and thermo-analytical methods
- 84 Participants all over the world (but only 50 submitted the results)
- Participants from academia, industry, government, metrology institutes, etc.



RESULTS ILC: THERMO-ANALYTICAL METHODS

Theoretically 265 μ g/Tablet \rightarrow 1.06 μ g/mg
Reference value TED-GC/MS = 1.13 \pm 0.33 μ g/mg
Average mass Py-GC/MS = 1.11 \pm 0.64 μ g/mg

Mass fraction of particles in a tablet (normalized to a reference value obtained by an accredited lab)

Theoretically 556 μ g/Tablet \rightarrow 2.22 μ g/mg
Reference value TED-GC/MS = 1.69 \pm 0.67 μ g/mg
Average mass Py-GC/MS = 1.67 \pm 0.80 μ g/mg

2024

Microplastic in Water by PlasticTrace

Water quality – ISO 16094-2 interlaboratory validation

ICPLASTIC cost
EUROPEAN COOPERATION IN SCIENCE & TECHNOLOGY

www.icplastic.eu

Water quality — Analysis of microplastics in water – Part 2: vibrational spectroscopy methods for waters with low content of suspended solids including drinking water

Call for Interlaboratory trial for validation of ISO 16094-2 according to ISO/DIS 16094-2 : 2023 September

In light of the limited availability (12) of specific reference materials designated for this interlaboratory trial, selection of 12 expert laboratories for participation through technical questionnaire : 2023 October

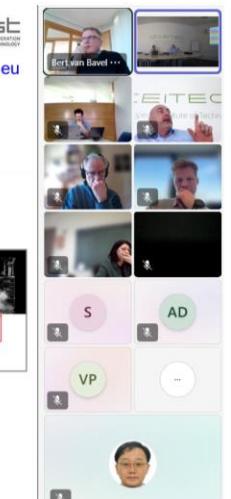
- Final selection of 12 laboratories : 2024 February
- Samples sent to labs : 2024 February-Mars
- Samples measurement in labs : 2024 February-July
- Statistical treatment : 2024 July-September

- Final selection of 12 laboratories – 11 responding labs :

- Countries : Austria (1), France (3), Germany (2), Italy (1), Japan (1), Singapore (1), South Korea (1), USA (1)
- Type of laboratories : Institute (5), Governmental Agency (1), Industry (2), Commercial (2), University (1)

norman

PlasticTrace Tracing Micro and NanoPlastics in Food and Environment


CHIRON by ZeptoMetrix

NIVA

European Commission
Joint Research Centre

BAM
Bundesanstalt für Materialforschung und -prüfung

35

KIAST 한국분석과학연구소
Korea Institute of Analytical Science and Technology

norman

Water quality – ISO 16094-2 interlaboratory validation

SCHEME FOR INTERLABORATORY COMPARISON FOR VALIDATION OF ISO 16094-2:

- Reference water control done by each lab
- 2 replicates

CHIRON by ZeptoMetrix

NIVA

European Commission
Joint Research Centre

BAM
Bundesanstalt für Materialforschung und -prüfung

Sample 1: NIVA	Mix of tablets called to reconstitute two samples + blank tablet sample	Low numbers of microplastics, different types, size down to 50 μ m	ISO-A
Sample 2: JRC	Glass vials containing salt carrier microplastic + surfactant + deionized water to reconstitute one sample	High numbers of microplastics, one type, higher size down to 50 μ m	ISO-B
Sample 3: BAM	Glass vials containing one blank tablet and one test tablet as to reconstitute two samples	Low numbers of microplastics, one type, size down to 20 μ m	ISO-C

➤ 2025 EU VAMAS “Nanoplastics” ILC program

※ Inter-laboratory Comparison (ILC)

VAMAS ILC on nano plastics

- Interlaboratory comparison on candidate reference materials to support the standardisation of nano plastic analysis

- Material properties

- Particle size distribution
- Particle number concentration
- Particle mass concentration

- Technologies

- Light Scattering techniques (DLS, MADLS)
- Fractionation techniques (FFF-MALS)
- Particle tracing (PTA)
- Thermoanalytical techniques (Py-GC/MS and TED-GC/MS)

- Registration or more information

- Enrica Alasonati (Enrica.Alasonati@lne.fr) LNE
- Dorota Bartczak (dorota.bartczak@lgcgroup.com) LGC
- Andrea Giovannozzi (a.giovannozzi@inrim.it) INRIM

Micro and Nano Plastics in the Environment
Technical Work Area 45

Project XX
An interlaboratory comparison on candidate reference materials to support the standardisation of nanoplastic analysis

Objectives

1. Validate the performance of the following targeted techniques to measure the size distribution, number concentration and mass fraction of nanoplastic particles: PTA, Light Scattering techniques (DLS, MADLS), hyphenated approaches based on fractionation techniques (FFF-MALS), and thermoanalytical techniques (Py-GC/MS and TED-GC/MS).
2. Support harmonization and pre-standardization by achieving precision and comparability among methods.

analysis of the physico-chemical properties of nanoplastics are still absent.
For the validation of methods, instrumentation and parameters for nanoplastics, an interlaboratory comparison (ILC) will be organized to evaluate the performance of targeted techniques to measure the size distribution, number concentration and mass fraction of nanoplastic particles.

Standardization Needs

• There is a critical need for validated and standardized protocols for nanoplastics characterization.
• Results from this interlaboratory study aim to contribute to new ISO standards for nanoplastic analysis.

Background

Several research needs have been identified by International Organisations as the European Food Safety Agency (EFSA), the Science Advice for Policy by European Academies (SAPEA), and the World Health Organization (WHO). Among these is the development of representative reference materials for plastic particles across various size ranges. As part of the EURAMET Plastic Trace Project (<https://plastictrace.eu/>), sub-micron plastic particles and nanoplastics, reflective of common industrial polymers, have been produced and characterised. However, standardised measurement protocols and methodologies for the reliable

Work Programme

• Surfactant-free aqueous suspensions of nano-polypropylene test materials will be distributed in February 2025.
• A minimum of five measurement replicates is demanded. The time for carrying out the measurements may depend from the technique used but it is estimated roughly at 1 week.
• Participants will receive SOPs for sample preparation, measurement, and data analysis.

Deliverables and Dissemination

This interlaboratory study will be disseminated at scientific conferences and in a peer-reviewed scientific journal. Data produced in this ILC may contribute to assign the reference values to the test material.

Funding
Participants fund their own involvement in the project.

Status
The project is due to start in February 2025 for a duration of 6 months.

Call for Participation

Figure: Morphology of nano-polypropylene test material captured via SEM imaging (left) and a photograph of the surfactant-free aqueous suspension sample (right).

For more information on participation, please contact:

Enrica Alasonati
Project Lead
Laboratoire national de métrologie et d'essais (LNE), France
Email: enrica.alasonati@lne.fr

Dorota Bartczak
Project Lead
National Measurement Laboratory (NML) hosted at LGC Limited
Email: Dorota.Bartczak@lgcgroup.com

Andrea Mario Giovannozzi
Chair VAMAS TWA 45
Email: a.giovannozzi@inrim.it

www.vamas.org

December 2024

Participated/submitted Nanoplastics ILC by using Py-GC-MS & TED-GC-MS (2025.02~07)

2. Bio-sample Application of Microplastics

2. Bio-sample Application of Microplastics

**SCIENTIFIC
REPORTS**

**Gastrointestinal tissues
in Gentoo Penguin**

www.nature.com/scientificreports

scientific reports

 Check for updates

OPEN **Microplastics in gastrointestinal tracts of gentoo penguin (*Pygoscelis papua*) chicks on King George Island, Antarctica**

Youmin Kim^{1,2}, Hankyu Kim^{1,6}, Min-Su Jeong^{1,6}, Dowoon Kim³, Juyang Kim³, Jaehak Jung³, Hae-Min Seo¹, Hyun-Jin Han⁴, Woo-Shin Lee¹ & Chang-Yong Choi^{1,5}✉

Microplastics (<5 mm) have been found in marine ecosystems worldwide, even in Antarctic ecosystems. In this study, the stomach and upper intestines of 14 dead gentoo penguin (*Pygoscelis papua*) chicks were collected and screened for microplastics on King George Island, a gateway to Antarctic research and tourism. A total of 378 microplastics were identified by Fourier-transform infrared spectroscopy, with 27.0 ± 25.3 microplastics per individual. The detected number of microplastics did not increase with the mass of penguin chicks, suggesting no permanent accumulation of microplastics. However, the concentration of microplastics was much higher (9.1 ± 10.8 microplastics per individual within the size range 100–5000 μm) than the previously reported concentration in the penguin feces, and a greater number of smaller microplastics were found. Marine debris surveys near the breeding colony found various plastic (79.3%) to be the most frequent type of beached debris, suggesting that local sources of marine plastic waste could have contributed to microplastic contamination of penguin chicks being fed by parents that forage in nearby seas. This finding confirms the presence of microplastics in an Antarctic ecosystem and suggests the need for stronger waste management in Antarctica and a standardized scheme of microplastic monitoring in this once-pristine ecosystem.

