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A B S T R A C T   

The traditional on-house sensing (OHS) accelerometer for vibration measurements causes poor signal-to-noise 
ratio (SNR) and complicated fault modulations, which increases the difficulty and complexity for early 
bearing fault diagnosis. To overcome these challenges, this paper develops a wireless triaxial on-rotor sensing 
(ORS) system to largely improve the SNR and deduces fast Fourier transform (FFT) and Hilbert envelope analysis 
for accurate early rolling bearing fault diagnosis, which largely improves accuracy and efficiency for early fault 
diagnosis. First, the development of the ORS system for wireless vibration measurements is given. Second, the 
theoretical diagnostic relationships between dynamic ORS signals and rolling bearing faults are derived for FFT 
and Hilbert envelope analysis for the first time. Finally, the induction motor tests with outer and inner race faults 
successfully validate that both simple FFT and Hilbert envelope analysis can achieve more robust early rolling 
bearing fault diagnosis compared to OHS measurements.   

1. Introduction 

Rotating machines have gained widespread popularity in modern 
industries, such as compressors, pumps, conveyors, engines, induction 
motors, etc. [1,2]. The rolling bearing, as a key mechanical part of the 
rotating machine, plays a fundamental role in the safe and stable oper-
ation of the whole equipment [3,4]. However, the rolling bearings are 
easily vulnerable to failures owning to the long-time services with 
varying loads and severe working environments. It has been studied that 
the rolling bearing faults take up about 41 %–42 % of the whole number 
of induction motor failures [5]. Therefore, it is urgent to develop 
effective sensing technologies and methods for the early rolling bearing 
fault diagnosis, which is of great importance to guarantee stable oper-
ation, avoid catastrophic failure, and reduce economic losses. 

Currently, a variety of sensing technologies have been applied to the 
condition monitoring and fault diagnosis of the rolling bearing, 
including vibration monitoring [6,7], acoustic emission monitoring [8], 
sound [9], thermal imaging [10], motor current [11] and so on. Vibra-
tion monitoring has been seen as the most reliable and effective tech-
nology for rolling bearing fault detections. The rolling bearing includes 
four common faults, such as outer race fault, inner race fault, rolling 
element fault, and cage faults. Once the fault occurs, a periodic transient 

impulse will be generated repetitively in the vibration signal, while the 
fault amplitudes are relatively lower and hence the fault features are 
weak, especially for the incipient rolling bearing faults [12]. The 
piezoelectric accelerometers have been widely used for vibration mea-
surements in practice due to their low cost and high reliability. They 
highly depend on special wire connections for the data transmission and 
power supply. Therefore, they can only be mounted on a suitable posi-
tion on the equipment to acquire the vibration signal. Consequently, the 
long transmission paths cause the low signal-to-noise ratio (SNR) of the 
measured vibration signal as the rolling bearings generally run under 
harsh conditions, and the fault features are easily corrupted in the 
external working noise. The complex transmission paths will also 
introduce more modulations in the measured signal. Moreover, the 
generated repetitively fault impulse features of the rolling bearing are 
not strictly periodic due to complex working conditions, such as the 
time-varying loads [13]. However, the second-order statistics present 
the periodic properties recognised by the cyclostationary theory 
[14,15]. The second-order cyclostationary properties make the typical 
fast Fourier transform (FFT) fails to detect the bearing fault [16,17]. 
Various challenges, including the multiple sources caused by the com-
plex transmission path, weak fault feature and cyclostationary proper-
ties, make it difficult to extract the fault feature for the early rolling 
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bearing fault diagnosis. 
A large amount of work has been dedicated to enhancing the weak 

fault feature in the measured vibration signals for the incipient rolling 
bearing fault detection. For example, the stochastic resonance (SR) 
[18,19] was proposed to specially enhance the weak fault feature with 
the assistance of the noise for the rotating machine fault detection. The 
turntable Q-factor wavelet transform (TQWT) [20] is an effective 
denoising method for the rolling bearing fault diagnosis. The variational 
mode decomposition (VMD) [21] can reduce the disturbance compo-
nents from the background noise to extract fault characteristics. The 
orthogonal matching pursuit (OMP) [22] algorithm can be used to 
effectively match the periodic information related to fault features in the 
vibration signal. The cyclostationary analysis methods, such as cyclic 
modulation spectrum (CMS) and fast spectral correlation (Fast-SC) 
[23,24], aim to extract the periodically modulated fault features by 
considering the second-order cyclostationarity of the vibration signal. 
Although these methods have achieved high accuracy for rolling bearing 
fault detection, their applications in practice lead to large computational 
complexity. 

