

PRESENTER FULL NAME: Klaus Pressel

ORGANIZATION: Infineon Technologies, Regensburg (Germany)

WORKSHOP NAME: Digital, Chips and 6G

E-MAIL: Klaus.pressel@infineon.com

Advanced Microelectronics in ever more Applications Understand Chip – Package – Board/System

Klaus Pressel April 10th, 2025

Today's 7 Messages (Session: Digital, Chips and 6G)

- Growing Importance of Microelectronics (Megatrends)
- System Integration Everywhere (Assembly & Packaging, Heterogeneous Integration, Chiplets)
- Coherent View of Chip-Package-Board/System (from nm on Chip level to mm/cm on Board/System level)
- Understanding of Customer Requirements (e.g. Reliability Constraints)
- New Opportunities of Computer and Data Science/Management
- Management of Complexity
- European and National Funding Opportunities for Micro/Nanoelectronics

Today's 7 Messages (Session: Digital, Chips and 6G)

- Growing Importance of Microelectronics (Megatrends)
- System Integration Everywhere (Assembly & Packaging, Heterogeneous Integration, Chiplets)
- Coherent View Chip-Package-Board/System (from nm on Chip level to mm/cm on Board/System level)
- Understanding of Customer Requirements (e.g. Reliability Constraints)
- New Opportunities of Computer and Data science/management
- Management of Complexity
- European and National Funding Opportunities for Micro/Nanoelectronics

We need Knowledge Generation

Today's 7 Messages

- Growing Importance of Microelectronics (Megatrends)
- System Integration Everywhere (Assembly & Packaging, Heterogeneous Integration, Chiplets)
- Coherent View Chip-Package-Board/System (from nm to mm/cm)
- Understanding of Customer Requirements (e.g. Reliability Constraints)
- New Opportunities of Computer and Data science/management
- Management of Complexity
- European and National Funding Opportunities for Micro/Nanoelectronics

Global Megatrends Increasing Importance of Semiconductors

Global Megatrends

Increasing Importance of Semiconductors

We must consider sustainability (recycle, reuse, refurbish, reliability,)

Semiconductors Key Building Block for Megatrends

Energy efficiency	Power Generation (renewable)Energy TransmissionEnergy Storage	Energy UsageEnergy Distribution	
Mobility	Electro MobilityAutomated Driving	Charging InfrastructureInfotainment	
Security	Authentication for IoTMobile Devices	Smart CardsConnected Vehicles	
loT and big data	Human-Machine InteractionData & Communication Infrastruc	Edge Computing ture	

System Integration & deep knowledge about materials & interfaces are the toolkits

Today's 7 Messages

- Growing Importance of Microelectronics (Megatrends)
- System Integration Everywhere (Assembly & Packaging, Heterogeneous Integration, Chiplets)
- Coherent View Chip-Package-Board/System (from nm on Chip level to mm/cm on Board/System level)
- Understanding of Customer Requirements (e.g. Reliability Constraints)
- New Opportunities of Computer and Data science/management
- Management of Complexity
- European and National Funding Opportunities for Micro/Nanoelectronics

System in Package Integration Everywhere

(see also IEEE HIR roadmap https://eps.ieee.org/technology/heterogeneous-integration-roadmap.html)

Communication and Computing

Automotive Electronics

Energy Generation and Energy distribution (e.g. smart grid)

Industrial Electronics (e.g. energy efficient driver, IoT, Industry 4.0)

Others e.g. Solid State Lighting, medical, drones, ...

Package Diversity is Growing Over Time Infineon View

Package Diversity is Growing Over Time Infineon View

Package Diversity is Growing Over Time Infineon View

3D Stacking Vision (Heterogeneous Integration RM) Building Blocks and Materials

Passives

☐ Multiple functional elements in a visionary SiP example

Bundesministerius für Bildung und Forschung

Integration (in Automotive) <=> RISK V for processing 2.5D Package

2.5D packaging for autonomous driving

- Computing platforms for data processing from camera, radar, and lidar sensors
- Package solution not limited to automotive
- □ Perceive the surrounding environment, localize the car to a map, and plan and execute a safe path forward
- Supports autonomous driving, in-cabin functions and driver monitoring, as well as other safety features

Source: Yole Development

Fan-out WLB (eWLB) - System Integration & 6G

GEFÖRDERT VOM

ECTC 2012 BMBF V3DIM3 77 GHz SiGe TRX with

77 GHz SiGe TRX with integrated antennas in eWLB

BMBF CoSiP, ECTC 2008

77 GHz SiGe mixer in eWLB

6 GHz CMOS VCO with high-Q fen-out inductors in eWLB

Patch-, Vivaldi-, Dipole-,

eWLB for > 300 GHz , and 6G

ECTC 2014 BMBF 3DIM3

Waveguide integration in eWLB and double sided eWLB

ECTC 2015: BMBF V3DIM

3D eWLB using EZL Novel concept for vertical interconnection

ECTC 2013: BMBF V3DIM

3D eWLB using TEV Low-loss transitions and

BMBF, 2002 – 2008, ECTC 2004, 2006

ECTC 2004, 2006 Beginning of eWLB

L2PC, BMBF SIPHA

0000

EPTC 2007 BMBF CoSiP

Low-loss transmission lines and high-Q inductors in eWLB

Growing importance of chiplets - This is a design topic

A **chiplet** is an integrated circuit block that has been specifically designed to work with other similar chip-lets to form larger more complex chips.