Analysis of microplastics in the body of the dead Gentoo Penguin (young bird) (Sampling: SNU, KOPRI, Analysis: KIAST)

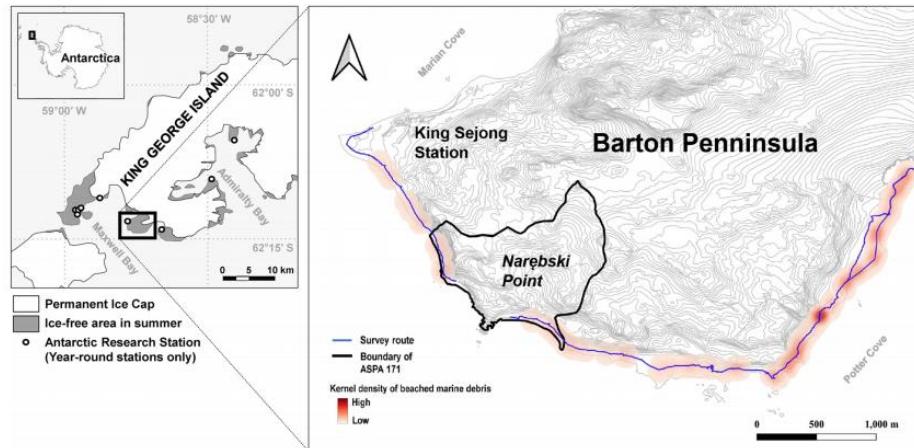


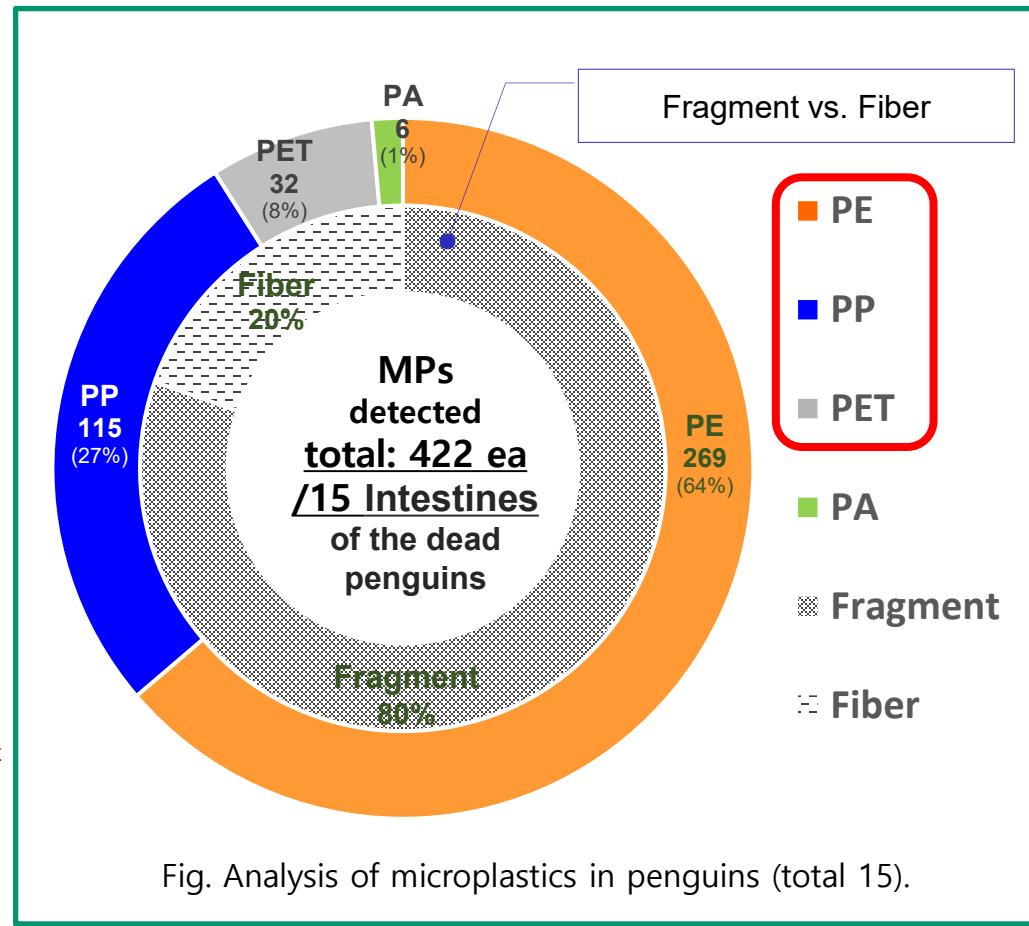
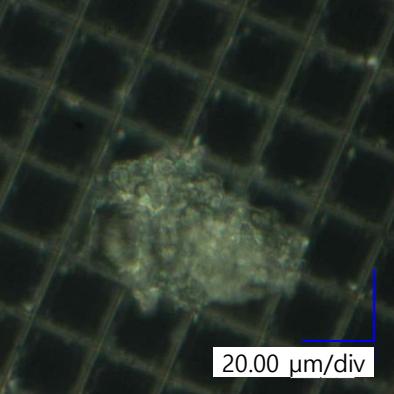
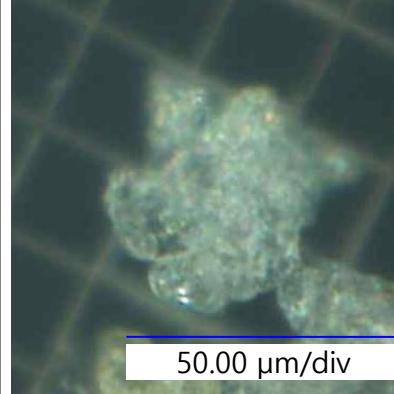
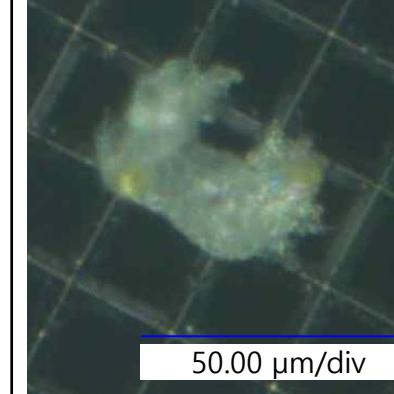
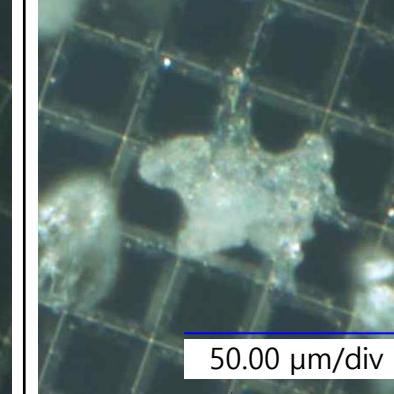
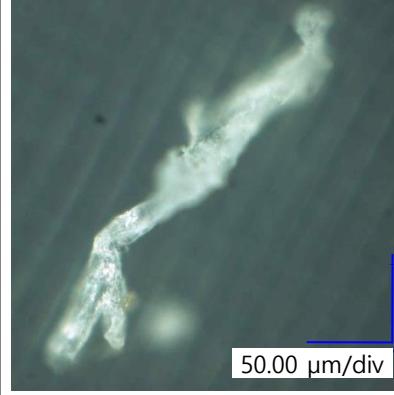
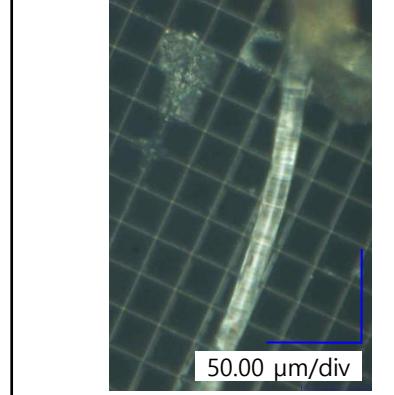
Figure 1. The distribution of beached marine debris on the Barton Peninsula of King George Island, South Shetland Islands, Antarctica. The boundary of Narebski Point (Antarctic Specially Protected Area 171: ASPA 171), where the penguin colonies are located, was marked by an orange line, and the kernel density of marine debris was shown as a red gradient. The year-round Antarctic Research Stations on King George Island were marked by circles in the index map. This map was created in ArcMap 10.2.2 from base map data in the public domain (the polar geographic information; <http://map.ngii.go.kr/>) provided by the Korean Government.

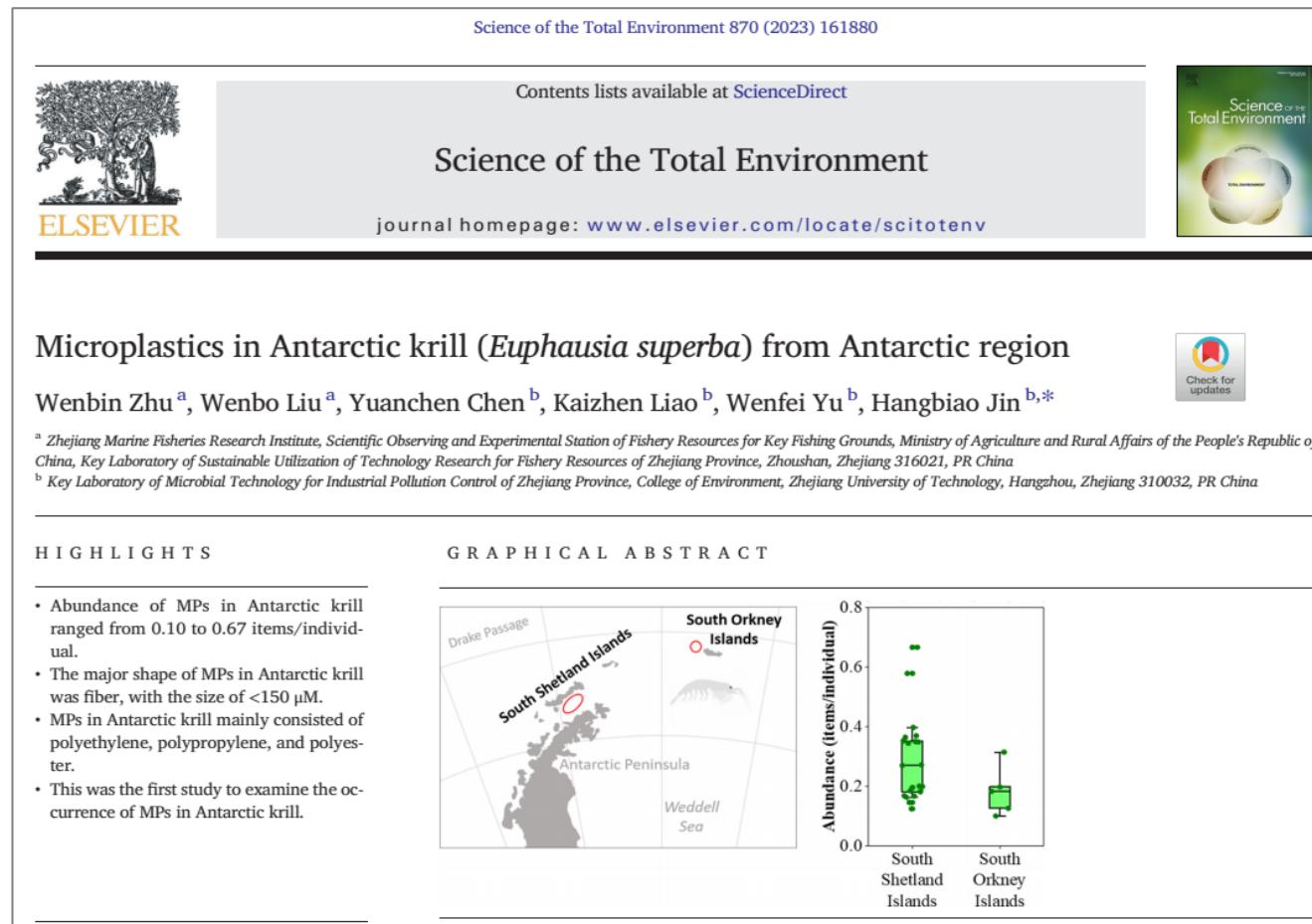
[Sampling information]

