ML @ Timeplus

How to grow under AGI waves with Timeplus

Timeplus

July 2025

Three main use cases

Driver of Data engine for
real-time ML feature-platform

Builder of - ML App
Providing real-time context and long
term storage to LLM

Safeguard of ML infrastructure
Monitor the usage and security of
LLM

Enable Real-time ML Pipeline and Access ML Feature Platform

What is real-time ML?

Real-time means

- Real-time prediction low latency inference
- Online Learning continuously model updating

Use Cases:

- Fraud detection
- Recommendations
- Real-time pricing

Real-time ML Basic Flow

ML Basic Flow - Tools

What are features?

"features" refer to the individual, measurable properties or characteristics of data that are used as input for a machine learning model.

Batch

- Daily transaction volumn
- Average Rate for 90 days
- 5 Hours view count

Near Real-time

- Avg transaction value over last 30 mins
- · Real-time
 - Block trade If transaction value > \$1000

Histroical

Real-time

How to create features?

- Transformation
 - Scale (log, min/max), Binning, Ranking
- Aggregation
 - Min/Max, Average, Mean, STD, Sum, Count
- Time series
 - Moving Average, Lags and Shifts
- Image/Text
 - Embeddings, frequency
- Encoding
 - one-hot, label

Most of these methods can be easily applied to **SQL**

Technology choice of feature platforms

	Feature store	Feature API (transformation - feature)	Stream comput.
LinkedIn	Venice, Fedex	Python - Python	Samza, Flink
Airbnb	HBase-based	Python - Python	Spark Streaming
Instacart	Scylla, Redis	? - YAML	Flink
DoorDash	Redis, CockroachDB	SQL - YAML	Flink
Snap	KeyDB (multithreaded fork of Redis)	SQL - YAML	Spark Streaming
Stripe	In-house, Redis	Scala - ?	Spark Streaming
Meta (FB)		Scala-like - ?	XStream, Velox
Spotify	Bigtable	Flink SQL - ?	Flink
Uber	Cassandra, DynamoDB	DSL - ?	Flink
Lyft	Redis, DynamoDB	SQL - YAML	Flink
Pinterest	In-house, memcached	R	Flink
Criteo	Couchbase	SQL - JSON	Flink
Binance		Flink SQL - Python	Flink
Twitter	Manhattan, CockroachDB	Scala	Heron
Gojek	DynamoDB	SQL - JSON	Flink
Etsy	Bigtable	Scala - ?	Dataflow

Most of the feature platforms today leverage KV as feature storage and streaming processor as feature computation engines

Scala, SQL, Python are the most popular transformation tools used for features

https://huvenchip.com/2023/01/08/self-serve-feature-platforms.htm

Real-time ML challeges

- Feature freshness real-time/low latency feature
- Feature consistency training/inference
 - Backfill historical data regenerating features / replay
 - Point-in-time correctness time travel
- Manage complexity of streaming system hard to manage streaming system like Flink, hard to learn and more like to use Python

Feature Backfill

Backfilling is the process of recomputing datasets from raw, historical data.

- data was incomplete or missing
- experimental with new features

past		future
before backfill	missing/stale	
after backfill		

Point-in-time Correctness

"Point-in-time correctness" refers to the principle that the features used for machine learning models should accurately represent the **state of the world at the point in time** for which a prediction or analysis is being made.

Prevent data leakage

https://docs.chalk.ai/docs/temporal-consistency

Why T+ is a good choice to build feature platform

Feature freshness

- Low latency streaming processing
- Support those time range related, statful features processing with TVF
- Feature consistency
 - Unified streaming/historical processing
 - Time travel/ASOF Join for PITC
- Complexity
 - Solving the online and offline requirements for a unifying data layer, simplified overall ML application deployment
 - Provide most of functionalities for the feature generation in SQL
- Other
 - Enrichment of real-time features with historical data
 - Providing view or mv based version control

Timeplus as Real-time ML Feature Platform

Fraud Detection Show Case - Feature Pipeline

Fraud Detection Show Case - Feature Pipeline

Point-in-time Correctness - ASOF Join

Fraud Detection Show Case - Model Performance Monitor

Related Startups/Project

- Feast
 Open source feature store
- Tecton

Build, automate, and centralize production-ready batch, streaming, and real-time data pipelines to power any ML application with fresh ML features on demand

- Hopworks
 - The collaborative ML platform for batch and real-time data
- Fennel Al Real-time feature platform. beautifully built
- Claypot
 Unify data for real-time AI
- Chalk Al

Tired of Spark? So are we. **Just-in-time** data + Hot-reload + Rust compute

Missing Parts

- 1. Time travel for non-time related features In case a slow changing feature is managed as a versioned kv, we may need provide query that can find the specific version of time to build the feature at that time.
- 2. Deep python Integration Python are the most popular language for Data scientists/engineers, some deep integration such as Pandas will be a good UX for them

LLM Real-time Context Provider LLM App builder

Large language models are a powerful new primitive for building software. But since they are so new—and behave so differently from normal computing resources—it's not always obvious how to use them.

