

Graphene functionalization and composites

- -Methods/Synthesis
 - -Properties
 - -Applications

Associate Prof. Jinhua Sun

Department of Industrial and Materials Science Chalmers university of Technology

jinhua@chalmers.se 2025-06-17

✓ Chemistry of Graphene: Surface modification and functionalization

✓ **Graphene based composites:** design, synthesis, structure control, properties

✓ Energy related applications: Catalysis, Supercapacitors, Li-/Na-ions battery, Li-sulfur battery, sensor

✓ **Industrial application:** 3d printing, coating, gas barrier, anti-corrosion

J. Mater. Chem., 2012, 22, 18879
Chem. Commun., 2013, 49, 5538
J. Mater. Chem. A, 2014, 2, 5060
Adv. Funct. Mater. 2015, 25, 4334
Chem. Mater. 2015, 27, 4594
ACS Appl. Mater. Interfaces, 2016, 8, 11711
Nature Commun. 2016, 7, 10601
Carbon 2017, 120, 145
Nanotechnology, 2017, 28, 395404
Nanoscale, 2018, 10, 21386
Angew. Chem. Int. Ed. 2018, 57, 1034
APL Materials 2019, 7, 020904
Angew. Chem. Int. Ed. 2019
Science advances, 2021

The research group

Research focus:

- 1) Design and synthesis of graphene based electrode materials and binders for Lithium-ion battery and future batteries.
- 2) Lithium-ion battery, Sodium ion battery, Li-S battery, Aqueous rechargeable battery.
- 3) Sensors for better battery management.
- 4) Advanced characterizations to understand the energy storage mechanism.
- 5) Development of advanced electrode processing and battery manufacturing technologies.

Research team:

- 4 Postdoc.
- 5 PhD students
- Several Master students

Labs and equipment

Labs and Equipment related to battery research

- ❖ Pouch cell
- Coin cell
- Swagelok cell
- ❖ In situ cell

Chemistry lab Glove box

Materials synthesis

High speed centrifuge

Electrode preparation

Electrode coating

Heat roller press machine

4-Probe Station

Battery characterizations ~200 channels

Biologic SP-300 Potentiostat

Biologic BCS-805 battery cycler

Commercial graphene in the market

Benchmarking of graphene-based materials

Table 1. Summary of GRM properties measured using different techniques. Data reported by each GRM producer are also shown.

- ◆ Full characterizations
- ◆ Structure-property relationship
- **♦** Select the right graphene

GRM commercial	SSA	SSA reported by	% oxygen		Average bulk density	ζ
name	$(m^2 g^{-1})$	producer	(from XPS)	%sp ²	(mg ml ⁻¹)	Producer
Elicarb materials grade	10 ± 1	40	$\textbf{4.3} \pm \textbf{0.5}$	96.3 ± 0.9	214 ± 1	Thomas Swar
AVA-FLG 18	22 ± 4	n.a.	1.7 ± 0.3	98.0 ± 0.9	44 ± 1	Avanzare
G2NAN	30 ± 3	30	2.1 ± 0.5	$\textbf{96.5} \pm \textbf{0.9}$	18 ± 1	Nanesa
GC1	83 ± 5	60	3.6 ± 0.4	96.9 ± 0.9	126 ± 2	Graphene supermarket
XGnP M15	113 ± 10	135	4.0 ± 0.5	$\textbf{97.0} \pm \textbf{0.9}$	55 ± 1	XG Science
Graphenit-OX	132 ± 10	n.a.	2.9 ± 0.4	$\textbf{95.1} \pm \textbf{0.9}$	301 ± 1	Nanoinnova
AVA-FLG 23	190 ± 4	n.a.	$\textbf{4.2} \pm \textbf{0.5}$	$\textbf{90.9} \pm \textbf{0.9}$	12 ± 1	Avanzare
SE1430	195 ± 5	215	11.9 ± 0.5	$\textbf{77.8} \pm \textbf{0.9}$	43 ± 1	Sixth element
SE1231	234 ± 5	170	2.8 ± 0.3	89.6 ± 0.9	39 ± 1	Sixth element
RGO	486 ± 35	461	14.2 ± 0.5	$\textbf{57.8} \pm \textbf{0.9}$	_	Graphenea
XGnP C750	745 ± 50	750	6.3 ± 0.5	85.0 ± 0.9	207 ± 2	Xg Science
TRGO	1154 ± 30	n.a.	8.5 ± 0.5	86.1 ± 0.9	6 ± 1	Universitat Freiburg

