Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 176 (2020) 1531-1539

www.elsevier.com/locate/procedia

24th International Conference on Knowledge-Based and Intelligent Information & Engineering
Systems

Self-Sovereign Applications: return control of data back to people

Sinicd Alboaie?®, Nicu-Cosmin Ursache®*, Lenuta Alboaie®

“Faculty of Computer Science, Alexandru Ioan Cuza University, Strada General Henri Mathias Berthelot Nr. 16, Iasi 700259, Romadnia
beiologic Research SRL, Strada Costachi Negri Nr.39, lasi 700071, Romdnia

Abstract

This article presents new solutions for the difficult problem of data protection. The discussion in our approach will be based
on the premise that data needs to be shared between the adequate number of entities under a set of strict rules. In this context, our
proposal consists of a suite of privacy and data control focused approaches that become the building blocks for Self-Sovereign
Applications (SSApps). SSApps are a new class of applications proposed for the first time in this paper and are aimed to ensure
data ownership and proper data control for people and companies. The building blocks for SSApps consist of the insights that the
role of blockchain should be reduced to ensure data anchoring of data shared between multiple participants. The blockchain
ensures integrity and data provenance but should not be used for storing any private data. Therefore, the data is stored in off-
chain storages that are structured in the form of a new approach called Data Sharing Units (DSU or Dossier). A method for
performant implementation of SSApps, Dossiers and anchoring is proposed in this article.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the KES International.

Keywords: Self-Sovereign Application; SSApp; Privacy; EDFS; Dossier; DSU;

1. Introduction

We live in a world that is going through a continuous digitization process. Nowadays, the number of companies
doing business online is steadily increasing and people spend more time on different types of online platforms or
accessing online services. This process generates a big volume of data as a consequence of the rising number of
online interactions between parties (people, companies all together). The volume of data generated by these
interactions is collected and stored in public or private databases in order to facilitate or continue interactions and

* Corresponding author. Tel.: +40-740-662-863.
E-mail address: cosmin.ursache@info.uaic.ro

1877-0509 © 2020 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-ne-nd/4.0)
Peer-review under responsibility of the scientific committee of the KES International.
10.1016/j.procs.2020.09.164

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2020.09.164&domain=pdf

1532 Sinica Alboaie et al. / Procedia Computer Science 176 (2020) 1531-1539

most of the time, the ownership of data is misunderstood or lost through the process of interaction. For this reason,
each entity (people and also companies) should have at their disposal tools and means to control what is happening
with their data. Everybody needs to treat data with great responsibility as confidential data is as significant as
money.

Business models like Freemium[24] are popular choices for a lot of companies that do their business online
because it presents safe nets. Based on a model providing something free to establish a future collaboration or sale,
it attracts a valuable user group. The user adoption and the data collected is helping companies to develop a better
monetization mechanism [20]. The usage of the model does not present guarantees regarding the success of
converting the user base into a premium one. As such, the focus is moved over to data monetized as a form of anti-
conversion [20]. Of course the ethics, morality, how and if people get affected by this kind of processes remain open
subjects for internet gossip.

There is a need for mechanisms capable of dealing with data privacy and ownership. Everybody should start to
find ways to control what is happening with their data. Currently, there is no clear solution available to help keep
track of generated data. There is no transparent, trustful and at the same time respectful privacy procedure to verify
and manage how data is used and by whom.

There are attempts to tweak the normal “centralized” way of application development with GDPR
implementations (in the European Union at least)[8][1] or data encryption [23][26]. This direction has an advantage
that comes from the fact that companies do not have to invest too much resources and users will have their data
protected to some degree [22]. In theory, for example, GDPR should help users who want to resiliate an online
contract with their service provider and request it to be forgotten. GDPR is only a set of rules developed to ensure a
good level of uniformisation across a wide variety of online contracts in a bigger variety of software solutions. The
challenge presents itself to those that need to control that GDPR was properly implemented and that there are no
violations.

Decentralized Applications (DApps)[11] represent a solution to gain owner control over data. DApps have really
interesting properties like: they are open source (based on the need for autonomy and unanimous consensus),
decentralized nature, incentivization and strong algorithms (for consensus and not only) and because they are built
over the blockchain technology they are able to notarize everything [3]. Nowadays, many resources are put into
developing DApps, thinking that companies or users will support the extra cost of the infrastructure and code
execution involved [14]. Besides the extra cost, other issues emerge like dealing with secrets in the Blockchain
world. In order to occur, the consensus and validation processes put pressure to keep most of the data public. This
requirement is difficult to meet when taking care of important data like trade secrets. No matter what anonymization
or encryption strategies are applied over the data stored in Blockchain, there will always be possibilities to correlate
the notarized data with external one and to create data leaks [4]. This is undesirable and represents an obstacle to the
widespread adoption of DApps.

