

R&D+I offer in Biorefinery & Bioprocesses

Diana García-Bernet

Partnership Manager, TRANSFORM Division of Science for Food,
Bioproducts & Waste Engineering

diana.garcia-bernet@inrae.fr

INNOVATION
INRAE

#ScienceForInnovation

INRAE: Science dedicated to life, humans, and the Earth

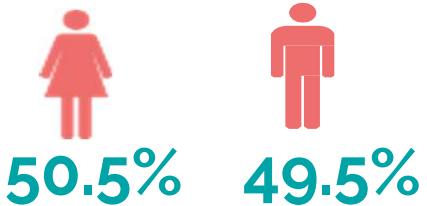
Our job

- ✓ To produce and disseminate knowledge to help solve major global challenges
- ✓ To put this knowledge to work to foster innovation

14 Research divisions

Find more: <https://www.inrae.fr/en>

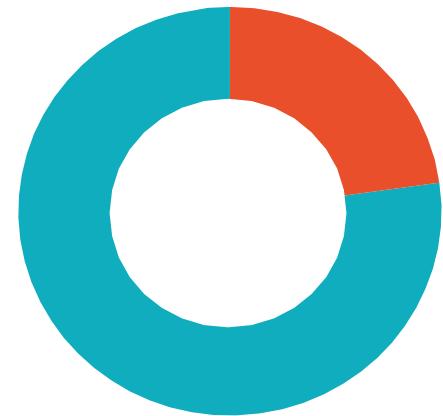
240830_INRAE Biorefinery & Biotech offer - diana.garcia-bernet@inrae.fr



#InnoverAvecINRAE

INRAE - Key figures*

>11000 FTE



2005 researchers
3179 engineers
3045 technicians
1850 PhD students
2029 trainees

75% permanent staff

25% non permanent staff

Budget

23% Own ressources
77% Public service grant

#InnoverAvecINRAE

*2020 data

240830_INRAE Biorefinery & Biotech offer - diana.garcia-bernet@inrae.fr

Innovation - what we can do for you

An adapted response to every need

Do you want to develop new solutions
(products, services or processes) ?

**Collaborative R&D projects can contribute to
cope technological and societal challenges.**

Do you have a specific question or problem ?

**We propose expertise, research &
subcontracting services for short-term
cooperation.**

Do you need support for **result-oriented solutions**?

**We provide asset-based services: skills,
knowledge-related facilities, access to
our platforms.**

Are you looking for technical solutions **or technology
transfer opportunities**?

**Take a look at our technology offer & patent
portfolio for licensing or for startup
business creation.**

#InnoverAvecINRAE

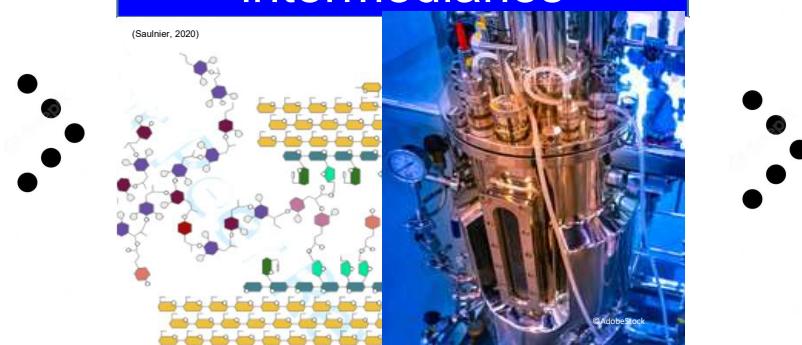
240830_INRAE Biorefinery & Biotech offer - diana.garcia-bernet@inrae.fr

INRAE - Our fields of innovation

#InnoverAvecINRAE

240830_INRAE Biorefinery & Biotech offer - diana.garcia-bernet@inrae.fr

From biomass to advanced biobased solutions


To meet market demand with a sustainable approach

Renewable feedstocks

(bio)Processes & intermediaries

Products & services molecules, materials & energy

Advanced characterization methods | Biomass deconstruction |
Biocatalysis - Fermentation | Industrial & environmental biotechnology |
Functionalization | Formulation | Downstream processes | Ecodesign & LCA | Modelling & control |

Our expertise in biobased solutions by segment

Molecules

We design sober and efficient processes for the production of bio-based molecules for the chemical and agri-food sectors: antioxidants, pigments, fibers, emulsifiers and other bio-based substitutes for fossil resources, such as bioplastics and biofuels.

