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We propose a conditional Generative Adversarial Network (cGAN) that can produce detailed local wind fields
in urban areas, comparable in level of detail to those from Computational Fluid Dynamics (CFD) simulations,
that are generated from coarser Numerical Weather Prediction (NWP) data.

In our approach, the cGAN is trained using NWP data as input and CFD as targets. Both CFD and NWP
data are presented to the network as images, using an image-to-image model based on Pix2Pix to transform
coarse meteorological conditions into detailed local wind fields.

The methodology is tested in a residential district in a large Spanish city, Zaragoza. The model predictions
show significant agreement with the actual CFD results, while reducing the computational time from eight
hours to seconds. Feature engineering of image channels effectively reduces the model error, especially in the
wind direction, achieving a mean absolute error in the wind speed of 0.35 m/s and a wind direction error of

27.0°.

1. Introduction

The characterisation of wind in urban environments is of great
interest in multiple disciplines. For urban city planning, KaboSova et al.
[1] developed a wind prediction tool based on architectural parametric
design and wind flow analysis; they have proved its reliability in a
real case study. Werner et al. [2] assessed wind comfort and general
wind rose statistics in built environments using regression and classi-
fication U-Nets and Computational Fluid Dynamics (CFD) simulations.
The exploitation of wind energy resources in urban environments [3]
may help meet the increasing energy demand as population continues
to expand rapidly. Local urban energy generation helps circumvent
some of the drawbacks of large-scale on-shore wind farms, such as
available placements, electricity transmission losses and infrastructure,
and public acceptance [4]. K.C. et al. [5] reviewed performance eval-
uations of small wind turbines and pointed out flaws in the validity of
some international design standards for urban installations. Crucially,
they also highlighted the importance of characterising urban wind
conditions to facilitate a more consistent design of small wind turbines.

Toja-Silva et al. [6] explored the broad application of CFD in the
analysis of urban wind patterns, particularly for urban energy purposes,
including technical issues and challenges related to modelling turbu-
lence, numerical schemes, and meshing. Also with the goal of seeking
the efficient and reliable use of CFD to characterise wind patterns,
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Xi et al. [7] investigated the impact on accuracy of the size of the area
surrounding the domain of interest (the so called “building layers”) on
wind flow simulations across various scales (local, micro, and building
scale).

As an alternative way of economising computational time, some
authors have suggested the integration of deep neural networks and
machine learning with CFD [8]. Specifically for built-environment ap-
plications, Calzolari and Liu [9] reviewed the usage of artificial neural
networks as surrogate models to aid, improve or replace expensive CFD
analysis.

Machine learning approaches have been adopted for the evaluation
and prediction of wind flow in conjunction with traditional meth-
ods such as CFD or tunnel experiments. He et al. [10] proposed a
combination framework for wind evaluation in built environments
through parametric design, CFD, image processing, and machine learn-
ing. In [11], the K-nearest neighbours algorithm was used to predict
wind flow in urban areas, using data from wind tunnel experiments
and morphological characteristics as input.

Numerical Weather Prediction (NWP) is coarser and hence com-
putationally less expensive than CFD, and may also benefit from the
application of Al techniques. Temporal fusion transformers have been
applied to predict spatial temperature variations to address the urban
heat island effect using NWP data [12]. Furthermore, for short-term
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wind speed forecasting in urban settings, Zheng et al. [13] introduced
a convolutional long-short-term memory model that processes NWP
image sequences to learn spatial-temporal correlations.

Deep learning techniques have also been applied to urban wind
prediction to enhance and create new solutions that were until recently
the realm of traditional, more expensive approaches. Low et al. [14]
used an U-net architecture in a Convolutional Neural Network (CNN)
for the fast prediction of urban wind velocity and demonstrated its
usefulness for data-driven pedestrian-level wind speed prediction. The
use of Graph Neural Networks (GNN) was explored in [15]; they
achieved accurate and efficient prediction of urban wind flow, with
an excellent management of GPU memory limitations and a reduction
in computational time compared to CFD. Shao et al. [16] also used
GNN in conjunction with Physics Informed Neural Networks (PINNs)
for the rapid prediction of urban wind fields in unstructured meshes.
Generative Adversarial Networks (GAN) and their variants are highly
effective machine learning frameworks applied in many wind-power
related studies. Liang et al. [17] used GAN for data augmentation
for wind turbine gearbox fault detection, a field in which obtaining
field data is often difficult. Similarly, Yang et al. [18] leveraged a
GAN oversampling method to successfully classify gearbox faults with
small datasets. Deep GANs have been used to design new aerofoils
for vertical-axis wind turbines [19]. A GAN variant that uses the
Wasserstein distance was employed by Zhang et al. [20] to generate
stochastic scenarios of wind power production. Ye et al. [21] developed
a day-ahead model for wind power generation that combines self-
attention and TimeGAN for temporal forecasting. Behara and Saha
[22] proposed an innovative incremental GAN model that enhances
the accuracy and reliability of wind-turbine position analysis, aiding
in better wind characterisation for optimising wind energy production.
For single wind turbine wake prediction, Li et al. [23] developed a
model integrating transformers and conditional GANs (cGANs) [24].
Zhang and Zhao [25] utilised deep convolutional cGANs to model wake
formation in wind farms.