- Samples : Dead Gentoo Penguin (young bird)
- Collection by SNU & KOPRI
- Periods : December 2018 ~ February 2019 (Breeding season)
- Sampling area: Narevsky Point, King George Island, Antarctica (ASPA 171; Penguin village)

Sampling

- After penguin autopsy, scrape the stomach & intestine with a metal scalpel and store in a glass container (including 1 control group under the same condition)
- Analysis of 15 samples of approximately 2 g (1.381 ~ 2.840 g) from 10 ~ 26 days old Gentoo penguin carcasses


Fig. Analysis of microplastics in penguins (total 15).

Representative photographs of microplastics detected in penguins

MPs Shape \	Polypropylene (PP)	Polyethylene (PE)	Polyethylene terephthalate (PET)	Polyamide (PA)
Fragment	20.00 µm/div	50.00 µm/div	50.00 µm/div	50.00 µm/div
Fiber	50.00 µm/div	50.00 µm/div	50.00 µm/div	None

Microplastics detected in krill from Antarctica

- Abundance of MPs in Antarctic krill ranged from 0.10 to 0.67 items/individual.
- The major shape of MPs in Antarctic krill was fiber, with the size of <150 μm .
- **MPs in Antarctic krill mainly consisted of PE, PP, PET**

Main food source for Antarctic penguins

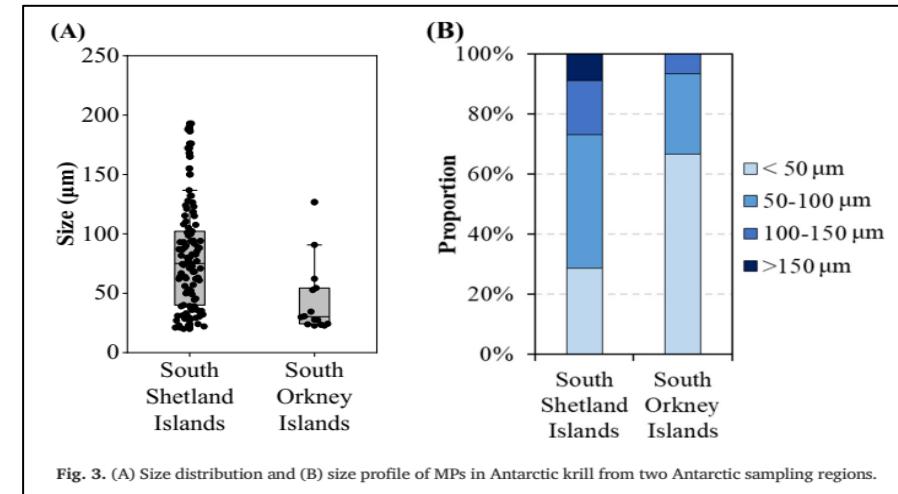
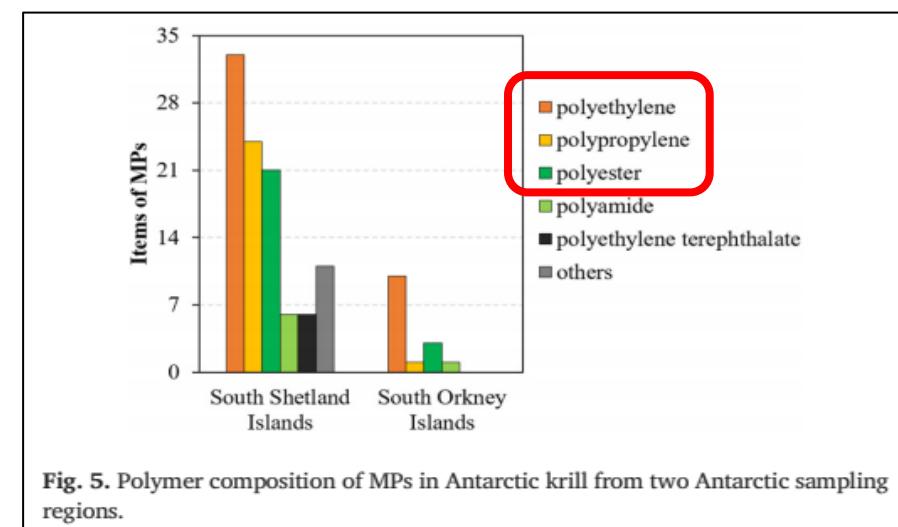
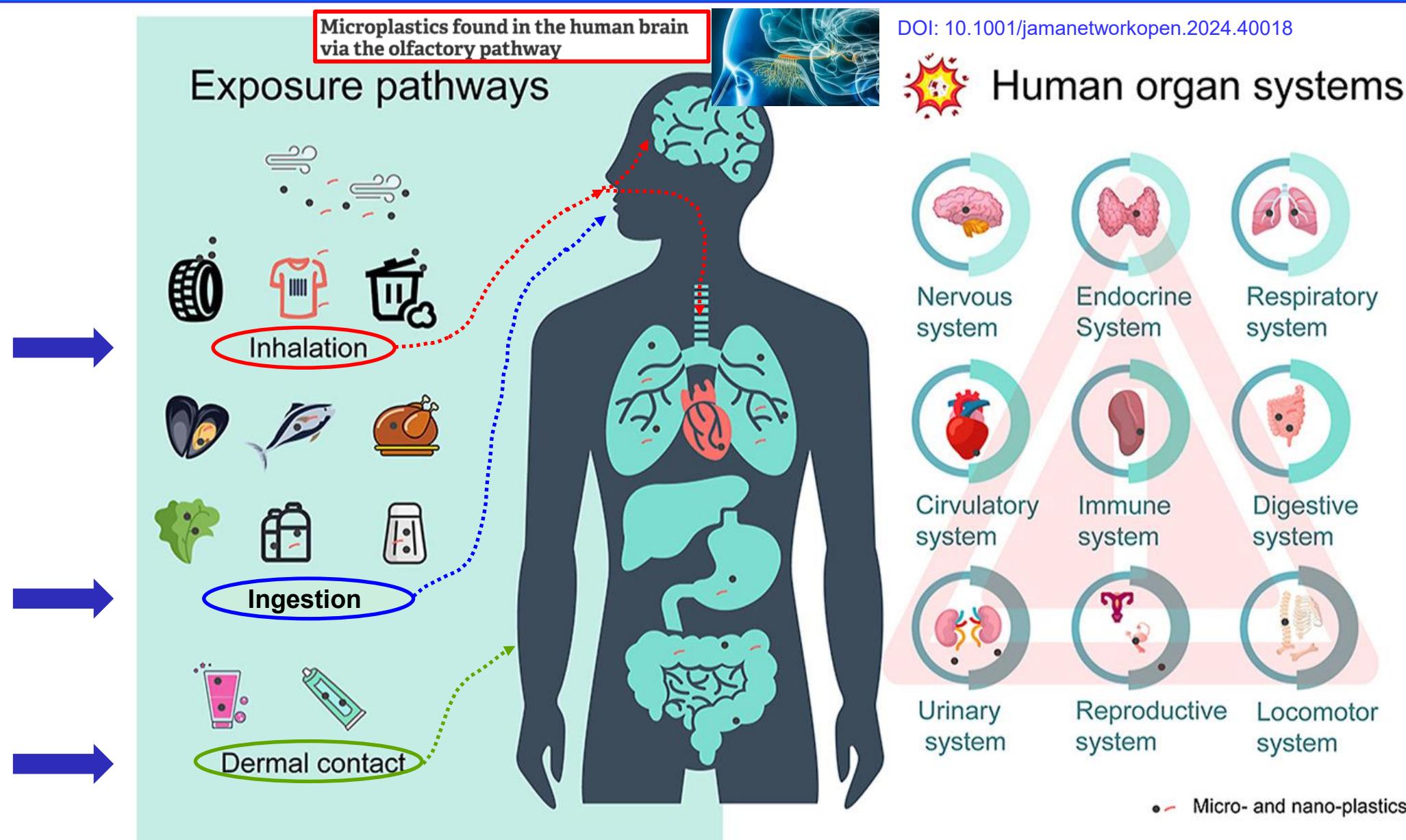
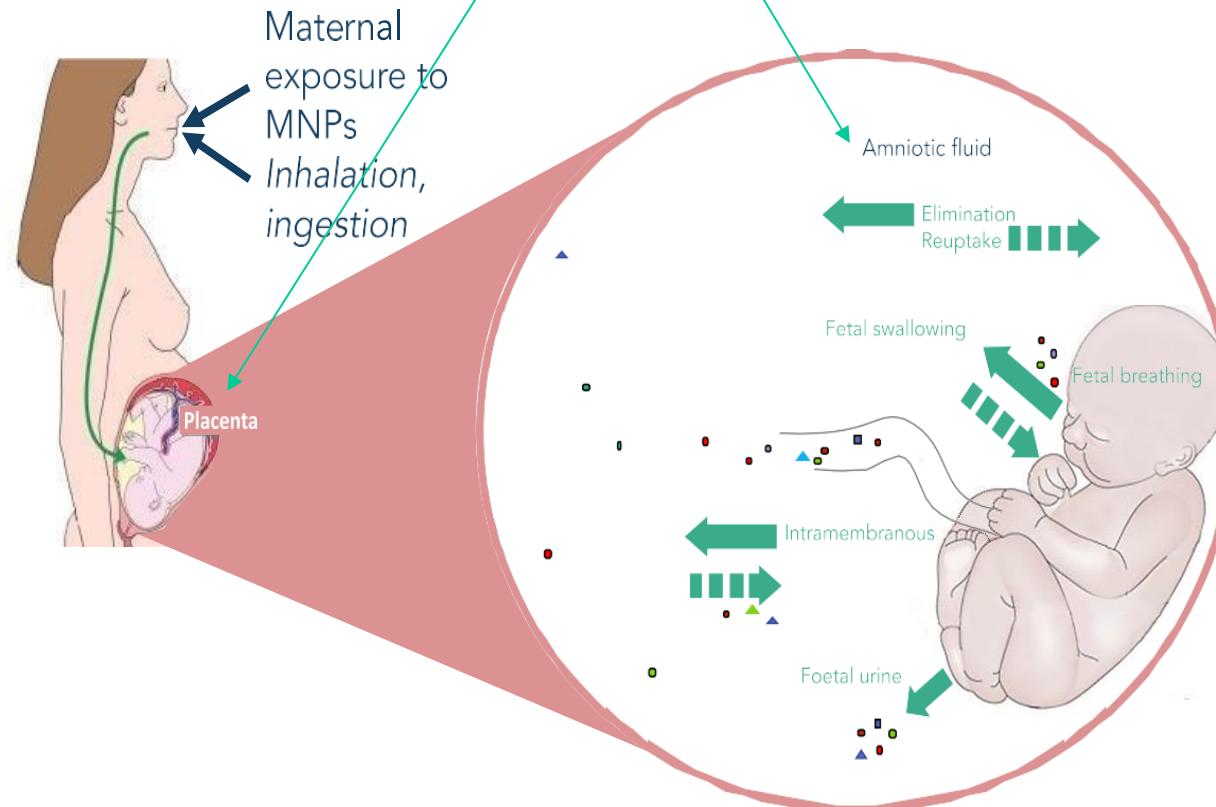