In such chips, a system is subdivided into functional circuit blocks, called "chip-lets", that are often made of reusable IP blocks.

https://eps.ieee.org/technology/heterogeneous-integration-roadmap/2024-edition.html

We need Knowledge Generation

Today's 7 Messages

- Growing Importance of Microelectronics (Megatrends)
- System Integration Everywhere (Assembly & Packaging, Heterogeneous Integration, Chiplets)
- Coherent View Chip-Package-Board/System (from nm to mm)
- Understanding of Customer Requirements (e.g. Reliability Constraints)
- New Opportunities of Computer and Data science/management
- Management of Complexity
- European and National Funding Opportunities for Micro/Nanoelectronics

We need a coherent view chip – package - board / system => no silo mentality / => new project opportunities over value chain

Chip (from nm to µm)

Process/materials
(from nm to μm)
clean rooms

Package (µm to mm)

Package Processes

Move to clean rooms

Board/Module/Subsystem (mm to cm)

Board/Module/Subsystem processes (mm to cm) *Move to somewhat clean rooms*

CoDesign

Chip (from nm to μ m)

Package (µm to mm)

Board/Module/Subsystem (mm to cm)

Reliability along the value chain

Chip (from nm to µm)

Package (µm to mm)

Board/Module/Subsystem (mm to cm)

Failure analysis

Chip (from nm to µm)

Package (µm to mm)

Board/Module/Subsystem (mm to cm)

Local optimization

Cooperative Co-Design

Advantages of Co-design

- Package/ Board influence on system level
- Optimized performance
- Optimized matching
- Optimized system cost
 - Reduced layers
 - Less over-engineering
- Better quality
- Shorter time to market

Package Design

PCB Design

Research along value chain (<u>www.irel40.eu</u>) Assembly and Packaging - a part of the Value Chain

iRel 4.0 - From wafer to applications

Assembly and Packaging Device Tracking (ECSEL JU iRel40)

- Artificial intelligence
- Machine learning
- Digital twin technologies

Package level (eWLB)

eWLB Wafermaps show stripes and random distributed fails

Wafer level (Chips)

Reconstructed Frontend map

Tune VCO Fails mainly come from devices at the edge of Frontend Wafer

Benefit of SDT: proof that there is no package problem, but a test issue → Yield, cost

Combined Know-How Required (material knowhow) Examples Chip-Package-Board

QFN example (we must understand Chip-Package-Board/System interaction) CTE of the board is most relevant

We need Knowledge Generation

Today's 7 Messages

- Growing Importance of Microelectronics (Megatrends)
- System Integration Everywhere (Assembly & Packaging, Heterogeneous Integration, Chiplets)
- Coherent View Chip-Package-Board/System (from nm to mm/cm)
- Understanding of Customer Requirements (e.g. Reliability Constraints)
- New Opportunities of Computer and Data science/management
- Management of Complexity
- European and National Funding Opportunities for Micro/Nanoelectronics

The two main packaging trends in microelectronics => see E2PACKMAN

Reliability Understand applications and customer requirements

- ☐ Different applications have different reliability requirements, e.g. drop test vs. TCoB
- ☐ Understand application requirements e.g. checking of board thickness
- We need to better understand physics to avoid one chip in different packages
- Different packages have different failure modus; we need to detect and investigate unknown failure modus
- It is not guaranteed that the same package fits to different applications (example: automotive)

30 years of operation on sea

Autonomous driving
Today: 8.000 hours on-time
Tomorrow: 121.500 hours on-time

Today's 7 Messages

- Growing Importance of Microelectronics (Megatrends)
- System Integration Everywhere (Assembly & Packaging, Heterogeneous Integration, Chiplets)
- Coherent View Chip-Package-Board/System (from nm to mm/cm)
- Understanding of Customer Requirements (e.g. Reliability Constraints)
- New Opportunities of Computer and Data Science/Management
- Management of Complexity
- European and National Funding Opportunities for Micro/Nanoelectronics

Assembly and Packaging Device Tracking (ECSEL JU iRel40)