Our research team proposes an innovative idea synthesized in the concept of Self-Sovereign Applications
(SSApps). The following chapters not only present the concept in detail, but also show an implementation of
SSApps ready to be used on a large scale offering all the benefits of DApps without the drawbacks. SSApps are
instrumental in solving confidentiality issues for all kinds of user categories, citizens and companies.

2. SSApps versus DApps

A SSApp (Self-Sovereign Application) aims at giving control of data back to the user. SSApps do not make any
difference between user types: companies or regular users. As users want to protect their private data, also do the
companies that want to keep in a safe place their application logic or trade secrets. An instance of a SSApp and the
application data is solely under the cryptographic control of the user that has the key. The key of the SSApp is
represented by a concept, that we called Recovery Seed or simply Seed. The Seed represents the secret information
needed in order to identify and retrieve an instance of an eWallet. An eWallet is an implementation of a digital
wallet [18] extended to store every important bit of user information and Self-Sovereign Applications code. Self-
Sovereign Applications represent improved versions of DApps. DApps are commonly implemented using Smart
Contracts in Distributed Ledger Technologies (DLT) (e.g. Ethereum[25], Hyperledger[6] etc.). SSApps are solving
problems that are related to DApps code execution and infrastructure costs, complexity of consensus processes and

Sinica Alboaie et al. / Procedia Computer Science 176 (2020) 1531-1539 1533

dealing with sensitive data. One of the important aspects that make companies reluctant to use DApps on a large
scale is represented by the fact that, in most circumstances, data has to be available to all DLT members in order for
the consensus to be possible. Data Pseudonymization and data encryption does not properly solve the confidentiality
issues because the leakage in the metadata can be used to deanonymize the smart contracts execution. SSApps
resolve this issue by design because they are built using Secret Smart Contracts technologies [2].

SSApps inherit DApps’ advantages like decentralized nature, incentivization and strong algorithms (for
consensus and not only) and are built over Blockchain technology with focus on privacy. On top of the inherited
properties SSApps bring other ones such us:

e SSApps work with encrypted user data: SSApps and their data are stored in an encrypted archive and all reads
and writes operations are done only in a trusted execution environment. Data is kept secret from any person (e.g.
employees of companies that provide cloud storage), except the owner, even if it is stored in the cloud

e SSApps run only on user trusted devices: a user can interact with a SSApp only after the application code and
data arrives from an encrypted decentralized storage and get loaded in the trusted execution environment

e Once the SSApps are loaded into the user controlled device, they do not need to interact with any machine or
server when offering functionality to the user

Blockchain eWallets Users

Network (Mobile e

anchored Browsers)

I People
dapps I SSApps II Companies

NGOs

stored

Encrypted
Distributed

Storage

Figure 1. eWallets and SSApps interactions

eWallets can be anchored in private or public Blockchains(see Figure 1). As a result of the anchoring process, the
eWallets and data stored in them can be notarized and at the same time data integrity can be ensured. An anchor can
be identified by the Seed’ hash. Technologies such as W3C Decentralized Identifiers (DIDs)[9] can be also used for
identification purposes of anchors. As we will see further, SSApps implementations are possible due to a
combination of technologies such as Blockchain, isolation and encapsulation execution mechanisms and encrypted
distributed file systems.

3. SSApps - the underlying technologies and implementation

Self-Sovereign Applications development was made possible by using the technologies developed within the
PrivateSky Research Project [16]. PrivateSky technology is capable of supporting SSApps development meant to be
executed on client premises (mobile or web application) or on distributed computing infrastructures. As we will see
in the next section, PrivateSky SSApp development framework offers instances of each component needed:
encrypted distributed storage system, trusted execution environments and eWallets.