GANs have also been adopted for urban-specific applications. Kast-
ner and Dogan [26] introduced a GAN-based surrogate model for CFD,
facilitating a quick and accessible analysis of urban airflow with various
building geometries; additionally, this model was incorporated into
design software to assist in the early phases of architectural design.
Masoumi-Verki et al. [27] introduced a framework using GANs to de-
velop “non-intrusive” reduced-order models (i.e., reduced-order models
that do not require access to the CFD source code) to predict turbulent
wakes in high-rise buildings, utilising bidirectional long-short-term
memory neural networks and transfer learning for improved prediction
accuracy with limited data.

In this work, we use a conditional Generative Adversarial Network
(cGAN) to obtain high-detail urban wind fields, with a resolution
similar to that of CFD. We employ NWP data as input to our cGAN,
and CFD simulations in an urban layout as targets; we treat both types
of data as pseudo-images. We base our model on the image-to-image
Pix2Pix model proposed by Isola et al. [28]. NWP simulations provide
a synoptic prediction of the meteorological state of the atmosphere
in a region of study. Unlike high-resolution CFD wind-field simula-
tions, NWP predictions account for the full range of meteorological
phenomena, including not only fluid dynamics, but also radiation and
precipitation. NWP simulations are, in this sense, complementary of
the more focused local CFD simulations of the local wind field. For the
present work, a key feature of NWP simulations is that they are much
more economical than CFD ones.

Therefore, the main objective of the model proposed in this work
is to obtain high-fidelity CFD data in an urban environment without
incurring its elevated computational cost by using coarser and faster
NWP simulations as input. Once trained, the model can transform NWP
results into CFD results.

One of the advantages of the proposed methodology is the great
time reduction achieved by using the proposed deep learning model
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compared to traditional simulations. The model can take advantage
of the mesoscale simulations used daily for meteorological forecasting
to achieve highly detailed wind fields. Unlike previously published
work, we demonstrate the applicability of our methodology in a whole,
actual, complex urban district, rather than using isolated buildings or
canonical configurations of buildings as a test bed. We also predict
the local flow field under real wind conditions, with the subsequent
diversity in wind speed and direction. The use of a real-world urban
configuration and real-world wind conditions adds to the complexity
of the problem, and places an additional burden on the proposed Al
method.

The structuring of the CFD and NWP data as matrices that can be
understood as images, as done in this paper, broadens the applicability
of Al methods already used in the field of image detection, such as
the image-to-image model that we employ in this study, and to take
advantages of new developments in image-to-image translation. For
instance, Jiang et al. [29] applied image-to-image translation via the
StyleGAN model [30] to generate anime scenes. Similarly, Dalva et al.
[31] used it for editing facial images, and Sun et al. [32] to improve
underwater imagery. Image-to-image translation models have also been
used for processing unpaired medical physics images [33] to improve
image quality, for autonomous annotation of medical images, and
to reduce radiation exposure during Computed Tomography imaging.
Romero et al. [34] employed an image-to-image model that used wind
farm layouts and unperturbed wind fields as input to derive the per-
turbed wind fields produced by the wind farm, as a tool for optimising
the wind farm layout. To the best of our knowledge, there are no studies
that utilise image-to-image models to convert mesoscale wind fields
into the highly-detailed, CFD-like ones for urban environments; the
present study addresses this gap.

2. Model description

This research investigates the use of a conditional Generative Ad-
versarial Network (cGAN) [24] that uses coarser Numerical Weather
Prediction (NWP) data to achieve detailed local wind forecasts in urban
areas, with a resolution comparable to those from Computational Fluid
Dynamics (CFD) at a fraction of the cost.

The general idea is to obtain detailed velocity data for an urban area
from coarser, and hence relatively inexpensive, meteorological data.
For this, a deep learning algorithm is used; the proposed AI model is
a cGAN, based on the Pix2Pix [28] image-to-image model. Mesoscale
simulations, using a NWP model, are carried out over an extended
period of time (the year 2018 in this study). The NWP outputs are used
as boundary conditions for detailed wind field CFD simulations over the
urban area studied (a district in a large Spanish city). CFD simulations
are more expensive than NWP, so only a few events are simulated in
detail (214 simulations for training and 80 for testing). Then the NWP
results are used as input and the CFD results as targets, to train the Al
model. Once the AI model has been trained, NWP simulations can be
used as input to obtain highly detailed wind fields as output.