Fig. 3. (A) Size distribution and (B) size profile of MPs in Antarctic krill from two Antarctic sampling regions.


Fig. 5. Polymer composition of MPs in Antarctic krill from two Antarctic sampling regions.

2. Bio-sample Application of Microplastics

Exposure pathways in human

A Amniotic fluid

SNUH
분당서울대학교병원

Hyeon Ji Kim
MD, PhD

Detection of Microplastics in Amniotic Fluid in Preeclampsia and Healthy Full-Term Pregnant Women without Underlying Conditions

Preparation of sampling

□ Study Design

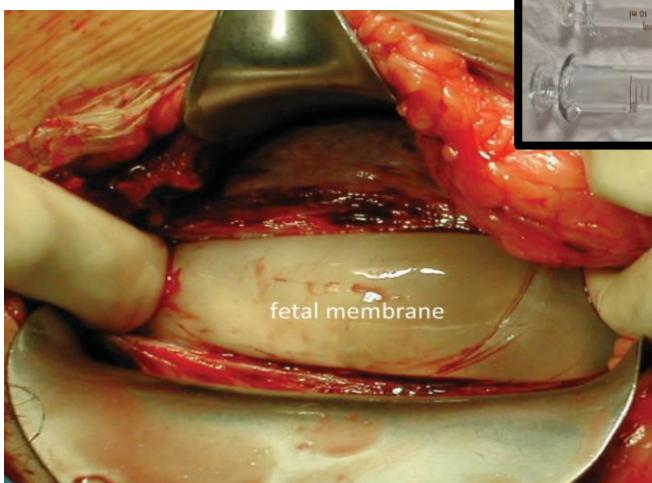
- Prospective cohort study conducted at Seoul National University Bundang Hospital

Preeclampsia group

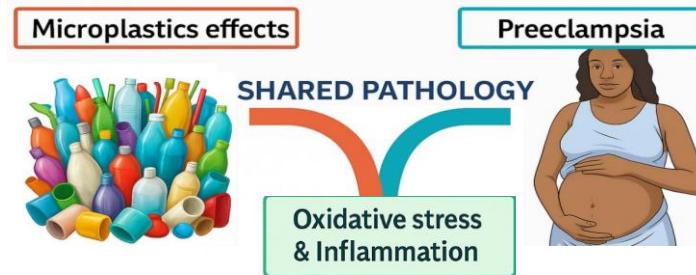
- Preeclampsia / Eclampsia
- Cesarean section

Normal group

- Full term delivery (37 week~)
- No underlying diseases
- Cesarean section


□ Questionnaire survey

- Maternal MP exposure was assessed through a questionnaire survey.



□ Sample collection

- Period: November 2023 to December 2024
- Amniotic fluid was collected during surgery
- All procedures followed strict plastic-free protocols, using only cotton, metal, and glass instruments to avoid contamination

Fetal membrane

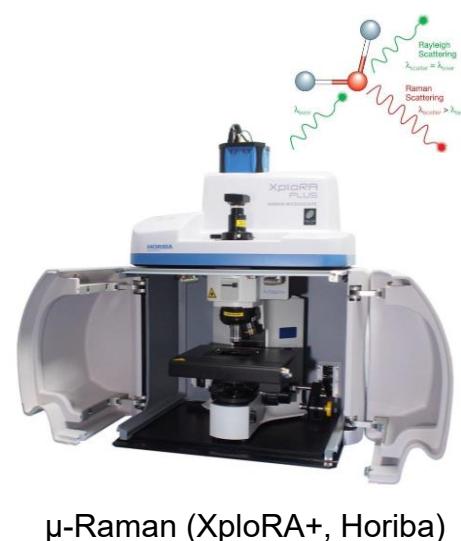
Amniotic fluid Placenta

Will be published

Analysis

□ Sample pre-treatment:

Samples were prepared by vacuum filtration using with a **5 μ m pore size silicon (Si) filter**.

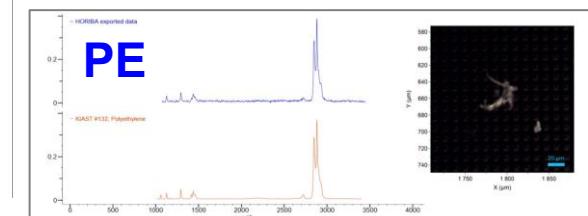

After filtration, the samples were air-dried naturally.

□ Instrument:

μ -Raman (XploRA+, Horiba, France)

□ Measurement Conditions:

- ① 20x darkfield objective lens
- ② 532 nm laser
- ③ 10 mW (10%) laser power
- ④ Measurement time: (1 x 2) s
- ⑤ Darkfield mode
- ⑥ Particle Finder analysis

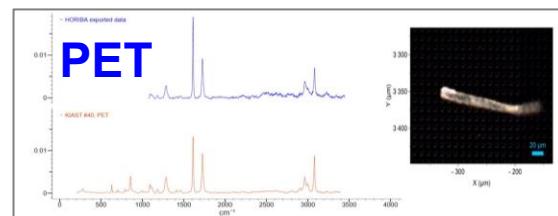


Obstetric Operating Room

Air sampling by Petri dish
(Passive sampling)

Washed with 40 mL of deionized water and then filtered

Analyzed the filtered sample using by μ -Raman



Amniotic fluid

Amniotic fluid 1 g + 30% H₂O₂ 20 mL

Shaking incubator (60 °C, 100 r/min, 7 d)

Analyzed the filtered sample using by μ -Raman

Will be published

Test Results

Preeclampsia

Preeclampsia	5_10 μ m	10_20 μ m	20_50 μ m	50_100 μ m	>100 μ m	Sum
PP	16	11	9	2		38
PE	59	17	4	2		82
PS	2	3	4			9
PET		1	1			2
PMMA	2	2				4
Sum	79	34	18	4	0	135

Normal	5_10 μ m	10_20 μ m	20_50 μ m	50_100 μ m	>100 μ m	Sum
PP	2	7				9
PE	1		1			2
PS		2	1	1		4
PET					1	1
PMMA						0
Sum	3	9	2	1	1	16

PP (polypropylene); PE (polyethylene); PS (polystyrene);
PET (polyethylene terephthalate); PMMA (polymethyl methacrylate)

Figure 1. Distribution of MPs according to size and type.