Moreover, the wireless microelectromechanical system (MEMS) 
accelerometer has recently attracted much interest in rotor-mounted 
applications to improve the SNR of the collected vibration signal. 
Arebi et al. [25,26] utilized a wireless sensor to diagnose the misalign-
ment of the rotating machine, which validated higher superior perfor-
mance than the shaft encoder and the traditional wired sensor. Baghli 
et al. [27] used a wireless MEMS sensor to achieve accurate instanta-
neous torque and speed measurements on the rotating shaft. Jiménez 
et al. [28] developed a wireless MEMS sensor that can be mounted 
internally on the rotor and obtain the rotational speed of the rotor, 
which can help achieve the active control of the rotor vibration. Feng 
et al. [29] investigated the orthogonal outputs of an on-rotor MEMS 
accelerometer and achieved the condition monitoring of the recipro-
cating compressor based on the reconstructed tangential acceleration. 
Xu et al. [30 31] also validated the effectiveness of the rotor-mounted 
sensor for high SNR measurements and condition monitoring for 
rotating machines. These research works mentioned above focus on 
different applications based on wireless vibration measurements, which 
demonstrates that the rotor-mounted sensor can significantly improve 
the SNR of the vibration measurement. Furthermore, digital twin (DT) 
has become an emerging technology that has attracted much attention in 
the field of intelligent assessment of system degradation. DT technology 
can achieve the virtual representation of the real physical system based 
on the real-time interaction between the virtual model and the physical 
system through data collection and transmission [32]. A variety of 
research works have been conducted for the DT-based mechanical sys-
tem degradation evaluation using the advanced modelling methods and 
vibration measurement [33–35]. The ORS technology with high SNR 

signal acquisition and wireless transmission can contribute to the high- 
quality modelling and real-time data interaction in the DT-based con-
dition monitoring of the mechanical system. 

Based on the above analysis, the complex non-stationary fault sig-
natures of the rolling bearing make it very difficult for the early fault 
diagnosis due to the low SNR and complicated modulations when using 
traditional on-house sensing (OHS) for vibration measurements. How-
ever, there is no work to effectively clarify how to use the ORS for the 
rolling bearing fault diagnosis. Moreover, it is validated that the ORS- 
based vibration measurements can improve the SNR and show much 
potential in the DT-driven intelligent diagnosis of mechanical systems. 
Therefore, it is highly necessary to develop more advanced ORS and 
investigate their effective applications for the rolling bearing fault 
diagnosis. 

Inspired by these studies, this paper proposes a wireless on-rotor 
sensing (ORS) system based on the MEMS accelerometer to improve 
the SNR and achieves an accurate and robust incipient fault diagnosis of 
the rolling bearing in the induction motor. The effectiveness of the 
developed ORS technology is validated by two induction motors with 
different outer and inner race faults severities. The main novelty and 
contributions of the proposed research are as follows:  

1) The ORS system is developed into an integrated small entity so that it 
can be easily installed on the end of the rotor for non-invasive and 
stable vibration measurements.  

2) The developed ORS largely improves the SNR of vibration collections 
than the traditional OHS.  

3) The developed ORS makes the simple fast Fourier transform (FFT) 
possible for early fault diagnosis of the rolling bearing and the 
theoretical deduction is proposed for the first time.  

4) The orthogonal outputs of the ORS system can be reconstructed into 
an analytical signal for easier and more robust application of the 
Hilbert transform for rolling bearing fault demodulation and 
detection. 

The rest of the paper is organised as follows: Section 2 introduces the 
developed ORS system and illustrates the theoretical background for the 
rolling bearing fault diagnosis. The detailed experimental setup and 
procedures are presented in Section 3. Section 4 discusses the experi-
mental results in validation of the ORS method, and the conclusions 
drawn from this work are shown in the final Section. 

2. ORS system and theoretical background 

2.1. ORS system 

Thanks to the rapid development of the MEMS accelerometer, an 

Fig. 1. ORS structure design.  
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integrated wireless ORS system is developed in this paper. Fig. 1 illus-
trates the ORS structure design. All components are designed to be as 
small as possible, which allows them to be integrated into a small 3D- 
printed box with a dimension of 30 × 30 × 30 mm. A switch on the 
side of the box serves the purpose of controlling the power supply, and 
the USB charging port can be used to charge the system. The fastening 
bolt installed on the top of the box is used to connect the rotor of any 
rotating machine. The ORS system can rotate with the rotating shaft and 
achieve stable vibration signal acquisition. 

The ORS system consists of four units, including a sensor module, 
processing module, communication module and power supply module. 
The 3.7 V lithium-ion battery is selected to power the other three 
modules. The vibration signal collected by the sensor module can be 
acquired by the processing module and then transmitted wirelessly to 
the host software through the communication module for the data 
processing, visualization, and storage. In particular, the ICM42688 
MEMS accelerometer is selected as the sensor module for vibration 
measurements. It can allow the measurement of accelerations along 
three axes (U, V and W) with low energy consumption. The detection 
range is programmable, and the maximum range can reach up to ± 16 g 
(g is referred to as the acceleration of gravity and its value is 9.8m/s2). 
The sensor directly output the measurement of the vibration in the unit 
of g. Moreover, the data resolution of 18-bit can meet the different ap-
plications in practice. Currently, the sensor module has been fabricated 
to carry out the stable triaxial data acquisition with a sampling fre-
quency between 0 and 4000 Hz. Moreover, the processing and 
communication modules are integrated into a single printed circuit 
board (PCB) to reduce installation space. The used nRF52840 processor 
is a good solution for controlling all the modules. It can communicate 
with the sensor module based on the onboard Serial Peripheral Interface 
(SPI) unit and request the digital signal from the sensor after ADC. In 
addition, the processor has Bluetooth low energy (BLE) module 
embedded to support the wireless data transmission with the host soft-
ware. Therefore, an android APP was also developed to achieve wireless 
data transmission, visualization, and storage for further processing, as 
shown in Fig. 1. 