1534 Sinica Alboaie et al. / Procedia Computer Science 176 (2020) 1531-1539

3.1. Encrypted distributed storage system

3.1.1. Storage mechanism using Bricks

Our solution focuses on data privacy and for this reason it was needed to create a new decentralized file system
that ensures data privacy by design. The backbone of our encrypted distributed storage system is represented by the
implementation of a new type of archive, as an alternative to zip and tar archives, archives whose content is
encrypted and stored in Cloud. This new type of archive is entitled BAR (Brick Archive). The main idea behind
BARs is that each file has its content split in smaller fragments called Bricks. A Brick is a buffer (a collection of
bytes compressed by a compression algorithm and encrypted with a secret encryption algorithm). BAR files are
stored in the form of Bricks in a distributed storage system (any cloud provider infrastructure can be used for this).
The Brick is referenced by the cryptographic hash of its compressed and encrypted content.

The file and folder structure of a BAR is stored in a BarMap (see Figure 2). BarMap is a special Brick containing
a map (a reference) of the Bricks and the files from which these Bricks are part of. The BarMap also contains the
Brick decryption keys needed to decrypt each Brick. When stored in the brick storage services, the BarMap looks
like any other Brick, and for an intruder it is impossible to identify it. Each BAR file can be identified by a special
key called Seed.

This ensures that data is stored in a secure and private manner. At this level each brick can be replicated on any
number of nodes without the fear of somebody being able to understand what is stored in them. Also, by splitting the
content we are able to retrieve composing bricks of files needed, on demand. These architectural decisions allow the
possibility to load a high volume of data on mobile phones. For example, GDPR enforces patients control on
medical data, but on the other hand the volume of data is not appropriate for mobile phones. The BAR technology
finds the middle ground: the software treats the archive as a remote file system and will load only the necessary
bricks.

Brick Storages (Encrypted Distributed Storage System)

Brick Storage
Node

0

Brick Storage
Node

Brick Storage
Node

o900

|| 000
\

BarMap retrieved
based on Seed

Bricks retrieved based on
the info found in BarMap

LU
aag
O

0

Brick ARchive
(BAR) identified
with Seed

Figure 2. How a BAR gets reconstructed with Bricks from the storage system

Sinica Alboaie et al. / Procedia Computer Science 176 (2020) 1531-1539 1535

Thanks to the way BAR was designed and implemented, it is impossible for someone to retrieve a BAR if one
does not have the Seed. It is also impossible for an intruder to tamper with the content of a BAR and hide his tracks.
From the developer’s perspective, there is an API available that allows the following operations with the BARs:
create a BAR, load/retrieve a BAR from the Brick Storage System, list files, write/read/extract files and folders from
and to a BAR [5].

3.1.2. Sharing data using Dossiers

In the previous section we have presented a decentralized file system capable of ensuring data privacy. Next step
is to offer mechanisms to share and reference data with stronger integrity properties. As a result, based on the BAR
concept, the notion of Dossier was coined. A Dossier is a concrete implementation of a larger concept called Data
Sharing Units (DSU). DSUs can be implemented in multiple ways and the Dossier concept is one such possible
implementation. Our team is currently developing this concept further. At the implementation level, a Dossier is
actually a BAR with a predefined internal structure (e.g. folders with defined purposes like storing blockchain data,
Self-Sovereign Applications, user data et.al.). A Dossier contains a distributed ledger (PrivateSky blockchain [2])
that is used to validate the content of the Dossier, using secret smart contracts. Beside blockchain specific code, a
Dossier contains the user interface that allows to modify the state of the Dossiers. This way, the user controls the
whole application and the data. A different approach, but with a similar scope is Solid personal online data stores
proposal [21].

Dossier can be viewed as a personal container, consisting of an application code and confidential data. A Dossier
is a mobile container because it can be instantiated on Cloud or on edge devices (e.g. mobile phones, IoT, et.al.)

Data integrity and code integrity are assured by blockchain anchoring, making Dossiers a satellite blockchain
described in [2]. Applications that run from Dossiers are called SSApp (Self-Sovereign Application) and represent a
new breed of applications. From the technological point of view, SSApps are built as web applications, run without
servers using Service Workers technology [19]. In a way, a Dossier can be imagined as a portable web server that
can be instantiated easily on mobile devices and web browsers. In this setup, the Cloud servers are used only to store
encrypted bricks and do not have access to the Dossier decrypted content.