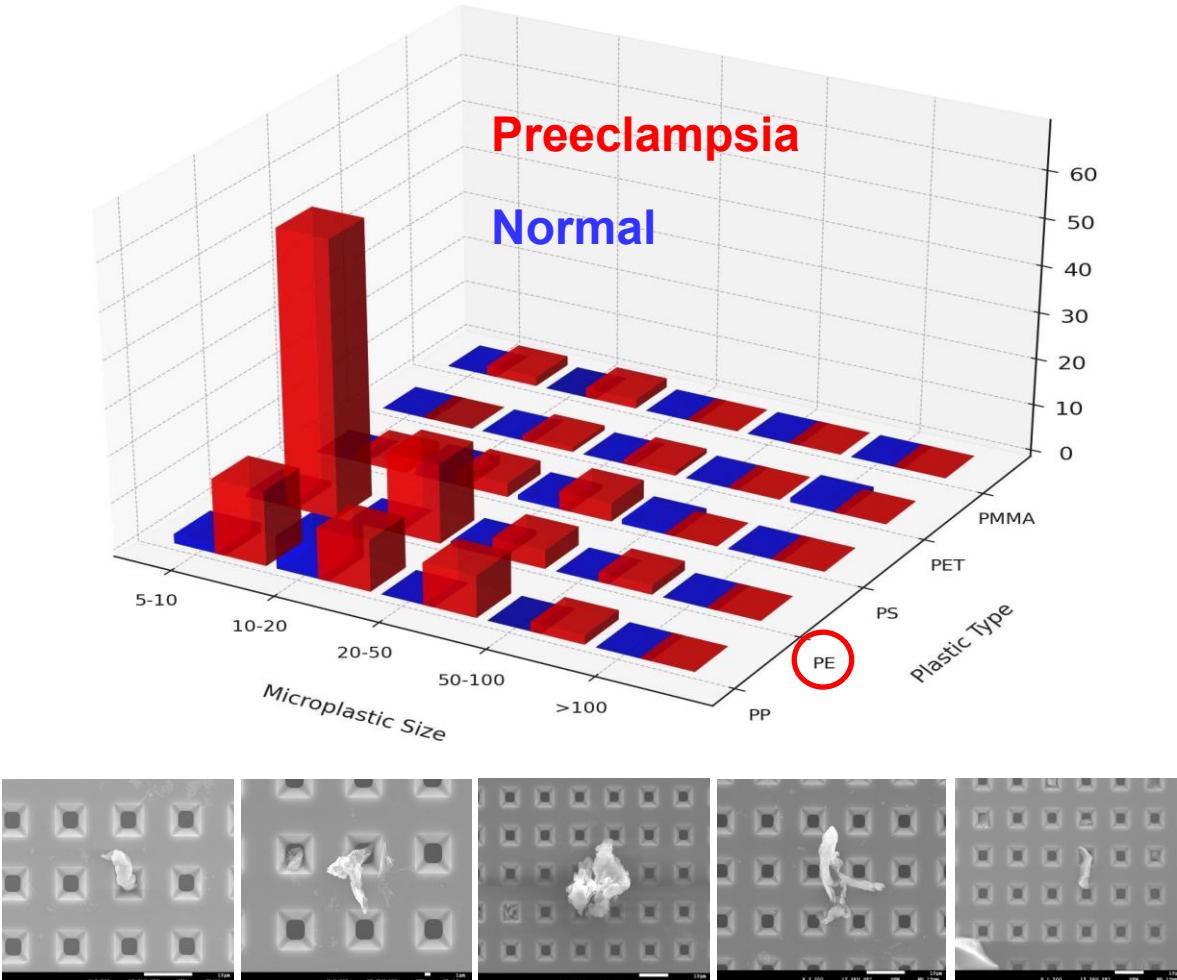


Figure 2. Microscopic photos of the different characteristics of MPs in Amniotic fluid.

Table. Factors associated with preeclampsia: Univariate and multivariate logistic regression results

Variables	Univariable OR (95% CI)	Univariable p-value	Multivariable OR (95% CI)	Multivariable p-value
High MP levels (≥ 4)	14.00 (1.30-150.89)	0.03	35.37 (1.35-926.04)	0.032
Consumption of bottled water	9.33 (0.85-101.95)	0.067	7.04 (0.31-161.25)	0.222
Consumption of seafood >5 times/week	9.75 (1.38-68.78)	0.022	6.26 (0.40-98.86)	0.193
MP exposure awareness	0.15 (0.02-1.07)	0.058	0.10 (0.01-1.83)	0.122

OR, Odds ratio; CI, Confidence Interval

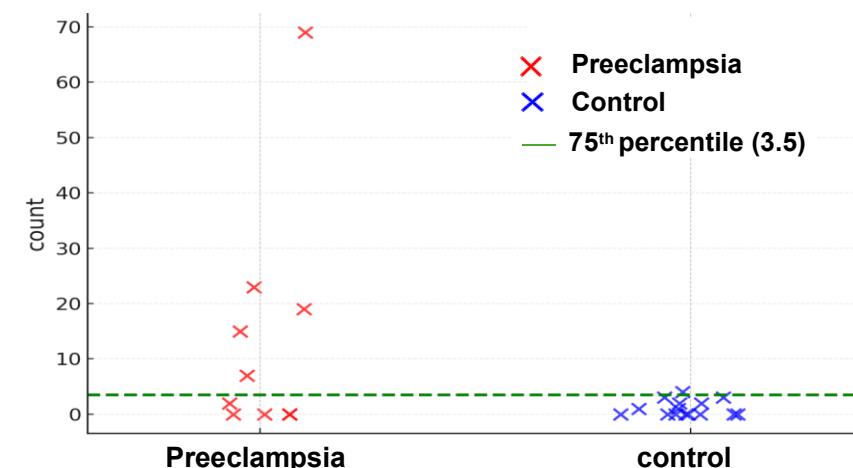


Figure 3. Distribution of MP counts in the preeclampsia and control groups

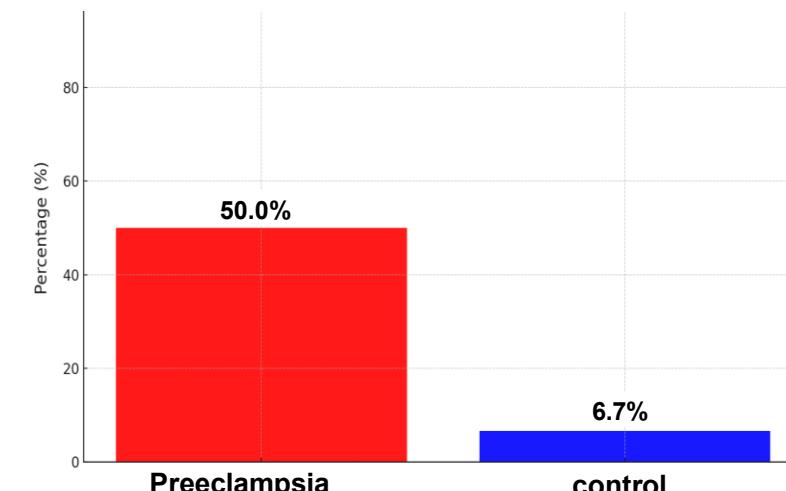


Figure 4. Comparison of the proportion of samples with high MP levels between the preeclampsia and control groups