In summary, various functions of the ORS have been upgraded 
compared to the old version, as mentioned in previous work [29 30]. For 
example, the current ORS is designed into a small integrated structure so 
that it can be flexibly mounted in the centre of the shaft as much as 
possible to achieve stable vibration measurements. Moreover, a new 
sensor called ICM42688 is fabricated to achieve the data acquisition 
with a high sampling frequency (4000 Hz) and resolution (18 bit). 
Furthermore, the improved data processing and transmission rate of the 
ORS ensures the stable transmission and real-time visualization of the 
data on the APP. 

2.2. Theoretical background for rolling bearing fault diagnosis 

The ORS is developed for the installation on the rotating rotor to 

improve the SNR for the condition monitoring and fault diagnosis of 
rotating machines. This section introduces its working principle for vi-
bration signal measurements and even the rolling bearing fault 
diagnosis. 

2.2.1. ORS installation and measurement 
As shown in Fig. 2, the ORS system is designed to be easily installed 

on the end of the motor rotor, which allows for non-invasive condition 
monitoring of the rolling bearing. In order to avoid the influence of 
centrifugal force on the vibration measurement, the ORS system is 
mounted as centrally as possible. However, a small residual offset of e 
will be inevitable due to the installation error, as displayed in Fig. 2 (b) 
and should be taken into account in processing the signals. 

The dynamic coordinate u-v-w is used to present the outputs of the 
triaxial MEMS accelerometer as the ORS system rotates with the rotor. 
They are responsible for the extraction of tangential, radial and axial 
vibrations, respectively. The x-y-z is a static coordinate that is fixed on 
the motor and can be the reference of the rotating coordinate u-v-w. 
According to the geometric relationship as shown in Fig. 2, the 
tangential (u) and radial (v) responses can be expressed as follows: 

u(t) = − y(t)sin(ωt) + x(t)cos(ωt) − gcos(ωt) (1)  

v(t) = y(t)cos(ωt)+ x(t)sin(ωt) − gsin(ωt)+ω2e (2)  

where ω presents the rotational angular velocity of the motor rotor. g is 
the gravity acceleration. x(t) and y(t) stand for vertical and horizontal 
vibration, respectively. The ω2e can be neglected as e≪1. 

The rolling element bearing consists of outer race fault, inner race 
fault, rolling element fault, and cage fault. As illustrated in Fig. 3, the 
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Fig. 2. The schematic diagram of the ORS installed on the motor rotor.  
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bearing rotates with the motor rotor with ω. These faults can generate 
different responses in different directions. Taking the outer race fault as 
an example, there is an angle α between the fault location and the y-axis. 
Therefore, two accelerometers are required to be installed vertically and 
horizontally to capture more fault information for fault diagnosis. 
Generally, they are statically installed on the shell of the motor, thus 
easily causing low SNR. In contrast, the ORS system embedded with the 
triaxial MEMS accelerometer can be installed concentrically on the shaft 
end, which not only improves the SNR, but also accurately captures the 
fault content based on the orthogonal outputs as shown in Fig. 2. 

2.2.2. Fast Fourier transform-based analysis 
The developed ORS system can acquire the vibration signal with 

higher SNR, and thus computationally efficient fast Fourier transform 
(FFT) can be an effective method for the rolling bearing fault feature 
extraction and detection. Four main components in the rolling bearing 
present different behaviours when rotating with the rotor. For example, 
the outer race remains stationary when running, the inner race rotates 
coaxially with the rotor with ω, while both the rolling element and the 
cage rotate themselves with different speed from the motor rotor. As 
results, various faults can appear in the different conditions and 
generate different responses in the dynamic axis of u-w. 

On the one hand, the fault characteristic frequencies can exist in the 
form of harmonics in the frequency domain, such as the outer race faults. 
Therefore, the responses in x and y directions can be described as fol-
lows: 

xh(t) =
∑∞

l=1
Ax(l)cos

(
lωf t

)
cosω′t+

∑∞

l=1
Ay(l)sin

(
lωf t

)
sinω′t (3)  

yh(t) = −
∑∞

l=1
Ax(l)cos

(
lωf t

)
sinω′t+

∑∞

l=1
Ay(l)sin

(
lωf t

)
cosω′t (4)  

where xh(t) and yh(t) denote the fault responses in the form of harmonics 
in x and y directions, respectively. ωf stands for the fault frequency. Ax(l)
and Ay(l) denote the amplitudes of the fault frequency in x-y axis. ω′ 

present the rotating speed of the fault. In terms of the outer race fault, 
the ω′ = 0 so that the response xo(t) and yo(t) for the outer race fault in x 
and y directions can be expressed as: 

xo(t) =
∑∞

l=1
Ax(l)cos

(
lωf t

)
(5)  

yo(t) =
∑∞

l=1
Ay(l)sin

(
lωf t

)
(6)  