Materials

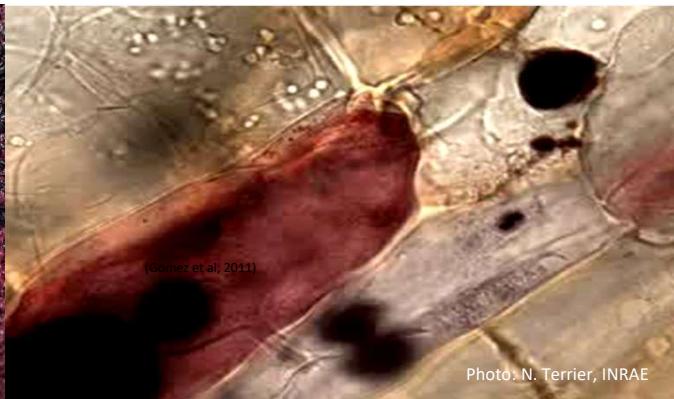
We develop sustainable materials for numerous applications (construction, packaging, textile) from renewable biomass to replace their petroleum-based equivalents. Flax or sunflower fibers, wood, food waste... so many resources for creation of new materials!

Energy & EB*

*Environmental Biotech

We aim to facilitate the transition to a more circular and bio-based economy by developing processes based on resource recovery, capable of creating value while treating bio-waste & waste water streams.

#InnoverAvecINRAE


240830_INRAE Biorefinery & Biotech offer - diana.garcia-bernet@inrae.fr

- **Biomass fractionation, extraction, precision fermentation**
- **Platform molecules and use products (all fields of application)**
- **Drop-ins as well as new molecules/uses**
- **Properties of biopolymers during production, extraction and purification**
- **Bio-based binder to replace fossil-based resins**
- **Emulsions**

In France 1 M tons million tons of grape pomace are produced annually

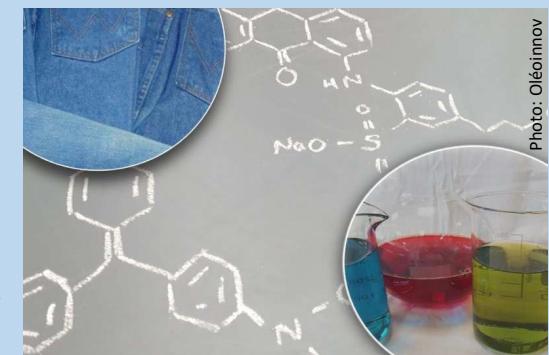
Photo: D. Garcia-Bernet, INRAE

(Gomez et al, 2011)

Photo: N. Terrier, INRAE

Natural E163 pigment for food applications from grape pomace

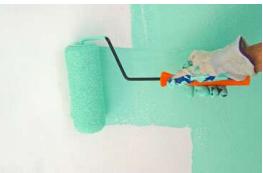
Molecules


Success stories

240830_INRAE Biorefinery & Biotech offer - diana.garcia-bernet@inrae.fr

The EU ZELCOR project (2016-2020) demonstrated the feasibility of transforming lignocellulose biorefinery recalcitrant side streams into high added-value biobased products, including fine chemicals by combining chemical and enzymatic catalysis with biological conversion by insects.

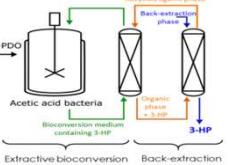
Created in 2019, after six years of collaboration between INRAE, Aix-Marseille University, Terres Inovia and Terres Univia, the startup OléoInnov **proposes biotechnological tools** (antioxidants, biocatalysts) for textile bleaching and industrial colored effluent treatment.


Molecules

Application examples

Markets

I. Capron



Hihg stability, surfactant-free Pickering emulsions preparations from wood nano-particles Highly stable emulsions, possibility to use particles of controlled size, polarity and texture for different applications.

Cosmetics Phyto

Pharma Agri-Food

C. Saulou-B

Microbial process for the production of organic acids and hydroxyacids (continuous extraction) 3-HP concentration higher than 60 g.L-1, average volume productivity of 2.79 g.L-1.h-1 at lab-scale.

Agri-Food Cosmetics

Chemistry Health

Séverac

Green non-ionic surfactants of varying structures/sizes with different types of linkages and degree of branching for new ranges of excipients or cosmetic ingredients with HLB>14 that cannot be obtained chemically.