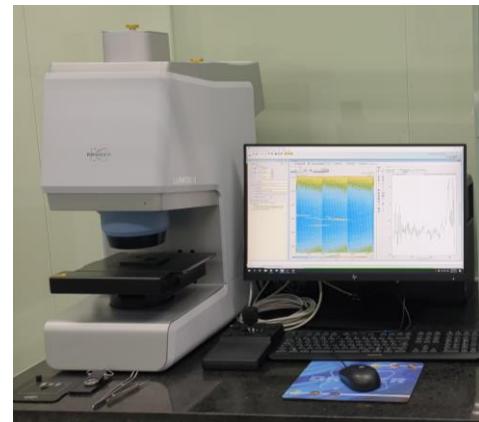
B

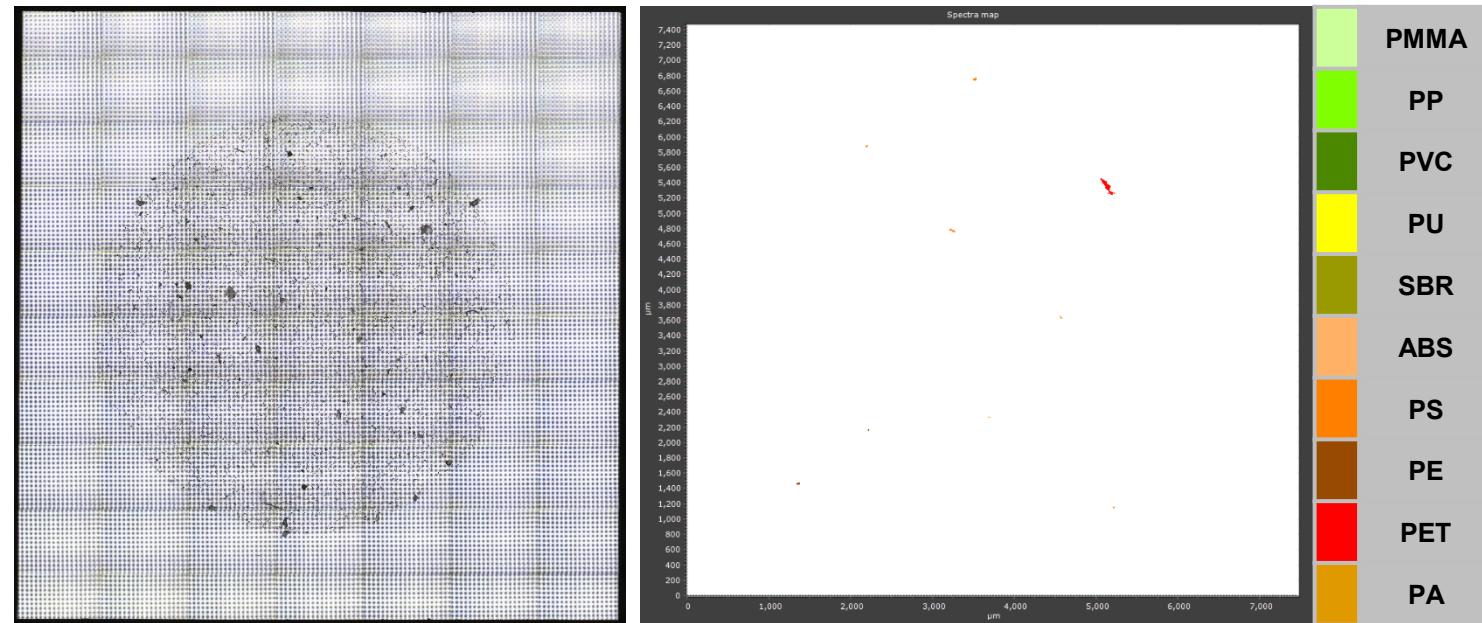
Human Blood

✓ **Blood**

Dong-wook Lee
MD, PhD

2. Bio-sample Application of Microplastics


MPs detection in bloods
by μ -FTIR

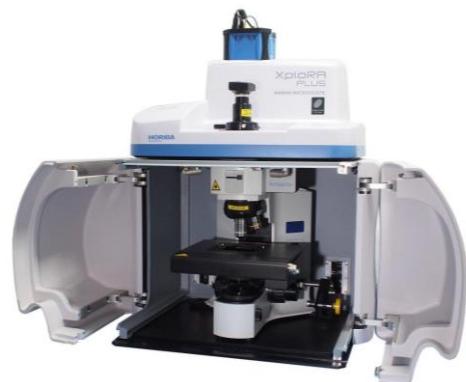

인하대병원
INHA UNIV. HOSPITAL

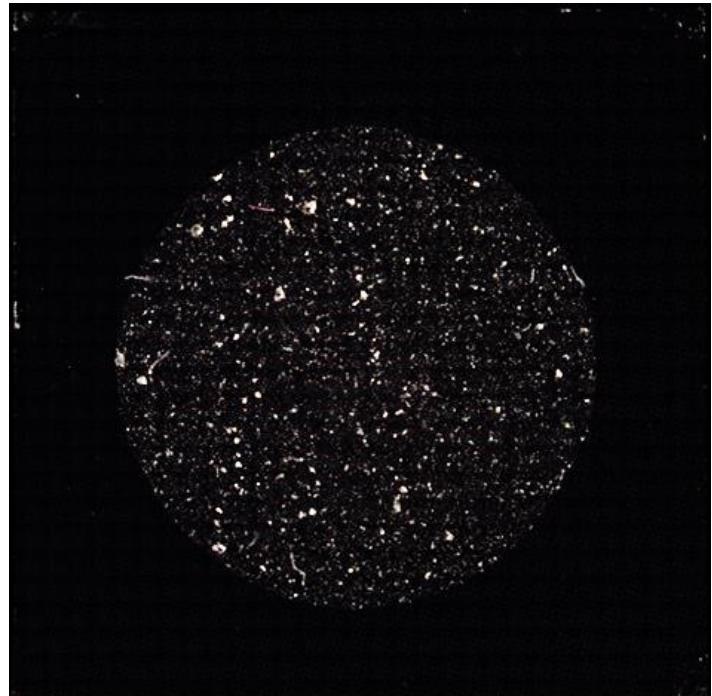
Blood (1.0 g) by μ -FTIR						
MPs	5 μ m ~ 10 μ m	10 μ m ~ 20 μ m	20 μ m ~ 50 μ m	50 μ m ~ 100 μ m	100 μ m ~	Sum
Polyethylene (PE)	-	-	2	-	-	2
Polystyrene (PS)	-	-	4	2 (1)	-	6 (1)
Polyethylene terephthalate (PET)	-	-	-	-	1 (1)	1 (1)
Sum	-	-	6	2 (1)	1 (1)	9 (2)

() : Fiber

μ -FTIR (LUMOS 2, Bruker Optics)

2. Bio-sample Application of Microplastics


MPs detection in bloods
by μ -Raman

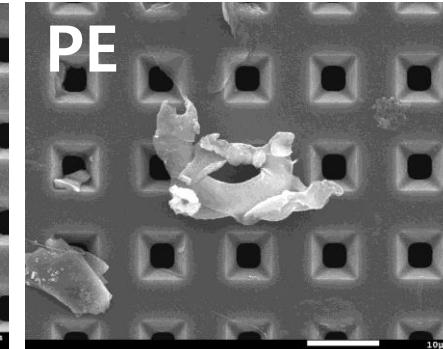
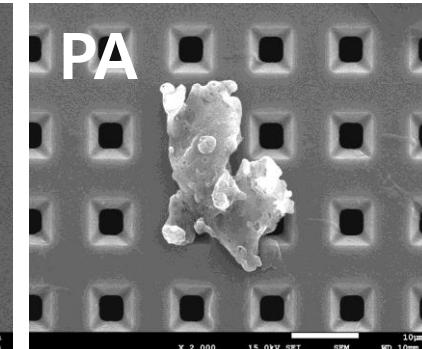
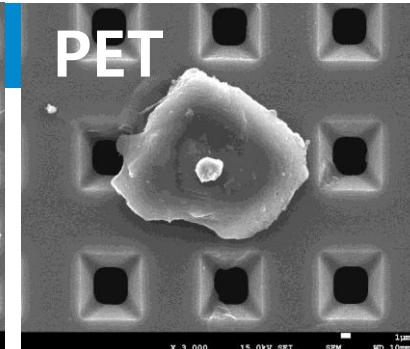
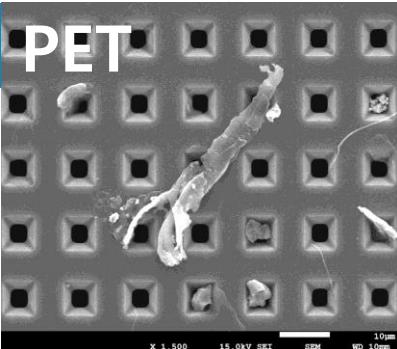
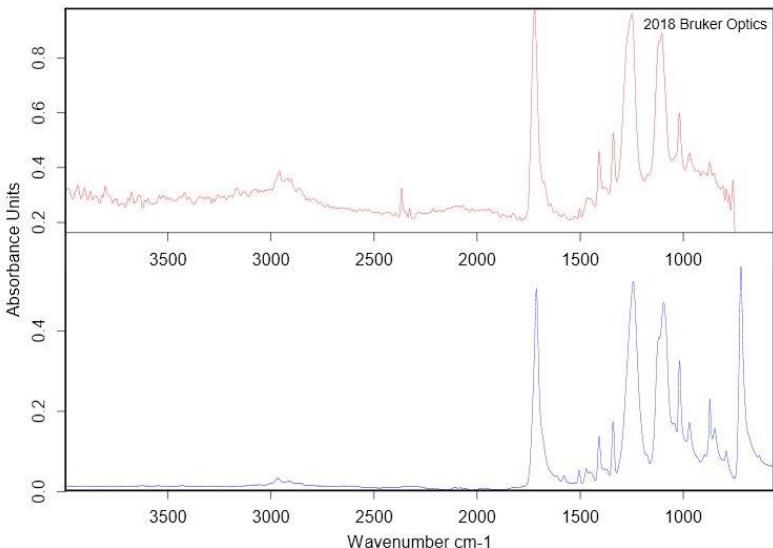

인하대병원
INHA UNIV. HOSPITAL

Blood (1.0 g) by μ -Raman						
MPs	5 μ m ~ 10 μ m	10 μ m ~ 20 μ m	20 μ m ~ 50 μ m	50 μ m ~ 100 μ m	100 μ m ~	Sum
Polypropylene (PP)	3	11	2 (1)	-	-	16 (1)
Polyethylene (PE)	1	-	-	-	-	1
Poly(ethylene terephthalate) (PET)	4	-	-	-	-	4
Sum	8	11	2 (1)	-	-	21 (1)

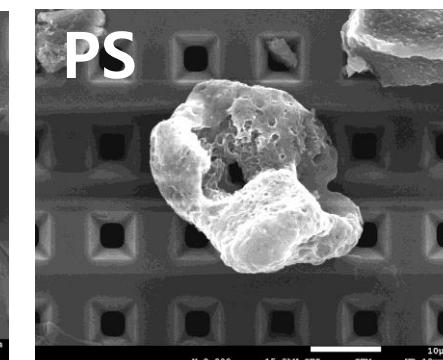
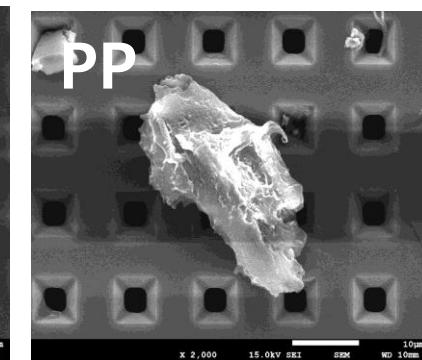
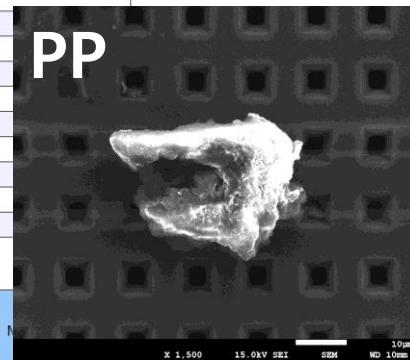
() : Fiber

μ -Raman (XploRA+, Horiba)

Number of particles measured : 31,986 ea






2. Bio-sample Application of Microplastics

MPs detection in bloods
by μ -FTIR

인하대병원
INHA UNIV. HOSPITAL

■ Polyethylene terephthalate (PET)

Polymer	PET
CAS Registry Number	25038-59-9
Substance	polyethylenterephthalate
Trade Name	Polyclear 1101
Supplier	AG Plastics
Filler	unfilled
Filler Content	0
Color	white
Applications	contact applications
Melting Point	252

Color	Hit Quality	Compound name	CAS Number	Molecular formula	Notes
Blue	947	PET	25038-59-9		

Color	File	Path	Spectrum Type
Red	SEARCH_CC MA-31.0_AB_1435714.0	C:\Users\admin\Desktop\Search	Query Spectrum