According to the Eqs. (1) and (2), the responses uo(t) and vo(t) for the 
outer race fault in u and v directions hence can be calculated as Eq. (7) 
and Eq. (8). It can be seen that uo(t) and vo(t) include frequency com-
ponents lωf +ω and lωf − ω related to the fault frequency, which shows 
that the fault frequency occurs in the form of sidebands, and they 
modulate on the rotating frequency. 

uo(t) =
1
2
∑∞

l=1
[Ax(l) − Ay(l)]

{
cos

[(
lωf + ω

)
t
] }

+
1
2
∑∞

l=1
[Ax(l) + Ay(l)]

{
cos

[(
lωf − ω)t

] }
− gcos(ωt) (7)  

vo(t) =
1
2
∑∞

l=1
[Ay(l)− Ax(l)]

{
cos

[(
lωf − ω

)
t −

π
2

] }

+
1
2
∑∞

l=1
[Ay(l)+Ax(l)]

{
cos

[(
lωf + ω

)
t −

π
2

]}
− gcos

(
ωt −

π
2

)
(8)  

On the other hand, the defect frequencies occur in the form of modu-
lations, such as the inner race fault, ball fault, and cage fault. Therefore, 

the general expressions of x(t) and y(t) can be as follows: 

xm(t) =
∑∞

l=1
Ax(l)cos

(
lωf t

)
[1 + Bx(l)cos(ωt)]cosω′t+

∑∞

l=1
Ay(l)sin(lωt)[1

+ By(l)sin(ωt)]sinω′t
(9)  

ym(t) = −
∑∞

l=1
Ax(l)cos

(
lωf t

)
[1+Bx(l)cos(ωt) ]sinω′t+

∑∞

l=1
Ay(l)sin(lωt)[1

+ By(l)sin(ωt)]cosω′t
(10)  

Where xm(t) and ym(t) represent the fault responses in the form of 
modulations in x and y directions. The ω′ is equal to ω for the inner race 
fault as it rotates with the motor rotor. Similarly, the inner race fault 
responses ui(t) and vi(t) in u and v directions can be obtained in Eq. (11) 
and Eq. (12). In addition to the sidebands lωf +ω and lωf − ω, the inner 
race fault also includes the separate fault frequency lωf in the frequency 
domain. 

ui(t) =
∑∞

l=1
Ax(l)cos

(
lωf t

)
+

1
2
∑∞

l=1
Ax(l)Bx(l){cos[(lωf + ω)t]

+ cos[(lωf − ω)t]} − gcos(ωt) (11)  

vi(t) =
∑∞

l=1
Ay(l)cos

(
lωf t −

π
2

)
+

1
2
∑∞

l=1
Ay(l)By(l){cos[(lωf − ω)t]

− cos[(lωf + ω)t]} − gcos
(

ωt −
π
2

)
(12)  

The above theoretical analysis can support the rolling bearing fault 
diagnosis based on the FFT method. This paper especially focuses on the 
detections of inner race fault and outer race fault. In the case of the ball 
fault and cage fault, their slippage will result in ω′ ∕= ω, and the vibration 
responses in u and v directions are given as follows. 

ub,c(t) =
1
2
∑∞

l=1
[Ax(l)+Ay(l)] • cos[

(
lωf − ω′ + ω

)
t] +

1
4
∑∞

l=1
[Ax(l)

• Bx(l)+Ay(l) • By(l)]{cos[(lωf − ω′ + 2ω)t] + cos[(lωf

− ω′)t]} +
1
2
∑∞

l=1
[Ax(l) − Ay(l)] • cos

[(
lωf + ω′ − ω

)
t
]

+
1
4
∑∞

l=1
[Ax(l) • Bx(l) − Ay(l) • By(l)]{cos[(lωf + ω′)t] + cos[(lωf

− ω′ − 2ω)t]} − g • cos(ωt)
(13)  

vb,c(t) =
1
2
∑∞

l=1
[Ax(l)+Ay(l)] • cos[

(
lωf − ω′ + ω

)
t −

π
2
] +

1
4
∑∞

l=1
[Ax(l)

• Bx(l)+Ay(l) • By(l)]{cos[(lωf − ω′)t] − cos[(lωf − ω′

+ 2ω)t]} +
1
2
∑∞

l=1

[
Ay(l)− Ax(l)

]
• cos

[(
lωf + ω′

− ω
)
t −

π
2

]
+

1
4
∑∞

k=1
[Ay(k) • By(k)− Ax(k) • Bx(k)]{cos[(lωf + ω′

− 2ω)t] − cos[(lωf + ω′)t] − g • cos
(

ωt −
π
2

)

(14)  

where ub,c(t) and vb,c(t) stand for the response for ball fault and cage fault 
in u and v directions. To effectively capture the fault feature, the 
measured vibration signals by two orthogonal axes can be reconstructed 
to obtain the joint response in the frequency domain. The applications 
for traditional on-house sensing (OHS) and ORS are shown as follows: 
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1) OHS 

For the traditional measurement of OHS, the signals x′(t) and y′(t) can 
be obtained in vertical and horizontal directions, respectively. There-
fore, the joint response XY(f) in the frequency domain can be calculated 
as follows: 

XY(f ) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

X(f )2
+ Y(f )2

√

(15)  

X(f ) = DFT(x′(n)) (16)  

Y(f ) = DFT(y′(n)) (17)  

where x′(n) and y′(n) present the discrete forms of x′(t) and y′(t), 
respectively. DFT denotes the discrete Fourier transform.  