Typically, a Dossier has a folder structure as follow:

o Constitution: contains a collection of code bundles that implements the business logic needed by the SSApp. It
also includes code for integration with a public or private PrivateSky Blockchain deployment

Assets: contains a collection of asset definitions needed by the internal blockchain

Transactions: contains a collection of transaction definitions that implement operations over the available assets
Blockchain: contains the history of the internal blockchain split in transaction blocks

Application: contains the code of the Self-Sovereign Application View (HTML, CSS, JavaScript, images and
other assets)

e Data: contains user data generated and needed by the SSApp

A Dossier inherits the list of APIs from BAR and on top of them it has the possibility of referencing to other
Dossiers. This feature comes in handy when users share information among them. The referencing process is
helping the owner of the referenced Dossier to maintain control over their data and to retract any rights granted to
somebody else.

A Dossier can be anchored in a public or private Blockchain using a special DID Method [10] , called Anchor
DID, in order to notarize every update and ensure data integrity. The Anchor will contain only public information
about the Dossiers. Anchors can contain hashlinks [12], versions or timestamps.

eWalled is a special type of a Dossier. An eWallet is the starting point of navigating in the SSApps and Dossiers
world (see Figure 3). Its security must be treated in a similar manner to the security of wallets for money or
cryptocurrency.

The fact that a Dossier can have an internal private blockchain and can also be anchored in other public or
private blockchains represents an innovative advantage. Basically, we can obtain hierarchical blockchains that will
ensure data correctness and privacy [2]. For example, Dossiers can be used to export and manage private data from
classic systems that need to get GDPR compliant. The internal blockchain can manage private data notarization by

1536 Sinica Alboaie et al. / Procedia Computer Science 176 (2020) 1531-1539

Blockchains (On-Chain) Confidential Data (Off-Chain)
Decentralised] Dos.sier
Identities -1 Dossier
L e .

Blockchain

aso

Anchor DID

4 ‘ HashLink, Hash
Versions,
Timestamps,
Root eSignatures,
Blockchain Access Control

-]

Otl"\er a g 0

Blockchains B

----» Blockchain Anchor

— Data Reference

Figure 3. Dossier data referencing and anchoring

storing transactions that manipulate them and the public blockchain part can store information about the version
index. The consensus process needed by the hierarchical blockchains is done by usage of the anchoring mechanism
and only handles public data about each Dossier.

3.1.3. Encrypted Distributed File System (EDFS)

Introducing a new type of archive, focused on the data privacy, presents some potential impediments to adoption.
Inspired by other file systems that are in use nowadays we have designed and implemented the EDFS. EDFS is a file
system designed to be used by BARs and Dossiers. When interacting with the APIs exposed by BARs and Dossiers,
we actually interact with each internal EDFS instance. EDFS handles files, folders, bricks, BarMaps and the
encryption/decryption algorithm of a BAR. Once a BAR or Dossier gets loaded into a trusted execution
environment, the internal EDFS will work with the sensitive data and ensure that the privacy is assured. EDFS is
responsible for starting transactions in the blockchains, where the Dossier is anchored, in order to update the anchors
accordingly to the content changes.

Dossier refferenciation is handled at EDFS level through mount and unmount features. The mounting and
unmounting processes found in EDFS are somehow similar to those found in Linux file systems. Mounting a
Dossier into another one is implemented by referencing the internal EDFS of the targeted Dossier into the
destination one. Each mounting point created during the mounting process is stored internally as a collection of
information, composed by the internal destination path, name of the mounting point, the DID of the targeted Dossier
containing the key that allows read and/or write operations. Once a Dossier is mounted, the internal EDFS file
systems are “linked” and users can interact with data found in those two or more Dossiers seamlessly.

3.2. Trusted Execution Environment

The security of Dossier and SSApps is based on the idea that a user will load these components in a sandboxed
environment that we call Trusted Execution Environment (see Figure 4). Our current implementations are using
isolates (a node.js technology, see section 3.2.2) and Service Workers (see section 3.2.1). Other implementations of
the Trusted Execution Environment are also possible when the type of dossiers require different security or
performance characteristics.

Sinica Alboaie et al. / Procedia Computer Science 176 (2020) 1531-1539 1537

3.2.1. Service workers

Our web SSApp implementation proposal for a trusted execution environment aims at using the power and
capabilities of service workers available in all modern browsers. Service workers’ initial purpose was to ensure that
users can interact with a web page even when the Internet is out of reach [19]. Service workers provide a Web
Worker context that can be created by request at runtime. The implementation consists of creating an event-driven
worker capable of handling navigation requests. When a worker is instantiated, it is registered with an origin and
pattern. In this way, the worker is called each time a request is generated for that origin and matches the pattern. The
communication with a service worker is done by sending and receiving events for each network request. In other
words, a service worker becomes an intermediary actor for all the network requests. Service workers can reply with
a response based on a cache system or can pass through the request to the network.

