

WIND ENERGY NETWORK FOR DISTRIBUTED GENERATION IN URBAN ENVIRONMENTS (REGEDIS)

Workshop on Urban Wind Resource Assessment November 29 and 30, 2022

Challenges towards realtime urban Wind forecast

Jaime Milla Val jmilla@nabladot.com

INGENIERÍA COMPUTACIONAL DE FLUIDOS

NablaDot

- SME that offer simulation services and digital technologies
- Sectors: energy, industry 4.0, Civil engineering, Water, Smart Cities

CFD Vapor mass fraction Gas temperature (°C)

Engineering Apps

Digital twin

NablaDot (key facts)

- Innovative SME (Spanish Ministry of Science)
- Innovative Company (French Ministry of higher education, research and innovation)
- Finalists of I4MS Disruptor Awards 2018 (Fortissimo 2)
- Participation in R&D projects (European, National) > 20
- Energy Cluster of Aragón
- Digital Innovation Hub Aragón
- Strong innovative & multidisciplinary character

ARAGÓN

CLENAR

Background projects: FORTISSIM02

- European H2020 Project (2018)
- PROBLEM: Urban wind assessment tools are costly in relation to the cost of a small wind turbine.
- **SOLUTION**: cloud-based tool for optimal placement of urban turbines including:
 - GIS (Geographic Information System)
 - NWP (Numerical Weather Prediction)
 - CFD (Computational Fluid Dynamics)
 - Analytics software to accurately simulate the urban environment

More info: https://www.fortissimo-project.eu/en/experiments/807/cloudbased-micrositing-of-small-wind-turbines

Background projects: FORTISSIM02

RESULTS

- Modelled urban area (city of Zaragoza) of about $2 km^2$
- Simplified approach (limited resources and time) but promising results
- First proof of concept and starting point of our activity in this field
- Industrial PhD
- New project starting in 2023!

PhD thesis: DEVELOPMENT OF AI MODELS FOR HIGH RESOLUTION WIND FIELDS PREDICTION

- FLUID MECHANICS PhD at the University of Zaragoza
- Industrial oriented: developing the thesis in a company, NablaDot
- Funded by the Spanish Government (Ministry of Science and Innovation)

Motivation

OBJECTIVE

Get a high fidelity/detailed wind field over a region without the need of expensive CFD simulations

WHAT FOR?

- Wind energy (new locations, forecast, digital twin..)
- Ski stations (snowfall prevention)
- Urban fluxes (legislation, building planning, dispersion...)
- Security (rescue operations, fires...)

HOW?

Using emerging AI/ML techniques jointly with more traditional CFD and NWP (mesoscale simulations).

Application case - General idea

- Use NWP, numerical weather predictions (mesoscale) simulations) to feed AI models with CFD as targets. At the end --> get rid of CFD (operational mode).
- Map mesoscale-like results to CFD-like results.

Application case - Localization

Over a complex terrain

• Spanish Pyrenees, between Aragón and Tena rivers, "sierra de la Partacua"

Application case - Simulations

- Mesoscale simulations with WRF --> hourly data over 2018 (8760 events)
- Windrose at central point of the location --> frecuency based selection of 193 events for training
- <u>CFD</u> simulation with **OpenFOAM**:
 - Steady state
 - SIMPLE algorithm for velocity-pressure coupling
 - Isothermal flux
 - RANS equations for continuity and momentum

Application case - AI models

- Bring CFD and NWP results together --> auxiliary mesh
- Train a model for each point individually:
 - Linear regression
 - **Support Vector Machine (SVM)**
 - Random Forest (RF)
 - K-nearest neighbors (KNn)
- Features:
 - Wind components, from NWP, of the point (U, V, W)
 - U, V, W of the point + U, V, W of the red points
- Targets:
 - Wind components from CFD (Ux, Uy, Uz)

Application case - Results

Application case - Results

• Mean (over 80 test events) absolute wind speed error [m/s] at surface level

• <u>Simple Features</u>:

mean: 1,97 m/s and 44,2 °

Extended Features:

mean: 1,81 m/s and 40,6 °

Computational time:

- 1 NWP event took ~3 min
- 1 CFD event took ~1 h
- Retriving AI data ~ s

Work in progress - What is ahead?

Flow assumptions:

Transient instead of steady flow

Region:

 Urban area in contrast with the application case over a mountainous terrain.

AI models:

Neural Networks.

Work in progress - Transient

- Sudden changes in wind velocity
- Are effects of wake development important?
 - 2018-03-28T21:00
- Temporal dependencies
- Increase training data

Work in progress - Urban

City of Zaragoza (ACTUR neighborhood)

Work in progress - Neural Networks

*Computational time

Conclusions and Perspectives

AI model to map weather data (NWP) into high detailed wind (CFD)

simulations

- Transient against steady state. <u>Temporal</u> dependencies
- Complex terrain and (now) testing over urban areas
- NN promising over traditional ML tequiches such as SVM, RF, KNn...

Thanks a lot!

Jaime Milla Val jmilla@nabladot.com