A. Kovtun, V. Palermo, et al, 2D Mater. 2019, 6, 025006

Different graphene used in metal reinforcement

CVD graphene

Reduced graphene oxide particles

multilayer graphene graphite nanoplatelet

Graphite oxide/Graphene oxide

Mechanically exfoliated graphene

Possible applications Selection of right graphene

Graphene/polymer

electronics

Membrane

Energy storage

Transistor

Exfoliation and restacking of graphene

- Water dispersible
- Single layer
- Easy process
- Self-assembling

GO

Interlayer distance

Control of interlayer distance

♦ Intercalation of solvent molecules

Scanning force microscopy (SFM)

Swell in water

Talyzin, et al., ACS Nano 2013, 7, 1395

Methanol: 19.4 Å

Negative thermal expansion

Talyzin et. al., Nano Lett. 2014, 14, 3993

1-octanol: 28.0 Å upon cooling

Talyzin, Sun. et al., Nanoscale, 2017, 9, 6929

Control of interlayer distance

Intercalation of ions

XRD patterns representing three different phases of BGO immersed in electrolytes with different concentrations

Temperature- and concentration dependent intercalation of solvated TEA-BF₄ ions into BGO.

Intercalation of TEA-BF4 electrolyte ions into the BGO interlayer space

Tetraethylammonium Tetrafluoroborate (TEA-BF) in acetonitrile

2D-TECH

Energy storage-Hydrogen GO pillared with tetrapod-shaped molecules

Tetrakis(4-aminophenyl)methane (TKAm)

A model of the pillared GO/TKAm structure

Surface area:

 $700 \text{ m}^2/\text{g}$

- 3D structure
- Steric effect
- Controllable distance

XRD of TKAm:GO with variation of loading TKAm:GO.

Sun. et al., Carbon **2017**, 120, 145

Pillared graphene for energy storage

The surface area is about 700 m²/g, higher than most of other reported pillared graphene

A structural model of pillared perforated GO with surface area of 3700 m²/g and simulated hydrogen adsorption isotherms.

Molecular pillars on graphene oxide

DBA molecular pillars

Benzene-1,4-diboronic acid (DBA)

Evidence of only one side of DBA grafted on GO

Interlayer distance of GO/DBA:

1. In air :10.54 Å

2. In methanol: 14.33 Å

3. In water: 15.30 Å

The pristine state is recovered after solvent evaporation at ambient temperature.

Molecular pillar approach to grow vertical COF on graphene

Energy storage

Highlight of this work: Control the orientation of COF on the surface of graphene

Growth of vertical COF-1 nanosheets using DBA as molecular nucleation sites grafted on GO

Morphology of vertical COF on graphene

Controllable:

- 1. Thickness
- 2. Density

0.5 1 2 3 4 5 Weight ratio of DBA to DBA-GO 3.6 nm

Thickness: from 3nm to 15nm

Uniform distribution of orientated COF on graphene nanosheet

Vertical porous carbon nanosheet on Graphene

Vertical COF → **Vertical porous Carbon**

Application: Supercapacitors

- **≻**Porous structure
- **≻High surface area**
- **≻**High conductivity
- **≻Unique structure**

Electrons transfer from carbon nanosheet to high conductive graphene

Janus graphene for sodium ion battery

Janus graphene: asymmetric functionalization

- **♦ Vertical molecules**
- **♦** Covalent bond
- **♦** Variable chemical groups
- **◆** Controlled density

Janus graphene film

Stacked CVD graphene film

Sodium ion battery

CHALMERS UNIVERSITY OF TECHNOLOGY

Why graphite doesn't work for sodium ion battery

Graphite for Li vs. Na

stage-I binary intercalation compound

Li-ion Battery (LIB)

Sodium-ion Battery (SIB)

Hypothesis

Reason: Na⁺ > Li⁺ 0 0.68 Å

Operando Raman

Operando Raman

HOPG (Graphite) for Na ions

Monitoring Na ions intercalation

Raman shift (cm⁻¹)

Intercalation/Deintercalation

Ellipsometry imaging

DFT calculation

Understanding the intercalation mechanism of sodium ions

Synergic ionic bonds

C_{6.9}Na

- Active sites
- Functional groups
- Defects

The interaction process is energetically favorable.