In Fig. 1 an overview of the proposed method and the training
process is shown. The training process starts with the reanalysis data for
the year 2018 from ds.090.0 [35]; this is a Global Forecast System
(GFS) that serves as input for the NWP simulations. The NWP simula-
tions are performed with the Weather Research Forecast (WRF) [36]
software, from which hourly simulation results are obtained for the
whole year, 8760 timestamps or events. From these events, we identify
the most representative ones (details provided in Section 2.1), which
will be simulated with CFD; 214 events are selected for training and
80 for testing. Both NWP and CFD results are post-processed in order
to arrange the data as 2D square images; in some cases, an image
channel featuring engineering (see Section 2.5) is applied to improve
the performance of the Al model. The image of the NWP data is the
input for the Al model, which is a ¢cGAN in this study; the NWP data
are passed to the model generator and produces an image similar to
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Fig. 1. Overview of the proposed method and the training process. The black arrows denote model training, and the blue dashed arrows denote model usage.

that given by the CFD. Then, the NWP image, the CFD image and the
image produced by the AI model are used to calculate the cGAN losses
to update the network parameters; this process is repeated for 15,000
epochs during the training process. In usage mode (blue dashed arrows
in Fig. 1), the CFD simulation is not needed, so the NWP data is passed
on directly to the cGAN generator to produce results similar to those
of CFD.

2.1. Numerical simulations

The area of study of this work is an urban environment, specifi-
cally a district in the fifth largest Spanish city, Zaragoza. The city is
located inland, in the Ebro river valley; the valley runs roughly from
the Atlantic Ocean (to the North) to the Mediterranean Sea (to the
East). This geographical location causes the city to experience recurrent
strong wind events throughout the year. For the prediction of wind
phenomena in a built environment, Zaragoza presents a challenging
environment. In Fig. 2 some images of relevant buildings and the
rendering of the studied area in the CFD mesh are presented. The
district is located relatively close to the river bed, to the north of the
city. It consists of open streets and wide avenues, with buildings that
often reach 30 m high. The buildings are mainly residential; however,
the area also includes shopping centres, a few educational institutions,
and healthcare facilities, along with a business centre consisting of
three tall buildings, the highest two standing at 80 m.

Numerical Weather Prediction (NWP) simulations are conducted
for the year 2018 at the mesoscale level around the region of inter-
est; this produces 8760 hourly results (or events) for the year. The
NWP simulations are carried out using Weather Research Forecast
v4.1 (WRF) [36], with data from ds090.0 [35] as input, and a
fourfold-nested rectangular domain centred in Zaragoza; the innermost
dimensions are 81 x 54 km, with a horizontal grid resolution of 900 m.
These simulations serve as boundary conditions for highly detailed
wind simulations of the same area using Computational Fluid Dynamics
(CFD). The CFD simulations are performed with OpenFOAM v6 [37] us-
ing the SIMPLE algorithm for the pressure-velocity coupling. The flow
is modelled as isothermal, and the Reynolds-averaged Navier—Stokes
equations of continuity and momentum are solved. For turbulence,
the Spalart-Allmaras one-equation model [38] is used. The mesh has
about 2 million cells; a rendering of the geometry as represented in

the mesh can be seen in Fig. 2(d). It has a quasi-cylindrical shape to
accommodate any possible wind direction, with a diameter of 3 km;
in Fig. 3 a top view of the domain is shown. The simulation of wind
fields in an urban environment is a well developed subject (see, for
instance, [39-41]). The primary goal of this paper is not to contribute
to this well established field, and therefore our CFD calculations, while
fully converged and physically plausible, have not been validated.
Validation of the CFD model in a real urban setting and with forecast
boundary conditions linked to NWP is a very complex task; indeed, we
acknowledge that certain aspects of our CFD model, including mesh
resolution and turbulence model, should perhaps be refined for more
accurate CFD predictions. Our goal is to develop a methodology for
creating CFD-like result from NWP forecasts; our validation effort is
geared to this end.

2.2. Network architecture

The essence of the methodology presented in this paper is to con-
sider numerical simulation results as images, which can be handled by
the Pix2Pix AI deep learning model [28].

Pix2Pix is a conditional Generative Adversarial Network (cGAN)
[24] designed for image-to-image translation tasks. The goal of this
model is to learn a mapping from an input image to an output image.
For example, it can be used to translate a day-time scene to a night-
time scene or to convert a sketch into a coloured image [28]. In our
case, the input images are the NWP predictions and the output images
the CFD results. A generator and a discriminator are the two principal
components of the Pix2Pix model. The generator’s objective is to create
images that appear as realistic as possible. The task of the discriminator
is to discern whether a given image is real (from the training set) or
artificial (created by the generator). One of the key features of Pix2Pix
is the use of cGAN. In a cGAN, both the generator and the discriminator
are conditioned on some additional information. In the case of Pix2Pix,
this extra information is the input image; in the application presented
in this paper, the conditioning information is the NWP predictions. This
conditioning helps the model focus on learning the mapping from the
input image to the output image, rather than on generating arbitrary
images from random noise. Given the input image (NWP predictions),
the model generates the corresponding output image (CFD-like results).
The loss function of the Pix2Pix combines adversarial loss and L1 loss.
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(d) CFD mesh rendering of the studied urban area.