2) ORS 

Similarly, the joint response UV(f) of u(t) and v(t) collected by the 
ORS system can be expressed as follows: 

UV(f ) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

U(f )2
+ V(f )2

√

(18)  

U(f ) = DFT(u(n)) (19)  

V(f ) = DFT(v(n)) (20)  

where u(n) and v(n) present the discrete forms of u(t) and v(t), respec-
tively. 

2.2.3. Hilbert transform-based analysis 
In addition to the FFT-based method, the Hilbert envelope analysis 

method is efficient and effective for processing the non-stationary weak 
fault signal for the fault feature extraction and diagnosis of the rolling 

bearing in the early stage. It has been widely used for condition moni-
toring and fault diagnosis in rotating machines [36,37]. The Hilbert 
envelope of the signal s(n) is theoretically calculated as follows: 

sa(n) = s(n)+ jsh(n) (21)  

where sa(n) is the reconstructed analytical signal and sh(n) stands for the 
Hilbert transform of the s(n) and it is given as 

sh(n) = IDFT(Sh(f )) (22)  

Sh(f ) =
{
+jS(f )f < 0
− jS(f )f > 0 (23)  

S(f ) = DFT(s(n)) (24)  

where IDFT is the inverse DFT. Therefore, the amplitude envelope |sa(n)|
can be calculated as follows: 

|sa(n)| =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

s2(n) + s2
h(n)

√

(25)  

The orthogonal outputs obtained by two accelerometers can be used to 
reconstruct the analytical signal for envelope analysis. In the ORS sys-
tem, the orthogonal outputs u(n) and v(n) have a phase difference of π/2. 
Thus the v(n) can be seen as the Hilbert transform of u(n) theoretically. 
Therefore, the Hilbert envelope analysis can be given as follows: 

uv(n) = u(n)+ jv(n) (26)  

|uv(n)| =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2(n) + v2(n)

√
(27)  

UV(f ) = DFT(|uv(n) |) (28)  

where |uv(n)| stands for amplitude envelope and UV(f) is the DFT of 
|uv(n)|. It is believed that the ORS system can achieve a more convenient 
Hilbert envelope analysis for fault demodulation and feature extraction. 

Start

Orthogonal output:
u(n) and v(n)

Orthogonal output:
u(n) and v(n)

Orthogonal output:
u(n) and v(n)

FFT-based Hilbert transform-based 

U(f) and V(f)

DFT

UV(f)

Square root calculation

Fault frequency

uv(n)

Analytical signal reconstruction

Amplitude envelope

|uv(n)|

UV(f)

DFT

Fault frequency

End

Fig. 4. The flowchart of FFT and Hilbert transform-based rolling bearing fault diagnosis using ORS.  
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Based on the theoretical deduction for both FFT and Hilbert trans-
form, the early fault diagnosis of the rolling bearing based on the 
orthogonal output of the ORS measurement can be implemented by the 
procedures as shown in Fig. 4. 

3. Experiments 

The induction motor test benches are carried out to demonstrate the 
effectiveness of the developed ORS system for the condition monitoring 
and fault diagnosis of the rolling element bearing in induction motors. 
Fig. 5 shows the setup of the induction motor test rig. It consists of an AC 
induction motor as the driven source, a DC generator as the loader, a 
coupling as the flexible connection between the AC motor and the DC 
loader, and an encoder that is mounted at the free end of the motor for 
rotating speed recording. Table 1 shows the specifications of the tar-
geted AC induction motor. Two single-axis accelerometers are orthog-
onally installed on the shell of the motor to acquire the vertical and 
horizontal vibration responses. The ORS system is fixed on the rotor end 
of the motor, and it is placed inside the flexible coupling for vibration 

measurements. 
In the test, two induction motors with compound inner race fault and 

outer race fault are used to validate the performance of the ORS system 
for rolling bearing fault diagnosis. As shown in Fig. 6, they are marked as 
Motor #1 and Motor #2. There are no specially designed rolling bearing 
failures in these two motors, while they present different levels of outer 
and inner race faults. It is assumed that damages are caused by the rotor 
eccentricity and bearing clearances due to manufacturing errors and 
long-time services. Particularly, Motor #2 served longer on the test 
bench than Motor #1, and hence it is believed that Motor #2 can present 
more severe failure of the rolling bearing. Table 2 displays the specifi-
cation of the rolling bearing used in the motor. 