Large scale synthesis

Large scale synthesis of Janus graphene powder with different surface chemistry

Janus graphene collection

Janus graphene for Sodium ion battery

Coin cell result

Other applications

- Energy storage
- > Surfactant
- Additives
- **Electronics**
- **>**

Issues of Li-S batteries: shuttle effect

Graphene for Li-Sulfur battery

$$2Li^{+} + S_{8}^{2-} \Leftrightarrow Li_{2}S_{8}$$

$$2Li^{+} + S_{4}^{2-} \Leftrightarrow Li_{2}S_{4}$$

$$2Li^{+} + S_{2}^{2-} \Leftrightarrow Li_{2}S_{2}$$

$$2Li^{+} + S^{2-} \Leftrightarrow Li_{2}S$$

$$2Li^{+} + S + 2e^{-} \Leftrightarrow 2Li_{2}S$$

Parasitic polysulfide shuttle effect

Yang et. al., Chem. Soc. Rev., 2018, 47, 2020

- ◆ Low utilization of sulfur
- ◆ Poor cycling stability
- ◆ Low capacity
- ◆ Low coulombic efficiency

Synthesis of functionalization graphene

Functionalize graphene

Diazonium chemistry

Self-polymerization

High reactivity of aryl radicals

Exfoliation and restacking of graphene

DFT calculation

Soluble lithium polysulfides

Fukui functions of the electron density

Electrochemical performance

Li₂S_n polysulfides

Low sulfur to electrolyte (S/E) ratio (i.e., 1:5)

- High utilization of S
- > High specific capacity
- ➤ Better rate performance
- > Long cycling stability
- > High energy density

Polar-polar interaction

Interaction: XPS evidence

Evolution of lithium polysulfides on graphene surface Formation of Li₂S-(S)O₃ and S-O bonds

NG has better stability then SG due to the formation of more bonds

Lithium surface after cycling

Graphene for lithium ion battery

- Graphene coating
- **→** Graphen conductive additives

Graphene to solve problems of silicon electrode

Flexible
 Large surface area
 Conductive
 Stable
 Accommodate lithium

Graphene coated electrode materials

Fast lithium-ion diffusion inside the electrode

Our Strategies:

1) Surface coating.

- > NCA
- > LFP
- > Si

Surface modification

Coating graphene

Issues of Silicon electrode

Volume expansion Volume expansion After removal of Li After storing Li

Silicon (5wt%)/graphite
High Silicon mass loading

Poor cycling stability

- 5μm

Low rate capability (can not fast charge)

Coat graphene on silicon particles

Graphene as conductive additives

LFP LFMP NCM

Graphene based composites

Metal and Polymer

Graphene investigation and modification

Different graphene derivatives

- Grphene
- Graphene oxide
- Reduced graphene oxide
- > Graphite nanoplatelet

Modify the surface chemistry of graphene in order to have better interaction with matrix materials

Surface modification, and stabilize the graphene in solvents

1 kg graphene paste

1 mg/ml

Overnight

Graphene investigation and modification

Issues to be addressed in the processing

Agglomeration of graphene in metal and polymers

Graphene in metal

Melton metal on graphene

Graphene in polymer

Graphene aggregate

Agglomerate

- Large surface area
- High surface energy
- Pai-pai interaction

Development of graphene/polymer dispersion and coating

Cryofractured cross-section (25 um)

Aggregated cross-section (25 um)

Gas barrier
Gas separation

EMI Shielding

Thermal conductivity

Graphene enhances contacts/switches in electricity and tribology

Solutions: coating graphene

Graphene on metal top surface

Graphene coated metal particles

Graphene/metal matrix

- > Anti-friction
- > Anti-wear
- > Self-Iubricate

- > High electrical conductivity
- High chemical resistance
- Anti-corrosion

Graphene in metal matrix

High thermal conductivity

Low voltage circuit breakers

Coating graphene on Cu particles

Surface modification

Mixing GO and Cu powder in water

Increased thickness of coated graphene

Thermal conductivity, anticorrosion

RGO

Tribology

GNP GO RGO Weight percentage • 1wt% • 3wt% • 5wt% Dispersed Graphene in Copper

Comparison

GNP

Additive Manufacturing

- Controllable pore size
- Porous structure with high density
- Graphene coating
- Better interaction with deposited lithium

Porous Cu substrate with regular and controllable pore structures

Thanks for your attention!

Jinhua Sun Jinhua@chalmers.se