Fig. 2. Sample buildings in the modelled district (a) (b) (c), and district representation in the CFD mesh (d).

The adversarial loss is a cross-entropy element; the adversarial loss
seeks to render the generated images indiscernible from real images.
The L1 loss is the distance using the L1 norm between the target and
the predicted images, i.e., the pixel-wise mean absolute error; the L1
loss ensures that the generated images are structurally similar to the
target images. A hyperparameter, A, balances the adversarial and the L1
loss contributions to the loss function. This loss combination attempts
to ensure that the images produced by Pix2Pix are both genuine and
accurate.

The generator with a U-net-based architecture is comprised of to
elements [42]: an encoder (downsampler) and a decoder (upsampler),
with skip connections between them. The encoder is conformed by
downsampler blocks, consisting of a convolution operation with a filter
size of four and a LeakyReLU [43] activation function, and a batch
normalisation layer. The decoder is made of upsampler blocks, consist-
ing of a transposed convolution with an activation function ReLU [44],
dropout (applied to the first three blocks), and also a batch normali-
sation layer. The discriminator architecture consists of a convolutional
PatchGAN classifier (proposed in [28]). The PatchGAN classifier eval-
uates the image by regions instead of as a whole. By assessing the
authenticity of local image patches, it improves the texture detail and
stability of the generated images. Originally, Pix2Pix was designed
to work with 256 x 256 images; in this work we also investigate
the performance of image resolutions of 128 x 128 and 512 x 512.
To accommodate these dimensions, pairs of downsampler/upsampler
blocks are added or removed in the generator; the discriminator is not
changed. Two ADAM [45] optimisers are used to update the network
weights of the generator and the discriminator with a learning rate of
2. 107%; these optimisers are independent of each other. This auton-
omy between generator and discriminator provides the model with its
“adversarial” and competing characteristics. Image pixel values are
normalised to the range [—-1, 1]. Additionally, mixed precision float16 is
used, which greatly increases efficiency during training and inference
time; this results in lower GPU-RAM consumption and faster training
steps.

2.3. Network training and testing

The proposed AI model therefore utilises NWP predictions as input
and CFD calculations as targets. To train the AI model, an entire year
(specifically 2018) is modelled using NWP. Out of the 8760 hourly
events generated with these simulations, 214 events are chosen and
simulated with CFD to create the training dataset.

Given the very high computational cost of CFD simulations com-
pared to NWP ones, the most representative events of the year are
chosen to be simulated in CFD, resulting in a total of 214 events for
the training dataset. “Most representative” here should not be taken as
meaning the most frequent ones. Rather, event selection, as outlined
below, ensures that the set of chosen training events spans the whole
space of meteorological conditions. For the selection of representative
events, the hourly NWP events for a year are sorted into categories, or
“bins”; an event is assigned to a bin according to the wind speed and
direction at the central location in the domain. For creating the training
set, events are randomly chosen from each bin in order of decreasing
bin population. Once an event has been chosen from a bin, the bin and
its adjacent ones are marked as ineligible for further selection. A similar
approach was developed by the authors in [46], and further details can
be found there.

A test dataset is assembled by randomly choosing 80 additional
hourly NWP events for the same year, none of which is present in the
training dataset. These test events are also simulated with CFD but are
not used for model training.

The model is trained on a NVIDIA GeForce RTX 4060 Ti GPU with
16 Gb of VRAM during 15000 epochs.

2.4. Data as images

The AI model as presented so far is a ¢cGAN whose input (NWP
simulations) and output (CFD simulations) are images. The challenge
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Fig. 3. Top view of the CFD mesh of the simulated district. The lighter shaded square indicates the area where wind fields will be modelled as images. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

in this application is to reconcile the output data structure of the
simulations with the expected data structure of the Al model. To this
end, the data from the simulations are interpolated and rearranged into
a square image format.

Fig. 3 presents a top view of the CFD domain; the lighter-coloured
square is the region where wind fields will be modelled as images.
It is a square area, with a 1 km side, centred in the CFD mesh. The
images obtained have two channels, corresponding to the West-East
wind component u and the North-South wind component v. This is
because the primary interest are the horizontal wind components, while
the vertical component is not modelled. The images from the NWP
simulations are interpolations of u and v on a surface that at each point
is A = 20 m above the ground level or the local rooftop; for the CFD
images, A = 2 m. In the CFD mesh, the cell centre closest to the ground
is generally about 1 m high, and therefore the data extracted at 2 m
is interpolated, as intended, from CFD results. Finer meshes close to
walls can enhance the accuracy of the CFD simulation, but the current
mesh arrangements do not impair the challenge set out in this work of
achieving CFD-like resolution from NWP simulations.