2. Bio-sample Application of Microplastics

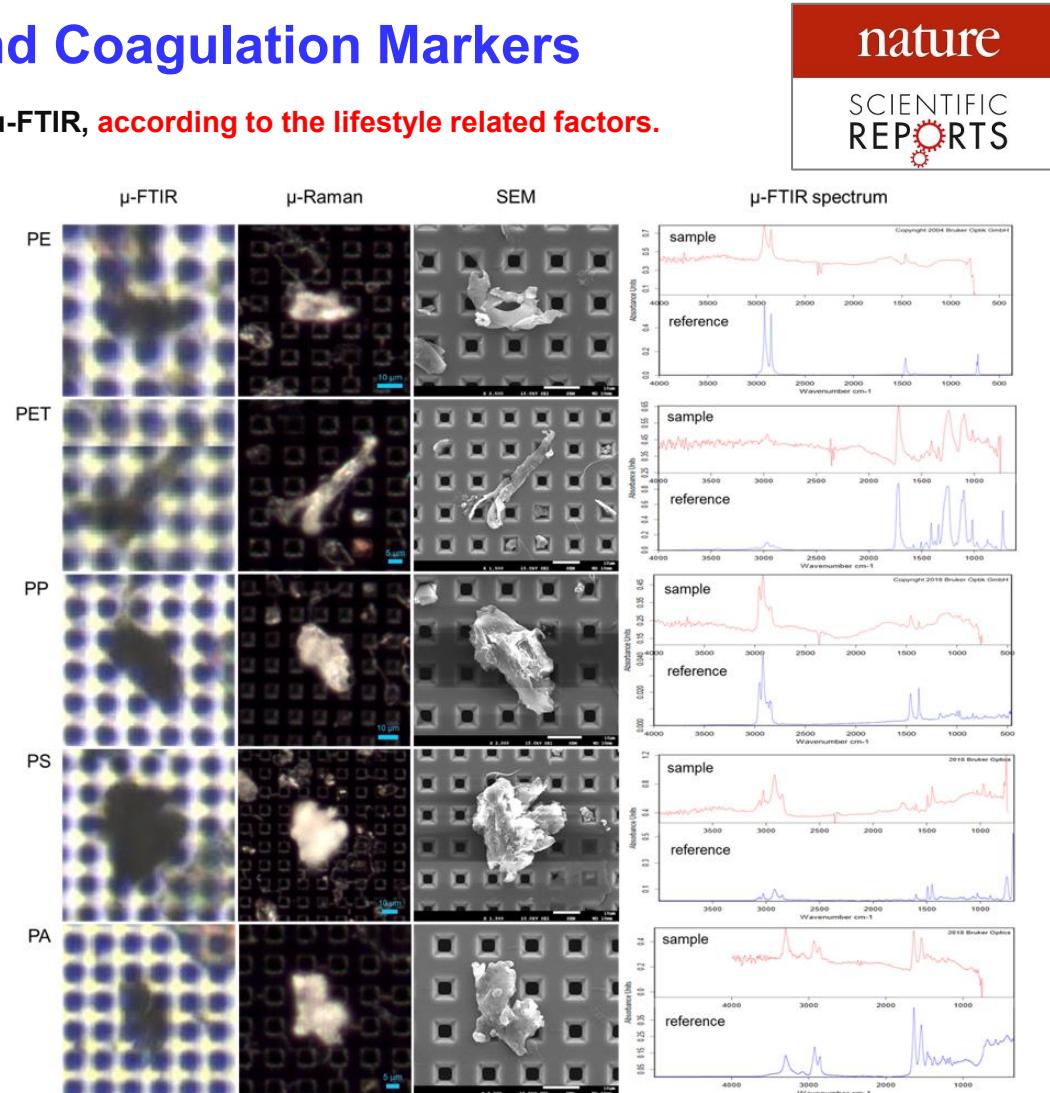
MPs detection in bloods
by μ -FTIR

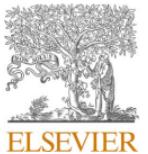
인하대병원
INHA UNIV. HOSPITAL

Association between Microplastics in Human Blood and Coagulation Markers

Table 4. The number of samples detected MP and the distribution of the number of MP particles by μ -FTIR, according to the lifestyle related factors.

	Detected Samples		Number of total MPs (N/ml)		
	N (%)	N (%)	P [†]	Mean	P *
Total	36 (100.0)	32 (88.9)		4.3	
Ready meals					
≥1/week	13 (36.1)	12 (92.3)	0.644	6.6	0.279
<1/week	23 (63.9)	20 (87.0)		2.9	
Plastic container %					
≥50%	15 (41.7)	15 (100)	0.091	6.8	0.025
<50%	21 (58.3)	17 (81.0)		2.4	
Discolored plastic container					
≥25%					
<25%					
Vinyl contain					
≥1/week					
<1/week					
Seafood					
≥1/week					
<1/week					
Indoor ventil					
≥1/day	23 (63.9)	20 (87)	0.644	4.2	0.934
	13 (36.1)	12 (92.3)		4.4	




Figure S2 Microphotographs of MPs found in the blood samples using μ -FTIR, μ -Raman and SEM and μ -FTIR spectra of sample and reference in library

2. Bio-sample Application of Microplastics

Example of Contact Lens & Anterior Eye by μ -Raman

C

Microplastic contamination in artificial tears in South Korea: Potential for direct ocular exposure

Contents lists available at ScienceDirect

Contact Lens and Anterior Eye

ELSEVIER

journal homepage: www.elsevier.com/locate/clae

Microplastic contamination in artificial tears in South Korea: Potential for direct ocular exposure

Yun-Hee Choi ^{a,b}, Nayoon Park ^a, Juyang Kim ^c, Seul-Ah Park ^c, Jaehak Jung ^c, Jong Suk Song ^a, Yoon-Hyeong Choi ^{b,1,2*}, Dong Hyun Kim ^{a,*}

^a Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea

^b School of Health and Environmental Science, Korea University, Seoul, South Korea

^c Korea Institute of Analytical Science and Technology, Seoul, South Korea

Table 1

Information of five selected artificial tear (AT) products.

Product no.	Type	Volume	Lid/Container material	Characteristics
1	Multi-use	5 mL	PP/PE	Lid separated from the container
2	Multi-use	10 mL	PE/PE ¹	Lid containing the absorbent separated from the container
3	Disposable	0.5 mL	PE/PE	Lid combined with the container
4	Disposable	0.5 mL	PE/PE	Lid combined with the container
5	Disposable	0.5 mL	PE/PE	Lid combined with the container

μ -Raman (XploRA+, Horiba) 39

Contact Lens and Anterior Eye
102325, November 11, 2024

Contact Lens and Anterior Eye xxx (xxxx) xxx

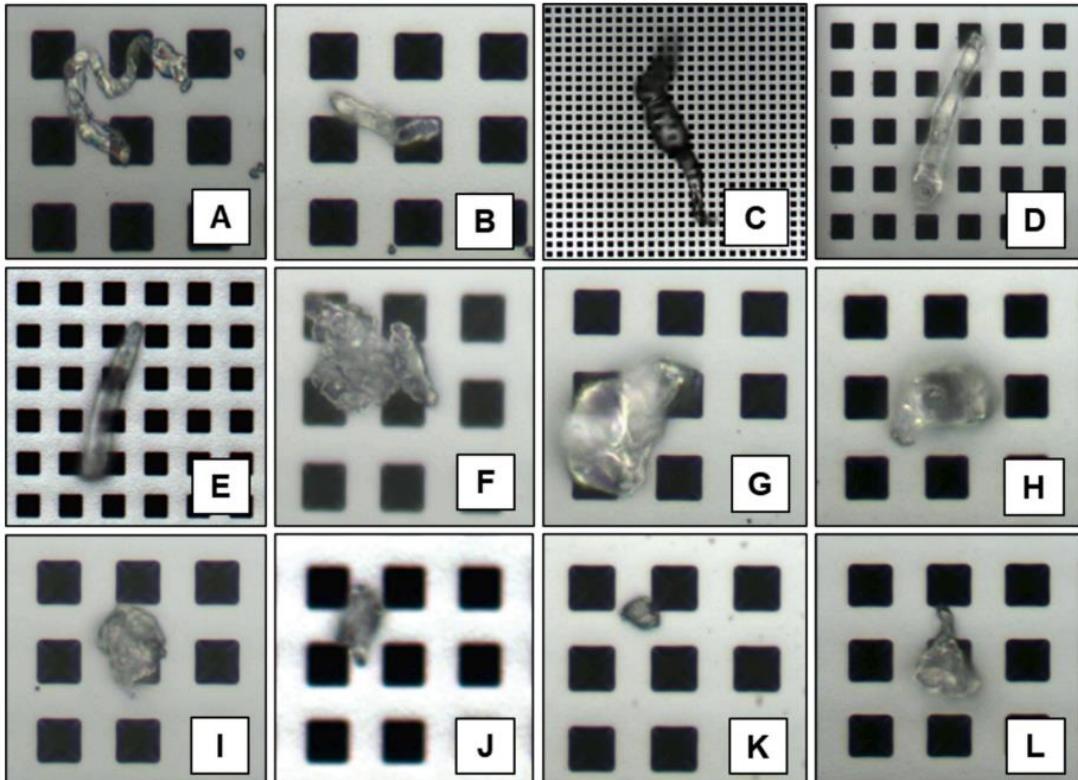


Fig. 1. Microscopic photos of the different characteristics of microplastics (MPs) found in five artificial tear (AT) products. A-E: transparent fibers; F-J: transparent irregular fragments; K: transparent round fragments; and L: opaque irregular fragments. The length of black box: 5 μ m. A: product 2; B: product 5; C: product 1; D: product 3; E: product 5; F: product 1; G: product 4; H: product 4; I: product 1; J: product 5; K: product 1; L: product 2.

D

Detection of Microplastics in pterygium tissue; Implications for environmental hazards

Ten MPs were detected in the pterygium, which corresponded to PE (n=7), PS (n=2), and PP (n=1).

The size of MPs ranged from 5–9 μm (n=5, PE or PS), 10–19 μm (n=4, PE), and 50–99 μm (n=1, PP).

All MPs were transparent and irregular fragments.