PrivateSky implementation of Self-Sovereign Applications is based on the features and capabilities of service
workers. PrivateSky SSApp technology empowers service workers by allowing them to work with data stored in
Dossiers and BARs. By doing that, service workers will act as full servers that run verified code stored in a
Dossier’s Constitution folder in a controlled and isolated environment.

Bricks Storage
(Encrypted Distributed

Storage)

Data Code
5 Files [Transactions ’
= or Code
3] o)
c Key-Value] eWallet
Blockchain <é ‘ Validation ’ %. Applications
1 ® Code a .
< (Mobile,
o |I > Browsers)
X Encrypted 0
O Bricks n
9
m NG s

Dossier loaded in Trusted
Execution Environment

Anchor resolution + Dossier retrieval

Figure 4. Dossier loaded in a Trust Execution Environment and interactions with Blockchain and Bricks Storage

3.2.2. Isolates

Self-Sovereign Applications can also be executed in server environments by using the isolation V8’s capabilities
to implement a trusted execution context. V8 engine on top which Node.js is built can execute code in an isolated
context [15]. Isolate can be seen as a mechanism for v8 to create “sandboxes” and allocate memory to the code
running inside them [13]. This is achieved by isolating an instance of the V8 engine, including garbage collection,
code, context and state, and making it available to just one thread handler at a moment in time.

PrivateSky also provides the software infrastructure needed in order to be able to boot multiple v8’s Isolates.
Each Isolate has the capability to retrieve and load a Dossier from the Brick Storage System once it receives a Seed.
There is a specific boot protocol followed that ensures the Isolate loads only the code available in the Dossier
constitution. Once the booting process completes the Isolate runtime is available to be used by a Dossier’s SSApp
and can be executed.

1538 Sinica Alboaie et al. / Procedia Computer Science 176 (2020) 1531-1539

3.3. Cardinal Framework

The user interface of the SSApps can be created with HTML, Javascript and CSS technologies. Any particular
single page framework (like React or Angular) could also be used. However, our consideration regarding security,
made us create a light MVC framework that is called CardinallJS(or simply Cardinal)[7] and uses Web
Components. The usage of Web Components is trying to reduce the number of dependencies that a SSApp will rely
upon and therefore reduce the attack surface. The HTML programming model provided by the web components
technology offers the possibility of creating custom tags as reusable components. Cardinal has a collection of
reusable components that cover the basics of web application development targeted for SSApps development.

Cardinal provides a mature and robust programming framework based on MVC and MVVM. In Cardinal the
models are loaded and set up by controllers. If required, the Controller is setting up a View Model (an adapted
model easier to connect to the View). The View part is accomplished by describing the pages or screens of the
application by using the reusable components provided by Cardinal. It also offers a strong binding mechanism that
can be used when trying to tie the View with the data models. To reduce the dimensions of the controllers hierarchy
Cardinal framework is pushing the event driven communication model to be used between the view components.

Therefore, Cardinal is introducing a programming mode (it is a micro framework) oriented to allow the rapid
development of WEB applications (RAD - Rapid Application Development or low code development). It can also
be used in simple progressive web applications. Cardinal appeared as an alternative to other MVC frameworks that
come bundled with too many dependencies and potential security issues.

4. Conclusions

Our team is currently working with seven companies to build applications based on the presented technologies
[17]. The SSApp concept is very appealing for Software as A Service solutions because it offers a technical method
to relieve the software providers from GDPR regulations and other privacy related issues.

In this paper we have presented our research results regarding Self-Sovereign Applications. SSApps represent an
innovative and sustainable concept that will help people or companies to keep their data private without making any
compromises when it comes to data sharing, data integrity, history notarization and keeping full control of how data
is shared and used. We have presented how the suite of developed technologies is capable of supporting SSApps
development from ground up, covering all the basics in order to ensure full data privacy at every level.

In this manner, after years of research and development, through our Self-Sovereign Applications proposal, the
data ownership is not only at a declarative level and SSApps ensures that the control of data is given back to people.