Fig. 3 shows that the area represented in the AI model images is
smaller than the complete domain used in the CFD simulation. This
is for two reasons. First, we choose to move the model domain away
from the boundary conditions used for the CFD simulations (the dark,
approximately circular footprint in the figure); secondly, we wish to
use, for parametric analysis, images of varying resolutions. To achieve

manageable computational times with the existing computational re-
sources, we generate three sets of resolutions: 128 x 128, 256 x 256,
and 512 x 512. The use of the square shown in a light shade in Fig. 3 for
generating images ensures that, in the image with the lowest resolution,
a pixel represents 7.8 mx 7.8 m, that we consider as coarse as it should
be given the typical street dimensions.

The final result of this image generation process is two sets (from
NWP and CFD) of two-channel images; the two channels contain values
of u and v, which have been interpolated from the NWP and CFD
simulations. The two sets of images will later be divided into a training
ensemble (with 214 pairs of images) and a testing set (with 80 pairs of
images).

2.5. Image channel feature engineering

Typically, an (actual) image has three channels, one for each RGB
colour. In this case, the pseudo-images we build from the simulation
results have only two: the two horizontal wind components u and v.
However, the cGAN model that we use does not have a hard limit on
the number of channels it can handle. We can also encode in the image
channels any information that may increase the accuracy of the local
wind field prediction. Feature engineering attempts to improve the
performance of machine learning models by using knowledge of the
problem to create new features from raw data. In the case presented in
this paper, for wind field prediction, the raw data are the two horizontal
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Table 1

Mean Absolute Errors (MAE) in wind speed and direction for the models with resolution
images of 128 x 128. Comparison for u-v model and V-sin-cos model. Mean (u)
and standard deviation (o) for CFD wind speed and direction for the test events are
presented in the last row as a reference.

Model MAE,eeq [m/s] MAEy; [°]
u-v 0.42 33.8
V-sin-cos 0.35 27.0
Ground truth: CFD (u + o) 1.10 £ 1.18 m/s —-3.2+99.2°

wind components u and v. An alternative means of presenting this
information is with the magnitude of wind speed V and the wind
direction 6 (as elaborated upon below, it is more practical to represent
0 in terms of sin @ and cos @ than as a direction in degrees). The feature
engineering technique applied in this study entails replacing the image
channels « and v with three new channels V, sin, and cos 6.

During this study, sensibly larger wind direction errors are detected
in areas with low u and v values. This is because the wind direction is
calculated from « and v using the inverse tangent function. For low u
and v values, small prediction errors in either u or v (which may even,
within a small error, change their sign) result in large errors in the
calculation of the wind direction.

To seek a remedy to this problem, three quantities from u and v are
derived to act as (alternative) image channels. Firstly, we define the
wind-speed magnitude V' and the wind direction 6 € [z, z]:

V =Vu+ 2 (€D)]

0 = arctan2 (—u, v) 2)

The arctan?2 function calculates the inverse tangent, but it takes into
account the signs of the arguments to choose the right quadrant; its
behaviour is the same as the function np.arctan2 from the Numpy
Python library [47], or tf .math.atan?2 from TensorFlow [48]. The
minus sign in —u introduces an angular rotation so that # = 0 corre-
sponds to a wind direction from the South to the North, § = —z/2 from
the West to the East, § = +x from the North to the South, and 0 = z/2
from the East to the West. There is still a discontinuity for the North
to South direction, # = +x; we avoid this discontinuity by using sin 6
and cos 0. These two functions approach 6 = +z smoothly. With these
considerations, we build new images with three channels, instead of
the previous two (u and v), for use with the cGAN model; the three
channels are the wind-speed magnitude, V/, the sine and the cosine of
the wind direction, sin @ and cos 6.

In this work, we analyse the performance of the cGAN model when
using images with, alternatively, the two original channels (v and v)
and with the three engineered channels (V, sind and cos ). In the
following, we label these two alternative models as u-v and V-sin-
cos. The Al model predicts the same channels as its input image. To
convert V and 6 back to u and v the following relations are applied:

u=Vcosh; v="Vsind 3)

where 8 is computed from the predictions of sin and cos# given by
the model, sin@ and cos 8, as:

9 = arctan? (co/s\G —sﬂl\E’) (€))
3. Results and analysis

The models are trained on 214 events and evaluated on 80 events
that are not part of the training set. The input data is obtained from
NWP results, while the targets are CFD simulations, in both cases in
the urban area described before and shown in Fig. 3. Data input, data
output, and targets are arranged as matrices that can be interpreted as
images, with varying resolutions and number of channels for the several
analyses, or experiments, that will be presented in this work.
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Two sets of experiments are carried out as follows. First, two models
are trained using images with a resolution of 128 x 128, but with
different channels, viz those described above as u-v model (which
uses the velocity components as channels) and V-sin-cos model
(which uses the velocity magnitude and the sine and cosine of the
velocity direction as channels). The results are reported in Section 3.1.
Then, four additional u-v and V-sin-cos models are trained with
increasing resolutions of 256 x 256 and 512 x 512, to assess the
influence of image resolution on the model performance. The results
are reported in Section 3.2.

