

CEGA: The Amphibious Energy Revolution

Executive Summary

CEGA (Amphibious Electrogenerative Cell) represents a breakthrough in renewable energy—an autonomous power source fully independent of sunlight, wind, or weather conditions. It captures the natural electric potential present in humid or saline environments—such as moist soil, wetlands, or seawater—through a modular system of interconnected cells that continuously, safely, and sustainably generate electricity.

Each CEGA cell comprises:

- **Electrodes:** Two elements (anode and cathode) made from materials with differing electrical affinities—such as copper and aluminum, or advanced graphite-based and conductive polymer compounds—creating an electrochemical potential when exposed to humid or aqueous media.
- **CEI (Cell Electronic Interface):** A DC-DC booster and isolation circuit that amplifies the captured voltage and enables multiple cells to be linked in arrays without mutual interference.
- **Encapsulation:** A flexible, amphibious, and robust shell suitable for deployment both on land and underwater.

The cells interconnect via **ALMA** components—conductive and structural connectors—forming scalable modular meshes capable of producing continuous power, day and night, anywhere on Earth.

A Paradigm Shift in Clean Energy

Unlike photovoltaic or wind systems, CEGA requires no dependence on weather, light, or mechanical movement. It provides 24/7 renewable power by exploiting constant natural variables: moisture, salinity, and the innate electrochemical potential of soils and aquatic environments. This introduces a novel category of renewable energy—unlimited, emission-free, and invisible—able to transform agricultural, coastal, and marine regions into sustainable energy sources without landscape impact.

Development and Technological Readiness (TRL 2/3)

The CEGA concept has been conceived and developed by **Intech Innovation**, a technology-based company supporting the project from inception to experimental validation. Presently at **Technology Readiness Level 2/3 (TRL 2/3)**, progress includes:

- Fabrication and laboratory testing of functional prototypes.
- Empirical validation supported by multimedia evidence (videos, images, and data).
- Scalable and modular interconnection architectures ready for expansion.

Next Phase: Advancement to TRL 4

The upcoming objective is to achieve **TRL 4**, validating the technology under controlled pre-industrial conditions. This will be executed in collaboration with **Tecnalia (Navarra)**—one of Spain's leading technology centers—based on a technical plan estimated at **€22,963.75 + VAT**, encompassing:

- Optimization and material characterization of sustainable electrode pairs.
- Integration of CEGA modules with continuous energy management systems.
- Comprehensive testing of stability, durability, and performance across various environmental conditions (soil, freshwater, saltwater).
- Simulation and modeling of large-scale mesh behavior.

Research and Sustainability Outlook

CEGA's potential spans across multiple fields. Current research efforts include:

- Development of eco-efficient materials for electrodes and ALMA connectors to enhance longevity and sustainability.
- Evaluation of industrial and energy applications in microgrids, smart agriculture, marine energy, and distributed storage.
- Sustainable strategies for scalable manufacturing, assembly, and deployment.

Each advancement strengthens the path toward clean, inexhaustible, and low-impact energy seamlessly integrated within natural ecosystems.

Conclusion

CEGA redefines what renewable energy can be: the first amphibious system capable of generating electricity from humidity or salinity alone. Free from visual intrusion, maintenance complexity, or dependency on climate variables, CEGA delivers clean, modular, and continuous power—poised to become the next major leap forward in global energy innovation.

Jose Antonio Gavilán

Tlf. +34 630 681 232

info@proecoway.com