According to the given specifications of the rolling bearing, the outer 
race fault fo and inner race fault fi can be theoretically calculated as 
follows: 

fo =
Nfr

2
(1 −

D
d

cosθ) (29)  

fi =
Nfr

2
(1 +

D
d

cosθ) (30) 

DC generator

Coupling

AC motor

Encoder

Vertical 
accelerometer

Horizontal
accelerometer

ORS installed 
in the coupling

Fig. 5. Induction motor test rig.  

Table 1 
AC motor specification.  

Type Specification 

Motor model 112 M/4 
Power 4.4 kW, 3 phase 
Frequency 50 Hz 
Rated speed 1420 rpm  

(a) AC Motor #1. (b) AC Motor #2.

Fig. 6. Two tested induction motors.  

Table 2 
Specifications of the rolling bearing.  

Parameters Ball 
diameter 

Pitch circle 
diameter 

Number of 
balls 

Contract 
angle 

Value 9.53 mm 46.4 mm 9 0o  
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where fr presents the rotating frequency, N denotes the number of balls, 
θ is the contact angle, and D and d stand for the ball diameter and pitch 
circle diameter, respectively. 

Two motors are tested under 0 % load but at different running 
speeds, including 50 %, 75 %, and 100 % of the full speed, for rolling 
bearing fault diagnosis. The high-speed acquisition system YE6232B 
with a sampling frequency of 96 kHz was used to acquire the vibration 
signals obtained by vertical and horizontal accelerometers. For the ORS 
system, the sampling frequency and the test range are 4000 Hz and 16 g, 
respectively. The vibration signals can be continuously acquired and 
wirelessly transmitted to the smartphone. A 40-second signal is acquired 
to ensure accurate fault feature extraction and diagnosis. 

4. Results and discussion 

4.1. SNR analysis 

Taking Motor #1 working under the 50 % speed as the example, 
Fig. 7 and Fig. 8 display the vibration signals measured by OHS on both 
vertical and horizontal vibrations and ORS on three axes. It can be seen 
from Fig. 7 that vibration signals measured by traditional accelerome-
ters present large oscillations and background noise both in vertical and 
horizontal directions due to complex transmission paths. This increases 
the difficulty of fault demodulation and feature extraction. Fig. 8 (a) and 
Fig. 8 (b) show the rotor vibration in radial and tangential directions. It 
can be seen that they are not overwhelmed by the noise and present 
more content of the rotating speed. In particular, the vibration ampli-
tudes in both directions have a difference of π/2, which helps recon-
struct the analytical signal for more convenient Hilbert envelope 
analysis. As shown in Fig. 8 (c), the vibration obtained at the w-axis 
presents a relatively smaller amplitude as it measures the vibration 
signal at the axial direction. Therefore, only the vibrations measured by 
the u and v axis are used for the bearing fault diagnosis. Compared to the 
OHS system, the ORS system can considerably improve the SNR of the 
measured signals, which facilitates fault feature extraction and 
diagnosis. 

To further quantify the SNR improvement of the developed ORS 
system, the SNR is calculated using the energy of useful signals and noise 
in which the key frequency components, including rotating frequency, 
fault frequency and their harmonics, are extracted for the useful signal, 
and the rest is seen as the noise. Fig. 9 compares the calculated SNR of 
the vibration signal collected by ORS and OHS. Obviously, the devel-
oped ORS can achieve significantly enhance the SNR of the collected 
vibration signal compared to the traditional OHS method. Whether for 
Motor 1# or Motor 2#, it can be seen that the ORS can achieve high-SNR 

Fig. 7. Time-domain vibration waveform obtained by OHS in (a) vertical and 
(b) horizontal directions. 

Fig. 8. Time-domain vibration waveform obtained by ORS in (a) u, (b) v, and 
(c) w axis. 

Fig. 9. Comparison of SNR between ORS and OHS for vibration signal measurements.  
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vibration collection under different rotating speeds. For example, the 
improved SNRs by ORS are 29.3 dB, 30.7 dB, and 33.1 dB, respectively. 

4.2. FFT analysis 

As mentioned previously, the developed ORS system enables vibra-
tion measurements with high SNR. This makes the simple FFT analysis 
effective for early rolling bearing fault detection, which helps achieve a 
more efficient early fault diagnosis of the rolling bearing. To illustrate 
the performance of the ORS system, Fig. 10 shows the FFT results using 
the measured signals by OHS and ORS in the case of Motor #1 working 

Fig. 10. Spectrum of the rolling bearing vibration at speed of 100%: (a) obtained by OHS at vertical direction and (b) obtained by ORS at u axis.  

Table 3 
Rotating frequencies and fault frequencies of the rolling bearing under different 
working conditions.  