Cosmetics Health

Chemistry

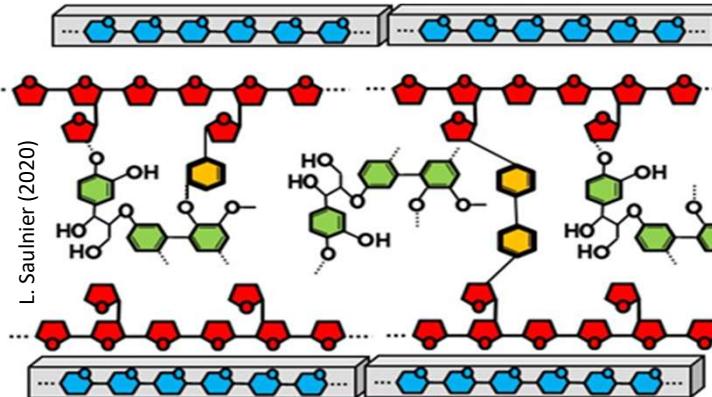
H. Fulcrand

Biobased furylated polyphenols: custom-made functionalized platform molecules for speciality chemistry (resin, hardner agent). One-step, low-pollution, soft conditions production process from Douglas fir bark.

Chemistry

Automotive

Materials


Overview

240830_INRAE Biorefinery & Biotech offer - diana.garcia-bernet@inrae.fr

- Bioplastics & alternatives to plastic
- Plant-based and other biobased materials (animal waste)
- Fibre-based materials & textiles
- Sustainable manufacturing processes economically competitive
- Characterization and processing of advanced biobased materials
- Functional materials and objects using 3D and 4D printing
- Nano-materials & composite materials (including recycling)

Materials

Success stories

Development of 2 types of semi-products
Développement de 2 types de renforts

For 3 industrial sectors
Pour 3 secteurs industriels

Depestele
Vendée Vendéealine
Long fibres reinforcements
Biaxial 100% flax (NCF)
Grid

Non-tissés
50% biopolymère / 50% lin

Eco-technik
Non-wovens
100% flax
50% Biopolymer - 50% flax

HOWA TRAMICO
Automotive
Automobile

kairos
Point-of-sale advertising
Publicité sur lieu de vente

Sailing
Nautisme

Interreg
France (Channel Manche) England
European Regional Development Fund

<https://flower-project.eu/language/en/>

The main objective of the FLOWER project (2018–2023) was to develop **flax fibre reinforcements for the emergence of new products for the sport, automotive and advertising applications**. FLOWER covered the entire value-chain, from the production of flax fibres to commercialisation of end products and allowed the development of high performance, biodegradable, light-weight or recyclable products with reduced environmental impacts.

4FM - FARE & FRD-LAB common laboratory for Future Fibres and Materials (FRD) aims to validate the results of projects carried out jointly by FRD and UMR FARE in an operational situation on the scale of Europe's largest hemp production basin. Hemp concrete was first used in house construction in 1986. Hemp shives are the fundamental ingredients in this biobased concrete. INRAE partnership with company FRD to improve the quality of hemp shives as well as that of other plant fibres.

Materials

Application examples

S. Domenech

Biobased (100%) and biodegradable PLA with improved mechanical properties. Possibility of film production by blown film extrusion. Can be implemented on a large scale on existing industrial installations.

Markets

Packaging

Agri-food

C. Mayer

Biobased composite powders (10-200 microns) for additive manufacturing (selective laser sintering 3D printing) of materials. Modulation of the final properties by formulation (% PHA, waxes and lignocellulosic fillers).

Plasturgy

Packaging

Vandenbosche

Agromaterials production by bioextrusion of a solid lignocellulosic material seeded with fungal biomass; low density for building materials, packaging, thermal insulation, or high density after thermopressing.

Plasturgy

Building

Sports

Packaging

B. Bakan

Biosourced & recyclable shape memory elastomer from hydroxylated fatty acids. Breaking strength (10 mm/min): approximately 2 MPa. Elongation at break (10 mm/min): 150 - 250 %. - Solvent- and chain-blocker-free process.

Cosmetics

Phyto

Health

Pharma

Energy & EB*

*Environmental Biotech

Overview

240830_INRAE Biorefinery & Biotech offer - diana.garcia-bernet@inrae.fr

Exploring the potential of biodegradable waste streams as a feedstock and their role in closing loops of raw materials, nutrients, carbon and water

- Renewable energy, biofuels
- Effluent & waste treatment and resource recovery: design, operation, and optimization of treatment facilities
- Anaerobic digestion, methanation, electro-fermentation
- CH₄ & CO₂ conversion
- Fate of micro-pollutants & biogas monitoring on-site

Mixed biowaste streams represent an important challenge for viability, given the high dilution, pollution and disparity of content.

Microbiology can help to produce energy carriers from waste

Energy & EB*

*Environmental Biotech

Success stories

While all households are expected to be able to sort biowaste at the source by late 2023*, the EU project DECISIVE (2016-2021, 14 partners) has focused on developing micro-scale anaerobic digestion (AD) in urban areas. DECISIVE **has led to full-scale testing of efficient micro-AD units at local level**, capable of producing both energy for local use and a biopesticide for farms.