3.1. Analysis of feature engineering

In this section, the results for the u-v and V-sin-cos models
using 128 x 128 images are presented and discussed. In Table 1, the
Mean Absolute Errors (MAE) in wind speed and direction are presented.
The MAE is defined as:

n
1 N
MAE = ;Zlyi_yil 5)
i=1

where y; is the true value, J; is the predicted value and » is the number
of predicted points. The results indicate that V-sin—cos model out-
performs u-v model, with a slight improvement of 0.07 m/s in wind
speed, but a significant improvement of 6.8° in wind direction. There-
fore, the benefit of using V-sin-cos model is an overall improvement
in the prediction of the wind direction. This is a consequence of the
codification in this approach of the wind direction with sine and cosine
functions; this greatly improves the prediction of the wind direction in
pixels where the wind components, « and v, are small. This is because,
when the components are small, insignificantly small errors in their
prediction can result in a large error in the wind direction when this is
calculated through the components.

In Fig. 4, the outputs from the models for two events are shown; the
outputs are presented alongside the model inputs (NWP) and targets
(CFD) for u-v and V-sin-cos models. These two events are selected
because they feature very different predominant wind directions, as
shown in the upper right corner of Fig. 4(a) (northeasterly wind) and
Fig. 4(b) (southerly wind). It can be seen that both models succeed
in capturing the general features of the CFD results with a great
level of detail. Although there are small discrepancies between target
and prediction, for instance in wind speed magnitude, the models
reproduce most of the wake development and eddies caused by the
interaction between wind conditions and urban layout. There are no
major differences between the models for the first of the events shown
(Fig. 4(a)), but for the second event (Fig. 4(b)) V-sin-cos model
clearly outperforms u-v model. In this second event, the forecast from
u-v model is fuzzy in the central part of the modelled area (red circle
in the central column of Fig. 4(b)), without a precise prediction of
the flow or a clear appearance of the building footprint. In contrast,
V-sin-cos model produces a sharp and well-defined output without
blurring.

Fig. 5 presents the spatial distribution of MAE,..q and MAEg;, for
u-v and V-sin—-cos models averaged over all 80 events in the test set.
For V-sin-cos model, smaller errors can be observed in both wind
speed and wind direction. The performance of both models is markedly
different in the inner courtyards of the buildings, particularly in the
case of the wind direction. Although the accuracy of u-v model is sig-
nificantly low in these areas, V-sin-cos model results in errors that
are close to zero. These inner courtyards are sheltered from the wind
by surrounding obstacles, and thus have low wind speed. According to
these results, in these situations of low wind speed, V-sin—-cos model
outperforms u-v model due to the feature engineering carried out on
the input images (see Section 2.5).

A linear regression is performed on the predicted values of u-v
model and V-sin-cos model and the ground truth, the CFD data. R?
values are presented in Table 2 for each of the wind components u and
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Fig. 4. Comparison between u-v and V-sin-cos models for two events in the test dataset. First row: input data (NWP results); second row: target values (CFD results); third
row: results from u-v model; fourth row: results from V-sin-cos model. First column: RGB representation of u and v velocity components (for V-sin-cos model, the values
are obtained by converting from siné, cosé and V); second column: wind speed; third column: wind direction (0° blowing to the North, —90° to the East, 90° to the West and —180°

and 180° to the South).

Table 2
R? values for u and v for u-v model and V-sin-cos model with resolution images
of 128 x 128.

Model u v
u-v 0.8094 0.7529
V-sin-cos 0.8221 0.7597

v. R? is a statistical measure that indicates how similar these predicted
values are to the true values. It is defined as:

R=1- Z?:]Q’i - JA’i)z 6)

Z,"’:](yi -y?

where y; are the observed values, §; are the predicted values, y is
the mean of the observed values, » is the number of observations. R?
ranges from —oo to 1, where R?> = 1 indicates a perfect agreement
between predicted and true values, R*> = 0 means that the predicted
values are performing close to random data, and R*> < 0 indicates
that the predicted values are performing even worse than random
predictions. From Table 2, R? values relatively close to 1 are observed,
indicating a good performance of the models. Again, V-sin-cos
model outperforms u-v model. The difference in R?> between u and v,
although small, is still noticeable for both models; the u component is
systematically better predicted than the v one. This is likely due to the
orientation of the axes in the model: the u velocity component is aligned
with the prevailing wind direction, and thus it is probably easier to
predict.

Fig. 6 reports for each test event the MAE values versus the mean
wind speed and direction. For a fairer comparison among test events,
for wind speed, we graph the relative MAE, defined as MAE,..q
divided by the mean value of the CFD predictions for wind speed in
the event. V-sin—-cos model (the model that predicts the velocity
absolute value and the sine and cosine of the velocity direction) shows

better performance than the alternative u—v model (which predicts
the velocity components directly); V-sin-cos model results in lower
MAE values and, overall, more uniform errors across the data set for
the several mean wind speeds and directions in the test dataset. Further
examination of the MAEg,..q plots, Figs. 6(a) and 6(c) reveals that, as
the CFD-mean wind speed increases, the relative MAEg,..q decreases
until it reaches an approximately constant value. Generally, stronger
winds generate more consistent and directed flows through the urban
fabric, which leads to wind fields having similar flow patterns. This
pattern for stronger wind conditions makes them more amenable to
prediction by the ML models. In the wind direction graphs, Figs. 6(b)
and 6(d), the predominant characteristic wind directions of the geo-
graphical location are observed around —40 (southerly wind) and 40°
(northwesterly wind). The contours in Fig. 6 are the error density
estimation using Kernel Density Estimation (KDE) [49].