A16Z

Emerging LLM App Architecture

Four Layers of LLM Applications

Theory Ventures THIRD-PARTY APPLICATION Blog Interface Layer USER INTERFACES INTERFACES Deployment SECURITY & OBSERVABILITY / PRODUCT ORCHESTRATION & Layer LOGGING GOVERNANCE ANALYTICS LLMOPS otime*plus* FINE-TUNING & MODEL ROUTING / SERVING / Model Layer CORE MODEL ABSTRACTION COMPUTE OPTIMIZATION Data Layer **ELT & FEATURIZATION** SEARCH / RETRIEVAL STORAGE otime*plus*

LLM Agent

New paradigms of Application building

- LLM compiler/intepreter
- prompt code
- agent coding framework
- services libs/api
- vector db storage/memory
- COT/refections design patterns

RAG - better context based on historical/real-time data

In Context Learning (ICL) App Flows

Building LLM Application is more of a data engineering problem today!

Timeplus Al Flow

Real Time LLM Application

Building LLM Application is more of a data engineering problem today!

Challenges

- Data freshness
 LLM were trained on static datasets which are now outdated
- 2. Data source Distributed, heterogeneous data sources
- Short memory
 Context length is limited (new models are supporting bigger context)
- 4. High Cost long context cost more
- Latency long output need more inference time (sequential inference, 20 token/s)
- 6. Data Risk
 Quality/Privacy/IP/Bias
- 7. Hallucination

Challenges - Solutions

- Data freshness Real-time context
 LLM were trained on static datasets which are now outdated
- 2. Data source Real-time ETL pipline
 Distributed, heterogeneous data sources
- Short memory Vector DB as long term memory
 Context length is limited (new models are supporting bigger context)
- Cost Vector DB as cache long context cost more
- Latency Vector DB as cache long output need more inference time (sequential inference, 20 token/s)

Real-time context data provider for LLM

streaming ETL pipline to provide real-time context

Long term storage/cache for LLM

Lower the cost and latency by provide cached result leveraging vector search

LLM usage and security monitoring LLMOps

LLM application is complex

What you think

What actually is

LLM Challenges

- Data freshness
 LLM were trained on static datasets which are now outdated
- 2. Data source
 Distributed, heterogeneous data sources
- 3. Short memory
 Context length is limited (new models are supporting bigger context)
- 4. High Cost long context cost more
- 5. Latency long output need more inference time (sequential inference, 20 token/s)
- 6. Data Risk
 Quality/Privacy/IP/Bias
- 7. Hallucination

Why Observability is important to LLM applications

Transparency

LLMs are complex black box systems. Observability opens the black box to build trust by understanding how they work.

Interpretability

Observing internal representations helps identify if and why certain outputs are generated. This is key for accountability

Debugging

Monitoring metrics and artifacts during training and inference can help catch issues early. This is critical for reliability.

Auditability

Recording activities and data flows provides visibility into the model's operations. This enables audits for ethics and compliance.

Performance

Tracking metrics like loss, accuracy, etc. gives insight into how well the model is learning and performing. This aids optimization.

Safety

Detecting signs of harmful intent or behavior early is essential for safe deployment of capable LLMs.

Security

Monitoring for anomalies and malicious activities improves security against misuse or attacks.

LLM Challenges - Solutions

- Data freshness
 LLM were trained on static datasets which are now outdated
- 2. Data source
 Distributed, heterogeneous data sources
- Short memory
 Context length is limited (new models are supporting bigger context)
- High Cost Monitor usage and cost by tracking API calls long context cost more
- 5. Latency Monitor performance by tracking API calls long output need more inference time (sequential inference, 20 token/s)
- 6. Data Risk Monitor input, output by tracking API calls Quality/Privacy/IP/Bias
- 7. Hallucination Monitor input, output by tracking API calls

LLM API Mointoring

otime plus

Real-time Streaming Analytics Made Powerful and Accessible!

Thank you!