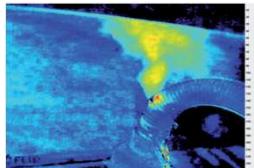
BioEnTech developed software and analytical solutions to optimize the performance of AD facilities. Since its creation in 2013, more than 40 biogas plants in France and abroad have benefited from BioEnTech's pioneering technology, based on two families of patents with INRAE and INRIA. In 2022, SUEZ acquired BioEnTech, with the aim to accelerate its innovation efforts in AD.

Energy & EB*

*Environmental Biotech

Application examples

I. Gimbert

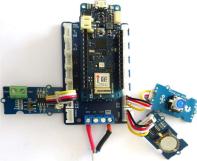

Lignocellulosic biomass pretreatment by filamentous fungi for biofuels or biogas production Improves delignification (30 to 50% wheat straw); wild, lignin-selective strain with a low cellulose and hemicellulose degradation.

Fuel

Energy

Biorefinery

N. Auvinet


Simple and fast quantification of fugitive biogas emissions from anaerobic digestion installations for prevention of unwanted methane emissions and environmental and economic impact of these emissions.

Fuel

Energy

Biorefinery

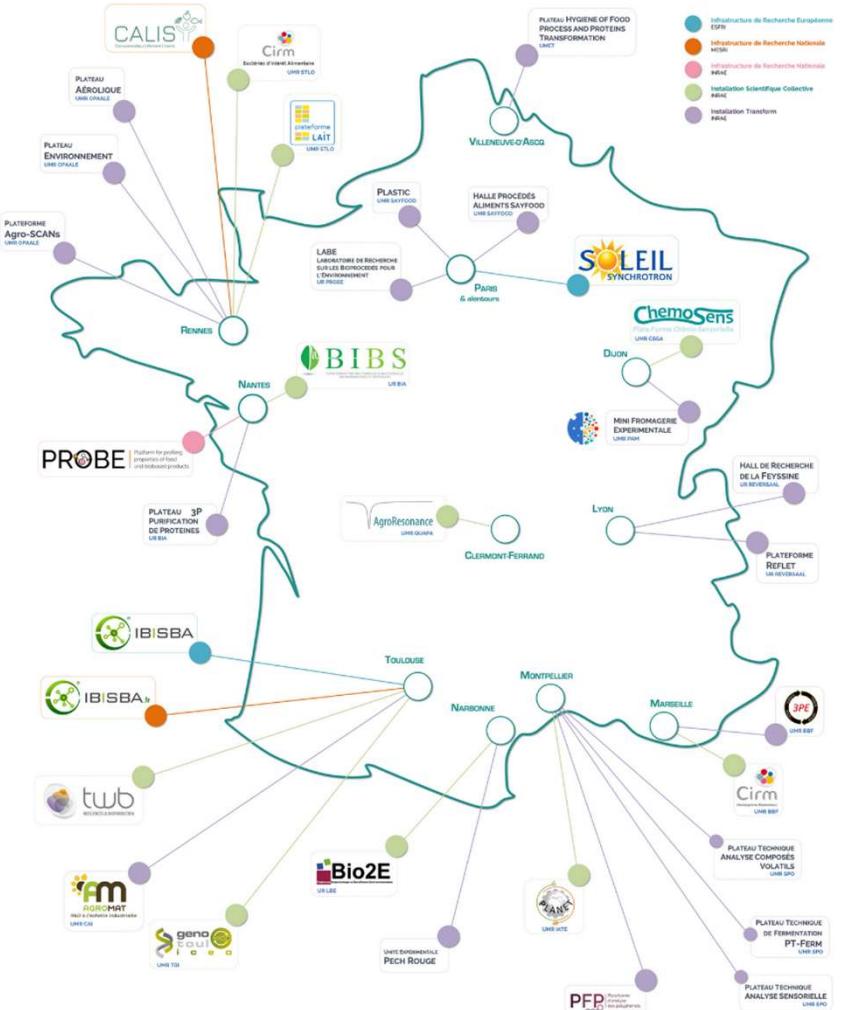
R. Clément

Low-cost sensors for WWTP and DIY open hardware (dataloggers) For physico-chemical, volumetric & energy on-line measurements.

WWTP

Energy

ML Daumer


Biological process for dissolving and recycling of iron and phosphorus in WWTP sludge, enabling phosphorus dissolution percentage between 50 and 75%.

WWTP

Energy

Our labs and platforms