The hyperparameter A balances the two elements of the generator
loss in the model: the adversarial loss (the cross-entropy term) and the
one that ensures that the generated images are structurally similar to
the target images (the L1 error, i.e. the mean absolute error of the
predicted images with respect to the target ones). For u-v model, a
value of 2 = 100 [28] provides a balance between the two losses
during the training process. However, for V-sin-cos model the same
value of 4 = 100 is not suitable as the contributions of the adversarial
loss and the L1 error to the total loss function of the model turn out
not to be of a comparable magnitude. A more detailed exploration is
carried out to find a value that ensures this balance during training;
and finally 2 = 5 is chosen. Furthermore, the contribution to the
L1 error of V' is multiplied by a factor of 10 because it is one order
of magnitude smaller than those of sin and cos . Overall, V-sin-
cos model is found to perform better in the prediction of urban wind
fields. However, this indicates that hyperparameter tuning may require
additional attention when sophisticated feature engineering is used; for
instance, the definition of the loss function may be crucially relevant
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Fig. 5. Spatial MAE,..q and MAE;, values for u-v model and V-sin-cos model averaged over all 80 events in the test set.

when the channels have different physical meanings, and therefore
dissimilar values.

Next, we report the computational costs of the models. NWP and
CFD simulations are run on a 6-core Intel i7-6800k CPU while AI
model training and inferring are done on a NVIDIA GeForce RTX 4060
Ti GPU. The NWP mesoscale model requires 0.25 core-hours for the
simulation of each hourly event, amounting to a total of 2190 core-
hours (equivalent to 91 core-days) for a complete year comprising
8760 events. The CFD simulation of each event takes around 48 core-
hours, thus requiring 588 core-days to simulate all 294 events in the
training and test sets. For the AI models with 15,000 epochs, training
takes 80 GPU-min for u-v model and 86 GPU-min for V-sin-cos
model. The retrieval times of the results during the execution of the Al
model are under 1 s for both AI models. Therefore, a drastic reduction
in computational time is achieved, from 8 h for a traditional CFD
simulation (on an 6-core machine) to just seconds using our Al model.

3.2. Influence of image resolution

Next, we investigate how the resolution of the images affects the
quality of the results from the u-v and V-sin-cos models. In Fig. 7

MAE,ceq and MAEg;, are presented for u-v and V-sin-cos models,
trained with image resolutions of 128 x 128 (as presented in the
previous section), 256 x 256 and 512 x 512. (Note that the images
shown in Fig. 8 are not the same data up- or down-scaled; they are
different output from three different models trained separately with
different image resolutions.) We term each possible combination with
the resolution size, followed by a dash and the model used; for in-
stance, 256_u-v corresponds to u—v model trained with images with
a resolution of 256 x 256. For image resolutions of 128 x 128 and
256 x 256 there is almost no difference in the errors, for either the
u-v or the V-sin-cos model. However, for both models trained
with 512 x 512 images, a slight reduction in errors is obtained: less
than 0.02 m/s for wind speed and around 1° for wind direction. This
difference behaviour with resolution increase is likely caused by the
batch size selection rather than image resolution itself. The batch size
refers to the number of training samples used to train a model in one
iteration within an epoch. For the 128 x 128 and 256 x 256 images,
a batch size of 128 is used, while for 512 x 512 it is reduced to 32
due to GPU memory limitations. Smaller batch sizes mean that more
gradients are being computed to update the network weights, which is
less memory demanding but more time-consuming and may result in
instabilities and convergence issues during the training process.
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Table 3
Training times for each model and image resolution. All times are reported in hours
on a NVIDIA GeForce RTX 4060 Ti.

Resolution u-v model V-sin-cos model
128 x 128 1.3 1.4
256 X 256 4.9 5.8
512 x 512 20.4 23.7

In summary, there is no clear evidence that increasing the image
resolution reduces the model errors. The main advantage of using high-
resolution images for training is the gain in spatial detail, as seen
in Fig. 8. The square domain that is represented in all images has
approximately a 1 km side. A pixel in an image with 128 x 128
resolution is 7.8 x 7.8 m, with 256 x 256 resolution is 3.9 x 3.9 m, and
with 512 x 512 is 1.9 x 1.9 m. A comparison of the training times for
the various image resolutions is presented in Table 3. The training time
increases roughly fourfold with resolution; this is to be expected as the
amount of data (pixels in the image) the neural network has to process
quadruples as the image resolution doubles.