Speed (%) 50 75 100 

Rotating frequency (Hz)  12.4  18.6  24.6 
Outer race fault frequency fo (Hz)  44.4  66.5  88.0 
Inner race fault frequency fi (Hz)  67.3  100.9  133.4  

Fig. 11. OHS spectrum of the vertical vibration at speeds of (a) 50%, (b) 75%, and (c) 100%.  
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under 100 % speed. Based on the theoretical calculations of the inner 
and outer race fault frequencies, the OHS spectrum presents the fault 
harmonics, as shown in Fig. 10 (a). According to the theoretical deri-
vation in Section 2.2, the identical detected results are obtained in the 
FFT spectrum. As shown in Fig. 10 (b), the outer race fault appears in the 

spectrum in the sidebands around the fault characteristic frequency 
since the rotating frequency fr is modulated on the outer race fault 
characteristic frequency fo. Moreover, the inner race fault shows both 
the fault characteristic frequency fi and its two sidebands which are 
caused by the rotating frequency modulation on inner race fault 

Fig. 12. OHS spectrum of the horizontal vibration at speeds of (a) 50%, (b) 75%, and (c) 100%.  

Fig. 13. OHS spectrum of the combined vertical and horizontal vibration at speeds of (a) 50%, (b) 75%, and (c) 100%.  
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frequency fi. Whether the outer race fault or the inner race fault, the 
related fault frequencies can be obviously seen in the spectrum, which 
validates the effectiveness of the developed ORS system for the rolling 
bearing fault diagnosis based on the FFT analysis. 

To further compare the performance of the ORS and OHS for the 
rolling bearing fault diagnosis, the measured vibration signals of two 
motors working under different conditions are analysed based on the 
FFT algorithm. Table 3 displays the rotating frequencies and fault fre-
quencies of the rolling bearing at different working conditions. Fig. 11, 
Fig. 12, and Fig. 13 show the FFT spectrum of two motors based on the 
vertical, horizontal, and combined vertical and horizontal OHS vibra-
tion, respectively. It can be seen that the OHS vibration is able to detect 
the outer and inner race faults based on the FFT analysis. However, the 
spectrum exhibits many irrelevant interference components due to the 
measurement of a large amount of noise by the OHS method. As a 

consequence, the amplitudes of the fault characteristic frequencies are 
too small in the spectrum, especially for low operating load conditions, 
such as 50 % speed. As shown in Fig. 11 (a) and Fig. 12 (a), it is difficult 
to extract the outer race fault feature. The theoretical analysis has 
explained that the FFT analysis based on the orthogonal vibration 
measurements can achieve more effective fault feature extraction and 
diagnosis. It can be seen from Fig. 13 that the extracted fault frequency 
amplitudes are higher than that analysed by the single vertical or hor-
izontal vibration signal. Although the combined vertical and horizontal 
accelerometers can facilitate fault diagnosis, it undoubtedly increases 
the measurement cost. 

Moreover, Fig. 14, Fig. 15 and Fig. 16 present the FFT spectrum for 
the rolling bearing fault diagnosis obtained by the ORS measurement at 
the u axis, v axis and uv axis. Compared to the OHS measurement, it can 
be seen that the FFT spectrum obtained by the ORS can provide a more 

Fig. 14. ORS spectrum of the u-axis vibration at speeds of (a) 50%, (b) 75%, and (c) 100%.  

Fig. 15. ORS spectrum of the v-axis vibration at speeds of (a) 50%, (b) 75%, and (c) 100%.  
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robust rolling bearing fault feature extraction and detection. On the one 
hand, there are no more interference components found in the spectrum. 
On the other hand, the extracted fault frequency amplitudes are signif-
icantly higher than that obtained by the OHS analysis. In addition, the 
FFT spectrum obtained by the orthogonal measurement (u-axis and v- 
axis), as illustrated in Fig. 16, can more effectively enhance the fault 
feature compared to the single u-axis, v-axis and even the OHS analysis. 

A lot of researchers have dedicated to the numerical studies of rolling 
bearing faults, and it is validated that the severity of outer race fault or 
inner race fault shows an upward trend with increasing of motor speeds 
[38,39]. This can be used to examine the performance of the developed 
ORS method for the robust rolling bearing fault diagnosis. The fault 

frequency amplitudes are adopted to quantify the severity of the outer 
and inner race faults. Therefore, Fig. 17 compares the outer and inner 
face fault frequency amplitudes obtained by OHS and ORS using vi-
bration measurements in different directions. In particular, Fig. 17 (a), 
(b), and (c) show the fault frequency amplitudes obtained by the OHS 
method. It can be seen from Fig. 17 (c) that the joint response can 
provide a more effective diagnosis with higher amplitudes compared to 
results obtained by OHS in the vertical or horizontal direction. However, 
the OHS-based detection method cannot show the variation that the 
bearing fault severity increases with the increase in speed. Moreover, it 
is not able to distinguish two different motors. Fig. 17 (d), (e), and (f) 
exhibit the detected results based on the developed ORS method. It is 

Fig. 16. ORS spectrum of the uv-axis vibration at speeds of (a) 50%, (b) 75%, and (c) 100%.  

