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LIST OF ABBREVIATIONS

Abbreviation

Al
ALM
ANN
CAN
CBM
CI/CD
DDS
DoE
DT
DTC
EoL
EPDS
EV
FMEDA
FOC
GDPR
HIL
IoT
KPI
LSTM
MIL
ML
MLOps
MQTT
NRMSE
NTF
OPC UA
OTA
PMSM
PLM
QoS
ROS2
RUL
SDEV / SDV
SIL
SoH
SOME/IP

Meaning

Artificial Intelligence

Application Lifecycle Management

Artificial Neural Network

Controller Area Network

Condition-Based Maintenance

Continuous Integration / Continuous Deployment
Data Distribution Service

Design of Experiments

Digital Twin

Direct Torque Control

End-of-Line

Electric Propulsion Drive System

Electric Vehicle

Failure Modes, Effects, and Diagnostic Analysis
Field-Oriented Control

General Data Protection Regulation
Hardware-in-the-Loop

Internet of Things

Key Performance Indicator

Long Short-Term Memory (neural network)
Model-in-the-Loop

Machine Learning

Machine Learning Operations

Message Queuing Telemetry Transport
Normalized Root Mean Square Error

No Trouble Found

Open Platform Communications — Unified Architecture
Over-the-Air

Permanent Magnet Synchronous Motor
Product Lifecycle Management

Quality of Service

Robot Operating System version 2

Remaining Useful Life

Software-Defined Electric Vehicle / Software-Defined Vehicle
Software-in-the-Loop

State of Health

Scalable Service-Oriented Middleware over IP



KEY INSIGHTS AND OBJECTIVES
Why now?

The integration of a Digital Twin (DT) for the Electric Propulsion Drive System (EPDS) is
particularly relevant at this stage of Software-Defined Electric Vehicles (SDEV)
development. Propulsion represents the central value-creation mechanism in an SDEV,
linking software functionality, performance, and sustainability targets. A well-implemented
DT enables early validation of control strategies and power electronics while supporting
system-level design optimization, fault diagnosis, predictive maintenance, and lifecycle
management.

What to build?

The recommended architecture is a tiered, hybrid EPDS DT that combines physics-based
models and data-driven approaches. This twin spans the entire propulsion system, from
inverter, electrical machine, and transmission to high- and low-voltage interfaces, forming
a comprehensive virtual representation of the propulsion system. Physics-based layers
capture electromechanical, thermal, and energy conversion dynamics, while data-driven
modules enhance adaptivity and capture nonlinear system behavior from operational data.
All elements are linked through a digital thread that connects the lifecycle stages from
initial requirements, design models, and validation tests to manufacturing configurations
and in-service fleet data. This structure ensures traceability, model reuse, and cross-
domain feedback, enabling continuous improvement and rapid innovation cycles.

How to run?

The implementation strategy should include three twin operational instances, each serving
a distinct lifecycle phase. An offline design twin supports system architecture optimization,
control algorithm development, and HIL/SIL validation. A production twin connects to test
benches and End-of-Line (EoL) systems, validating components and assemblies during
manufacturing by comparing their signatures with expected values. Finally, a runtime twin
operates within the vehicle and cloud infrastructure, using real-time telemetry for
performance monitoring, fault detection, and predictive analytics. Continuous calibration
loops between these twins maintain fidelity and enable adaptive updates as the physical
system evolves throughout its lifecycle.

Expected impact?

Such framework integration reduces reliance on physical prototypes, accelerates
development cycles, and facilitates continuous improvement through real-time data
feedback and adaptive software updates, ultimately contributing to more resilient and
energy-efficient mobility solutions. In manufacturing, it enables right-first-time assembly,
automatic fault localization, and process optimization by comparing virtual models with
actual test results in real time. During vehicle operation, the DT supports predictive
maintenance, real-time diagnostics, and performance tuning while providing the
framework for Over-the-Air (OTA) feature upgrades, which are fundamental to the SDEV
business model.



REFERENCE ARCHITECTURE (TWIN-OF-TWINS)

The DT architecture for the EPDS within SDEV provides a comprehensive framework for
modeling, monitoring, and optimizing system performance across the vehicle lifecycle.
This architecture is structured in multiple interconnected layers, each performing a distinct
function while contributing to the overall digital thread. The layers - Physical, Virtual
Models, Data and Services, Applications, and Communication create a cohesive ecosystem
that links the real and virtual domains. Figure 1 visually summarizes the four layers of the
DT architecture and their main components. At its core, this architecture establishes how
data flows between hardware and software environments, ensuring real-time
synchronization, accurate representation of system behavior, and continuous feedback for
improvement. The Physical layer captures real-world measurements and testing data; the
Virtual Models layer builds digital representations of the propulsion system; the Data and
Services layer manages the information pipeline and infrastructure; the Application layer
enables the use of these models for design, validation, manufacturing, and operational
decision-making; and the Communication layer provide real-time data exschange and
analytical services by implementing commonly used protocols. Together, they form a
robust foundation for achieving high reliability, efficiency, and adaptability in SDEV
propulsion systems.

mmm . Physicalenity ... |
Lab rigs,
Eol testers,
In-vehicle telemetry.

2. Virtual entity (multifidelity) ... |
Control/behavioral models,

Circuit models,

Data-driven models.

3. Co0mmunication

Real-time data exchange,
Analytical services using automotive and industrial protocols.

sy 4. Data & services

Time-series ingestion,

Labeling,

Synchronization,

Machine Learning Operations (MLOps)
Model management,

Twin registry.

s . Applications

Design verification,
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Figure 1 Digital Twin (DT) Architecture Layers for the Electric Propulsion Drive System
(EPDS).