4. Discussion and future research

The foregoing results have shown the ability of our image-based,
c¢GAN model to predict local wind fields in a complex urban environ-
ment using coarser weather predictions as input. However, our cGAN
models are trained on the specific urban region that will be the target
of the predictions; therefore, the training datasets are domain-specific.
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speed aDd MAEg; versus CFD wind speed and direction averaged for each of the 80 test events for 128 x 128 resolution u-v model and V-sin-cos model.

The applicability of this approach would be greatly generalised if the
model were capable of zero-shot modelling. Zero-shot modelling means
that the ML model is able to predict scenarios or data that it has not
been specifically trained on. In our application, this would allow the
prediction of wind fields over geographical areas that the model has
not seen before, that is, without needing to re-train the model with
CFD results for the new areas.

Neural operators are useful in mapping the functional paramet-
ric space of partial differential equations (such as the Navier-Stokes
equations that govern fluid flow) into its solutions. The Fourier neural
operator does this in the Fourier space, which allows for an efficient
architecture. Fourier neural operators have been shown to be capable
of zero-shot modelling of turbulent flows [50]. Further research for
this problem should explore the use of Fourier neural operators [50].

Different resolution images (128 x 128, 256 x 256 and 512 x 512)
are explored in this work. The time and memory required for training
have been shown to increase four-fold each time the resolution of the
working image is doubled. In the case study, the real domain processed
by the model has 1 km length; that is pixel sizes of about 8, 4, and
2 m for each of the resolutions. These are levels of detail in accordance
with the requirements of standard applications such as urban wind
energy generation or passerby comfort. To meet these same standards
in possible real-case scenarios, where the processed domain is required
to be much larger than 1 km (urban building planning of districts or
monitoring an entire city), the image resolutions should increase. This
may be a time inconvenience and a memory hurdle in terms of GPU
hardware in order to train and allocate larger networks.

In this study, the Pix2Pix ¢cGAN model is used to demonstrate the
feasibility of the methodology; however, other models can be used
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instead. Other state-of-the-art neural networks that have a great po-
tential for use with this methodology are: EfficientNetV2 [51] with
faster training times and a more efficient architecture; convolutional
neural networks such as ConvNeXt [52]; and more recent approaches
leveraging MobileNet [53] with visual transformers [54] in Mobile-
Former [55]. All of them can potentially be embedded in the proposed
methodology; and their benefits in terms of errors, efficiency, and
training times should be studied.

The aim of this paper is to explore the possibility of using Al
to produce CFD-like results from NWP predictions. As indicated in
Section 2.1, the true validation of the methodology is therefore by com-
paring Al-generated output with CFD results. Consequently, we have
not validated the CFD results with, for instance, measured data. This is
indeed a very complex endeavour for large, actual urban areas. Beyond
the obvious CFD challenges (such as mesh resolution or turbulence
modelling), an added difficulty is obtaining accurate boundary condi-
tions. For a proper validation of our complete methodological chain,
these boundary conditions should come from NWP predictions; but
then these themselves are the results of numerical models, that should
be separately validated; and therefore it is difficult to attribute any
discrepancy in the CFD validation to any of the NWP or CFD methods,
or to a combination of both. Work is nevertheless underway to validate
the NWP predictions and our CFD results with wind field data in this
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urban setting. An intermediate validation, which provides controlled
boundary conditions and therefore avoids the uncertainties associated
with the NWP predictions, is to use a laboratory configuration of a
complex urban setting, such as those investigated by Yoshie et al. [39].
Work in this direction is also underway, but it should be noted that
any laboratory (wind-tunnel) configuration of an urban area will be at
a reduced scale.

5. Conclusions

In this work, a ¢cGAN model is used to get detailed CFD-like data
from coarser NWP results for the wind field in an urban, highly built-up
area. The essence of the proposed approach is to treat the CFD and NWP
data as images; this allows the use of an image-to-image model, based
on Pix2Pix [28], that is capable of translating coarse meteorological
weather conditions (NWP) into the corresponding detailed wind field
(CFD) over a built-up area.

The findings indicate that there is a significant agreement between
the predicted data from the model and the actual CFD simulations, with
a substantial decrease in computational time from eight hours required
for a single CFD simulation to a few seconds using the Al model. Careful
feature engineering of the image channels is shown to be effective
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Fig. 8. Wind speed for the event 2018-03-12 at 22:00. Zoomed-in representation of the domain to show the differences in image resolution. Upper left: CFD data (ground truth)
with a 512 x 512 resolution; upper right: predicted results with V-sin-cos model trained with images with 128 x 128 resolution; bottom left: predicted results with V-sin-cos
model trained with images with 256 x 256 resolution; bottom right: predicted results with V-sin-cos model trained with images with 512 x 512 resolution;.

in reducing the error obtained by the model, especially in the wind
direction. A mean absolute error in wind speed of 0.35 m/s is achieved,
along with a wind direction error of 27.0°. In addition, the sensitivity
of the model to the resolution of the input images is assessed; no clear
evidence is found that increasing image resolution improves the model
errors.
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