European Journal of
Ophthalmology
13 December 2024

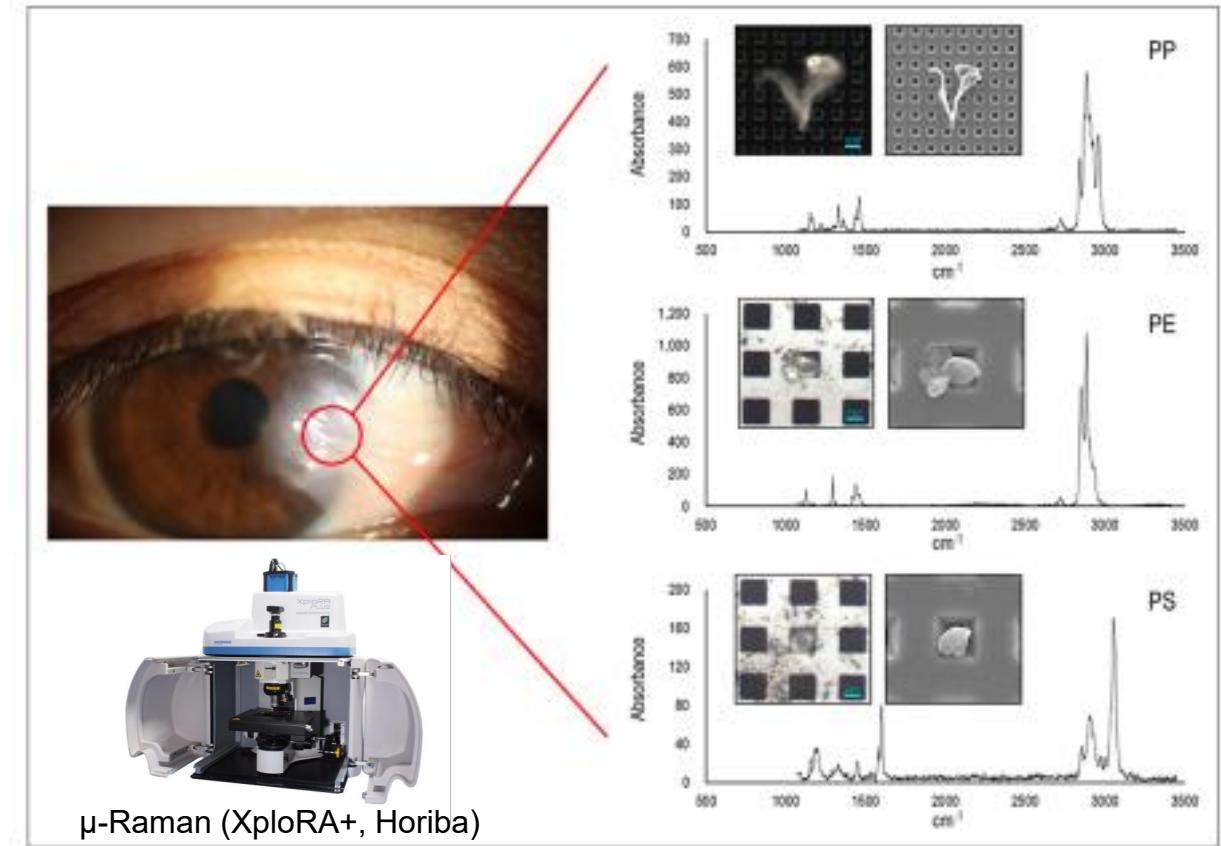
Case Report

EJO European Journal of Ophthalmology

European Journal of Ophthalmology
1–4
© The Author(s) 2025
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/11206721241310467
journals.sagepub.com/home/ejo

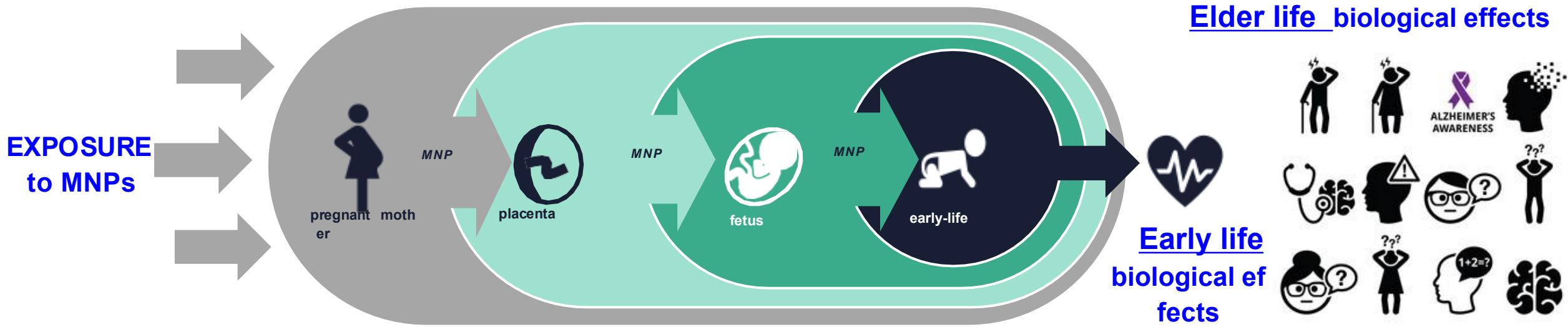
S Sage

Detection of microplastics in pterygium tissue: Implications for environmental hazards


**Yun-Hee Choi^{1,2}, Nayoon Park¹, Seul-Ah Park³, Juyang Kim³,
Jaehak Jung³, Yoon-Hyeong Choi^{2,4} and Dong Hyun Kim¹ **

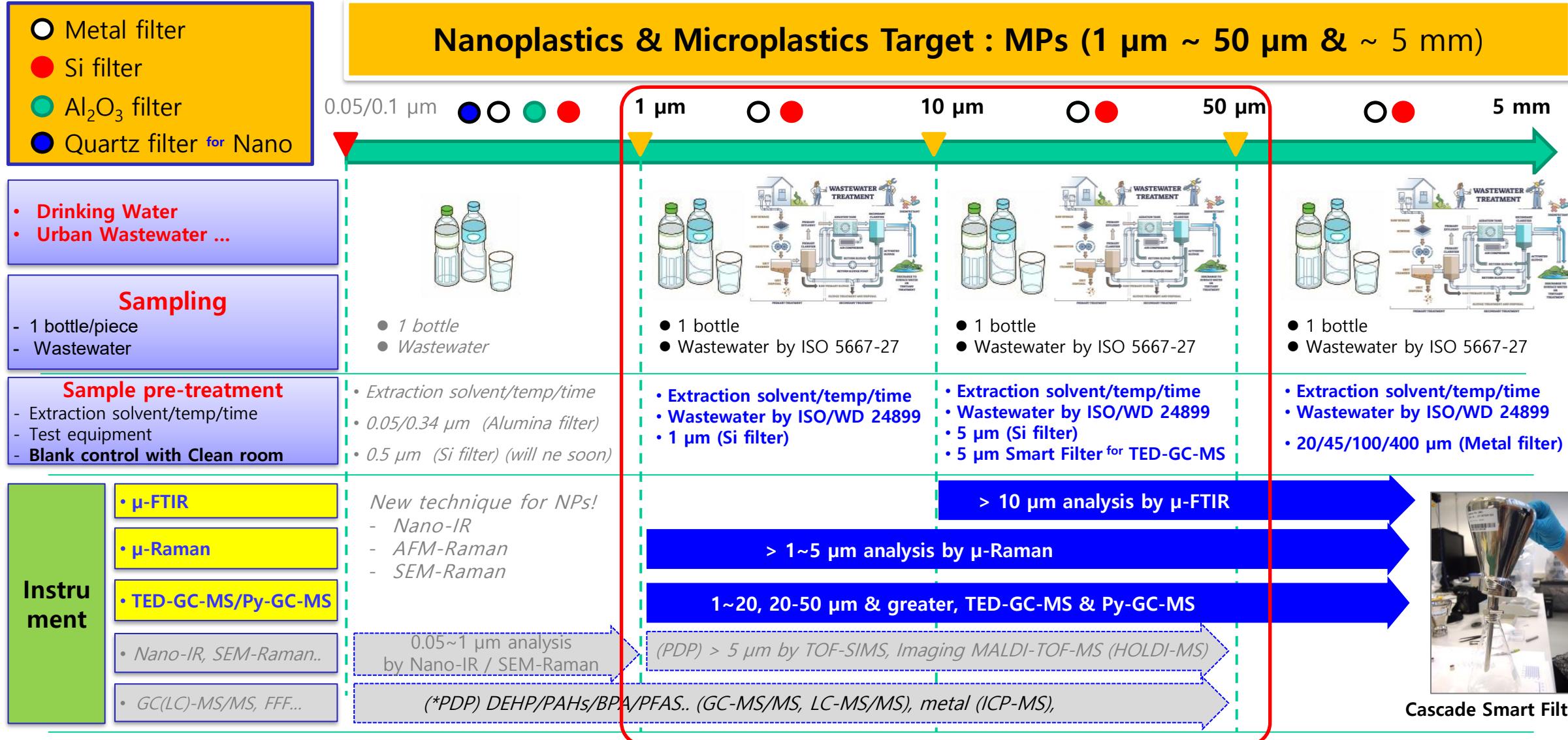
Abstract
Purpose: This study aimed to report a case of microplastics (MPs) detection in a pterygium patient's tissue.
Case report: A pterygium specimen was obtained from the right eye of a 43-year-old woman by surgical removal of a recurred pterygium. The number, morphology, and material type of the MPs in pterygium were identified using Raman microscopy and scanning electron microscopy. Ten MPs were detected in the pterygium, which corresponded to polyethylene (PE) (n = 7), polystyrene (PS) (n = 2), and polypropylene (PP) (n = 1). The size of MPs ranged from 5–9 μm (n = 5, PE or PS), 10–19 μm (n = 4, PE), and 50–99 μm (n = 1, PP). All MPs were transparent and irregular fragments.
Conclusions: This study demonstrated the detection of MPs in the pterygium tissue. Our findings suggest that environmental hazards, such as MP, may be commonly exposed to the ocular surface.

Keywords
Pterygium, microplastics, ocular surface, tissue, environmental hazards


Date received: 21 September 2024; accepted: 13 December 2024

<https://doi.org/10.1177/11206721241310467>

3. Conclusions


Future plan and suggestions for Development of Microplastics in Human samples

- It is important to identify human contamination of plastics and hazardous substances and their effects on the human body.
- Especially, additional research is needed on the relationship between MNPs and various groups of diseases of concern (stroke, heart attack, Alzheimer's disease, Parkinson's disease, allergies, etc.) in vulnerable groups such as mothers, fetuses, infants, and the elderly
- In order to identify the correlation between major diseases and MNPs, long-term complex convergence research is required through large-scale cohort collaboration among universities /hospitals/research institutes/government and global research institutes.

3. Conclusions

Roadmap for test method development on NMPs in foods, food containers and human samples by KIAST

*Definition of microplastics by ECHA : 5 mm ~ 0.1 µm

(SAICAS)

Thanks

for

your

attention!

Jaehak JUNG, Ph.D. (CTO)

Convenor for IEC/TC 111/WG 3 (Test methods for Certain Substances, related RoHS/ELV/REACH and global hazardous substances)

Convenor for IEC/TC 111/JWG 14 between ISO/TC 61(Plastics)/SC 5(Physical & Chemical property) & IEC/TC 111

Project Leader for IEC 62321-3-2 (Halogen by C-IC), IEC 62321-10 (PAHs by GC-MS) & IEC 62321-13 (BPA by LC, LC-MS, LC-MS/MS), PFAS Task

Microplastics Korean Delegate for ISO/TC 61(Plastics)/SC 14/WG 4, TC 38 (Textile), TC 147(Water Quality)/SC 2 & SC 6, IEC/TC 59/SC 59D

KIAST (Korea Institute of Analytical Science & Technology)

offices: 82-2-6951-1117

e-mail : jh3370@naver.com, jaehak.jung@kiast.co.kr

blog.naver.com/jh3370

www.kiast.co.kr