- Artificial intelligence
- Machine learning
- Digital twin technologies

Package level (eWLB)

eWLB Wafermaps show stripes and random distributed fails

Wafer level (Chips)

Reconstructed Frontend map

Tune VCO Fails mainly come from devices at the edge of Frontend Wafer

Benefit of SDT: proof that there is no package problem, but a test issue → Yield, cost

Intelligent Reliability (iRel40) - A Knowledge Generator (www.iRel40.eu

iRel40 – a knowhow generator

iRel40 – build bridges and generate networks

A book was finalized recently

=> we identified 20 different chapters in the following areas

- Multi-scale & multi-physics simulations for physics-of-degradation,
- AI based control systems in advanced production,
- Smart sensing and big data analysis,
- Reliable Materials, Reliability Testing and Di-agnostics,
- Prognostic and health management / digital twin / condition monitoring and
- Design.

iRel40 builds bridges and understanding between domain:

=> During Social Event at Istanbul we prepared a laser show with the iRel40 image on the Bosporus bridge in Istanbul

=> generate personal networks

We need Knowledge Generation

Today's 7 Messages

- Growing Importance of Microelectronics (Megatrends)
- System Integration Everywhere (Assembly & Packaging, Heterogeneous Integration, Chiplets)
- Coherent View Chip-Package-Board/System (from nm to mm/cm)
- Understanding of Customer Requirements (e.g. Reliability Constraints)
- New Opportunities of Computer and Data science/management
- Management of Complexity
- European and National Funding Opportunities for Micro/Nanoelectronics

Set-up Know How and investigate standardization

Managing Complexity: Five Trends

Demanding system reliability & thermal management

- Expansion towards high reliability applications (automotive, aviation power distribution, medical)
- High reliability of system requires even higher reliability of sub components!

Diversity of technology

- Various analog & digital specific IC technol. (memories, RF, processors, power...)
- MEMS (sensors, actuators...)
- Passives

Complex material mix

 Wide range of material properties (Si, metal, ceramics, polymers, composites etc.)

Convergence of IC/ Package/ PCB technology

- Wafer level packaging
- Chip embedding in laminate
- TSV & TEV
- Further shrink of interconnects (fine pitch wire bond, thin film techn., TSV)
- Integration of passives in RDL/TSV

3D designs

- Stacked die approaches
- Multiple stacks, interposers...
- PoP (package on package)
- MEMS

Managing Complexity What do we need?

- > Understand your application requirements
- Understand your customer (price, performance, ...)
- > Understand trade-offs between technologies (TSV, TEV, ...)
- > Understand and develop the appropriate toolbox elements
- Understand physics of processes, failures, performance, ...
- Understand your supply chain
- **)** ...

→ We need T-shaped persons

Managing Complexity What do we need?

- Understand your application requirements
- Understand your customer (price, performance, ...)
- > Understand trade-offs between technologies (TSV, TEV, ...)
- Understand and develop the appropriate toolbox elements
- Understand physics of processes, failures, performance, ...
- Understand your supply chain
- **)** ...

→ We need T-shaped persons

We need Knowledge Generation

Today's 7 Messages

- Growing Importance of Microelectronics (Megatrends)
- System Integration Everywhere (Assembly & Packaging, Heterogeneous Integration, Chiplets)
- Coherent View Chip-Package-Board/System (from nm to mm/cm)
- Understanding of Customer Requirements (e.g. Reliability Constraints)
- New Opportunities of Computer and Data science/management
- Management of Complexity
- European and National Funding Opportunities for Micro/Nanoelectronics

Today's 7 messages (Digital, Chips and 6G)

- Growing importance of microelectronics (more applications, Megatrends)
- System Integration Everywhere (Assembly & Packaging (A&P) for System Integration, Chiplets))
- Coherent View is required => Chip (from nm to um) Package (um to mm) Board (mm) (CoDesign)
- Understanding of customer requirements is a key (reliability)
- New opportunities of data science/management (in R&D, in production/device tracking)
- We need management of complexity (tackling of cost targets is a major challenge)
- Europe together with national bodies offer outstanding funding opportunities for Micro/Nanoelectronics

Today's 7 messages (Digital, Chips and 6G)

- Growing importance of microelectronics (more applications, Megatrends)
- System Integration Everywhere (Assembly & Packaging (A&P) for System Integration, Chiplets))
- Coherent View is required => Chip (from nm to um) Package (um to mm) Board (mm) (CoDesign)
- Understanding of customer requirements is a key (reliability)
- New opportunities of data science/management (in R&D, in production/device tracking)
- We need management of complexity (tackling of cost targets is a major challenge)
- Europe together with national bodies offer outstanding funding opportunities for Micro/Nanoelectronics

We need Knowledge Generation over Domains, no Silo Mentality

Thank You Questions