 

   

Fig. 17. Amplitudes of rolling bearing outer race (|fr − 1fo|) and inner race (1fi) fault frequencies of two motors under different working conditions obtained by (a) 
OHS at V axis, (b) OHS at H axis, (c) OHS at VH axis, (d) ORS at u axis, (e) ORS at v axis, and (f) ORS at uv axis. 
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shown that the ORS-based method can clearly present the trend that the 
amplitudes of both the outer and inner race faults increase over the 
increasing speed. The analysed results using the u-axis vibration, v-axis 
vibration, and joint response can get consistent detections. In addition, 
the ORS-based method can distinguish two different motors under 
various running conditions, which indicates that Motor #2 presents 
more severe rolling bearing outer and inner race failures than Motor #1. 
Further, it is noted that the proposed joint responses based on the u-axis 
and v-axis vibrations can enhance the rolling bearing fault feature, thus 

detecting the rolling bearing faults with higher characteristic frequency 
amplitudes. It is validated that the proposed ORS method can achieve a 
more accurate and robust early fault diagnosis of the rolling bearing only 
using the traditional FFT algorithm. 

4.3. Hilbert envelope analysis 

The Hilbert envelope is a typical analysis method that can be used to 
demodulate the fault feature for the rolling bearing fault diagnosis. 

Fig. 18. Hilbert envelope spectrum based on the vertical OHS vibration at (a) 50%, (b) 75%, and (c) 100%.  

Fig. 19. Hilbert envelope spectrum of based on the vertical and horizontal OHS vibration at (a) 50%, (b) 75%, and (c) 100%.  
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Therefore, the Hilbert envelope analysis is adopted in this section to 
compare the OHS and ORS measurements for the rolling bearing fault 
detection. For the OHS-based envelope analysis, a variety of frequency 
bands are filtered out to compare the performance for the rolling bearing 
fault diagnosis, and finally the frequency band 1580–2620 Hz is selected 
as it can provide more excellent fault feature extraction. Similarly, the 
selected frequency band for ORS analysis is 0–200 Hz. Fig. 18 shows the 
envelope spectrum obtained by OHS using the collected vertical vibra-
tion signal. It is found that the rolling bearing faults cannot be fully 
detected, especially for cases in low-speed conditions. For example, the 
outer race fault of both two motors at 50 % speed and the outer and 
inner race faults at 75 % speed cannot be effectively identified. Based on 
the vertical and horizontal vibrations, Fig. 19 illustrates the calculated 
envelope spectrum under different load conditions. It can be seen that 
the joint response can slightly enhance the fault feature extraction, 

while the characteristic frequency at 50 % speed condition cannot be 
effectively extracted for the early fault diagnosis. It is believed that the 
lower SNR of the OHS measurement cannot ensure an accurate early 
fault diagnosis of the rolling bearing. 

On the other hand, Fig. 20 displays the envelope spectrum obtained 
by ORS at the u-axis. It can be seen that the proposed ORS method can 
successfully extract the outer and inner race fault features under both 
low and high working speeds compared to the traditional OHS mea-
surement. Additionally, Fig. 21 shows the envelope analysis based on 
the orthogonal outputs (u and v axes) of the ORS measurement. It is clear 
that the identified fault frequencies show higher amplitudes than that of 
using the single vibration signal, as shown in Fig. 20. It is validated that 
the ORS measurement can achieve the orthogonal measurements with 
higher SNR, which can facilitate a more convenient and robust Hilbert 
envelope analysis for the early rolling bearing fault diagnosis. 

Fig. 20. Hilbert envelope spectrum based on the u-axis ORS vibration at (a) 50%, (b) 75%, and (c) 100%.  

Fig. 21. Hilbert envelope spectrum based on the u-axis and v-axis ORS vibration at (a) 50%, (b) 75%, and (c) 100%.  
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5. Conclusions 

In this paper, a wireless triaxial ORS system is developed to improve 
the SNR of the vibration measurement and achieve an accurate and 
robust early fault diagnosis of the rolling bearing in the induction motor. 
The ORS system is designed to be installed on the rotating rotor of the 
induction motor to achieve the wireless vibration measurement with a 
maximum sampling frequency of 4000 Hz. Its theoretical deductions of 
the simple FFT and Hilbert envelope analysis for the early rolling 
bearing fault diagnosis are given in detail. The detection performance is 
tested by comparing it with the traditional OHS measurement using two 
induction motors with different degrees of rolling bearing faults. The 
time-domain analysis shows that the ORS system can significantly 
improve the SNR of the vibration measurement. It is validated that the 
simple FFT algorithm can sufficiently and accurately detect early rolling 
bearing faults compared to the traditional OHS system. In particular, the 
FFT analysis based on the orthogonal outputs can further enhance the 
outer and inner race fault features. In addition, it is demonstrated that 
the orthogonal outputs from the ORS system can help achieve a more 
convenient Hilbert envelope analysis for a more accurate fault diagnosis 
of the rolling bearing in the induction motor. It is believed that the 
developed ORS technology can facilitate the online diagnosis of the 
early rolling bearing fault thanks to signal acquisition with high SNR and 
simple and fast algorithm implementation. 

In the future, we will work on the development of ORS with higher 
sampling frequency and wider detection range, which will lead to more 
stable signal acquisition and fault diagnosis. Moreover, more advanced 
signal processing methods based on the ORS measurement can be 
developed to achieve more effective and efficient early fault diagnosis of 
the rotating machine. 
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