Acknowledgments

This work is partially supported by POC-A1-A1.2.3-G-2015 program, as part of the PrivateSky Research Project-
“Experimental public-private partnership development to create local cloud platforms with advanced data protection
features” (P_40 371/13/01.09.2016). Project co-financed from the European Regional Development Fund under the
Operational Program Competitiveness 2014-2020.

This work is partially supported by the Ministry of Research and Innovation within Program 1 — Development of
the national RD system, Subprogram 1.2 — Institutional Performance — RDI excellence funding projects, Contract
no.34PFE/19.10.2018

References

[1] Alboaie, Lenuta (2017), Towards a smart society through personal assistants employing executable choreographies, At 26th International
Conference on Information Systems Development

[2] Alboaie, Sinica, Alboaie, L., Pritzker, Z. & Iftene, A. (2019) Secret Smart Contracts in Hierarchical Blockchains. In A. Siarheyeva, C. Barry,
M. Lang, H. Linger, & C. Schneider (Eds.), Information Systems Development: Information Systems Beyond 2020 (ISD2019 Proceedings)

[3] Antonopoulos, Andreas M., and Gavin Wood. (2018) Mastering ethereum: building smart contracts and dapps. O'reilly Media

[4] Atzei, N., Bartoletti, M., & Cimoli, T. (2017, April). A survey of attacks on ethereum smart contracts (sok). In International conference on
principles of security and trust (pp. 164-186). Springer, Berlin, Heidelberg.

Sinica Alboaie et al. / Procedia Computer Science 176 (2020) 1531-1539 1539

[5] Brick Archive (BAR) (2020), https://github.com/PrivateSky/bar Accessed March 1, 2020
[6] Cachin, C. (2016). Architecture of the hyperledger blockchain fabric. In Workshop on distributed cryptocurrencies and consensus ledgers
(Vol. 310, p. 4).

7] CardinallJS, (2020) https://github.com/PrivateSky/cardinal Accessed March 1, 2020

8] Cavoukian, A., and Jutla, D. (2014): Privacy Policies Are Not Enough: We Need Software Transparency

9] Decentralized Identifiers (DIDs), (2019) https://www.w3.org/TR/did-core/ Accessed March 1, 2020

10] DID Method Registry, (2020) https://w3c-ccg.github.io/did-method-registry/ Accessed February 29,2020

11] “Ethereum whitepaper”, (2020) https://github.com/ethereum/wiki/wiki/White-Paper#applications Accessed March 1, 2020

12] IETF specification for cryptographic hyperlinking, (2019) https://github.com/w3c-ccg/hashlink Accessed March 1, 2020

13] Kelly, Nicholas. "Node. js Asynchronous Compute-Bound Multithreading."

14] Luu, L., Chu, D. H., Olickel, H., Saxena, P., & Hobor, A. (2016). Making smart contracts smarter. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security (pp. 254-269).

5] “Node Isolate”, (2020) https://v8docs.nodesource.com/node-0.8/d5/dda/classv8 1 1 isolate.html Accessed March 1, 2020

6] PrivateSky Research Project, (2016-2021) https://github.com/privatesky Accessed March 1, 2020

7] PrivateSky Research Project contributors list, https://profs.info.uaic.ro/~ads/PrivateSkyEn/noutati/#tab-1-3 Accessed March 1, 2020

[
[
[
[
[
[
[
[

[

[

[

[18]Sahut, Jean-Michel. (2008). The Adoption and Diffusion of Electronic Wallets. Journal of Internet Banking and Commerce. 13.

[19] Service Workers, https://www.w3.org/TR/service-workers/ accessed March 1, 2020

[20] Seufert, E. B. (2013). Freemium economics: Leveraging analytics and user segmentation to drive revenue. Elsevier.

[21] Solid POD, (2020) https://solid.inrupt.com/ Accessed March 1, 2020

[22] Tankard, C. (2016). What the GDPR means for businesses. Network Security, 2016(6), 5-8.

[23] Voigt, P., & Von dem Bussche, A. (2017). The eu general data protection regulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer
Internatlonal Publishing.

[24] Wilson, F. (2006). The freemium business model. A VC Blog, March, 23, 201.

[25] Wood, G. (2014). Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper, 151(2014), 1-32.

[26] Zerlang, J. (2017). GDPR: a milestone in convergence for cyber-security and compliance. Network Security, 2017(6), 8-11.