The physical layer represents the tangible systems, test environments, and vehicles that
provide real-world data for the DT. This includes laboratory test rigs composed of inverters,
Permanent Magnet Synchronous Machines (PMSM), dynamometers, and battery
emulators. These setups allow controlled experimentation across a wide range of torque-
speed operating points. EoL testing stations in manufacturing use the same principles to
validate every propulsion assembly against its expected behavior. In addition, in-vehicle
telemetry streams real-time data during normal operation and testing campaigns.
Collectively, these physical assets form the data foundation that drives model calibration,
fault detection, and performance benchmarking in the DT ecosystem.

The virtual model layer provides a digital representation of the propulsion system with
multiple levels of fidelity, each serving a specific engineering purpose. The models can be
categorized into three main types:

e Control/behavioral models. These include simplified d-q domain representations of
the PMSM and averaged inverter models. They are optimized for high-speed
simulation and for the development of control algorithms, including testing Field-
Oriented Control (FOC), Direct Torque Control (DTC), and sensorless estimation
strategies. Driveline dynamics are often included at this level to study vehicle
responses.

o Circuit models. At a more detailed level, circuit models capture electrical (and
thermal) interactions within the inverter and motor. They predict current
harmonics, switching losses, and temperature profiles at the semiconductor
junctions and windings. These models are essential for design validation and
durability analysis.

e Data-driven models. To complement the physics-based approaches, Artificial
Neural Networks (ANN) and Long Short-Term Memory (LSTM) models are
introduced. These models learn relationships between inputs and latent states,
such as torque, speed, component temperatures, and State of Health (SoH). They
provide accurate predictions even when system nonlinearity or parameter
uncertainty is significant.

The combination of these three model types forms a hybrid architecture that balances

interpretability, computational efficiency, and accuracy.

The data and services layer is responsible for the collection, storage, processing, and
management of all information used by the DT. It handles time-series data ingestion from
physical rigs, manufacturing systems, and vehicles. Each dataset is labeled, synchronized,
and versioned to maintain traceability. Machine Learning Operations (MLOps) processes
support automated training, validation, and deployment of data-driven models. A
centralized twin registry ensures each digital instance is uniquely identifiable, with
configuration metadata linking it to its physical counterpart. This layer serves as the
backbone of the digital thread, connecting engineering, manufacturing, and operational
data throughout the product lifecycle.

The application layer defines how the DT adds tangible value to engineering, production,
and service processes. It supports several use cases, including:

¢ Design verification and optimization. Engineers can perform what-if analyses,
evaluate new control algorithms, and optimize inverter or motor parameters
without physical prototypes.



e Controller evaluation. The twin enables testing of FOC, DTC, and sensorless control
methods under variable conditions before hardware deployment.

¢ Manufacturing analytics. At the EoL stage, the twin compares real test data against
expected signatures to identify deviations and predict potential faults.

e Fault detection and prognostics. Continuous monitoring and comparison between
predicted and measured states allow early identification of faults such as stator
inter-turn short circuits and inverter phase imbalance.

e OTA optimization. In operational vehicles, the twin supports OTA calibration
updates, adaptive control tuning, and predictive maintenance strategies.
This top layer transforms data and models into actionable insights, closing the loop from
design to operation and back, ensuring the propulsion system remains optimized
throughout its life cycle.

The communication layer serves as the interface that enables continuous, reliable data
flow between the physical components, virtual models, and data infrastructure of the DT.
It establishes the connectivity framework that synchronizes measurements, commands,
and model outputs across distributed environments. This layer incorporates multiple
communication technologies tailored to the system’s requirements for bandwidth, latency,
and security. Within test benches and production systems, real-time communication
protocols such as CAN, Ethernet, and OPC UA ensure deterministic data exchange between
sensors, controllers, and local servers. In manufacturing and plant networks, MQTT and
REST APIs enable efficient data transfer to centralized data lakes and cloud-based
analytics. For in-vehicle and cloud-edge synchronization, Data Distribution Service (DDS)
or SOME/IP provides scalable, event-driven communication that is well-suited to the
dynamic nature of SDEV. Security measures, encryption, authentication, and digital
signatures, are embedded in the layer to comply with ISO 21434 cybersecurity standards.
By managing data routing, quality of service (QoS), and timing synchronization, the
communication layer ensures that DT operations remain accurate, up-to-date, and secure
throughout the design, manufacturing, and runtime phases.



TWIN INSTANCES

The DT ecosystem for the EPDS comprises several instances, each tailored to a specific
phase of the vehicle lifecycle. These instances, Development DT, Production DT, and
Maintenance/Usage DT, as shown in Figure 2, are interconnected through a continuous
digital thread that ensures information consistency and feedback across domains. Each DT
instance plays a unique yet complementary role. Development DT enables virtual
prototyping and system optimization, Production DT ensures product quality and process
efficiency, and the Maintenance/Usage DT delivers in-service monitoring and continuous
improvement. Together, they establish a fully integrated, lifecycle-spanning framework for
data-driven decision-making in SDEV.

Development DT

- Production DT
offline/HIL/SIL/MIL for

architecture trade-offs and
control strategy evaluation.

— ; Maintenance/Usage DT
binding test plans, fixtures,

and golden-unit signatures - -
to product variants. executing on the vehicle

edge
(estimators/observers) and
in cloud (fleet analytics).

Figure 2 Digital Twin (DT) Instances Across the Vehicle Lifecycle.

The Development DT operates primarily in offline environments and supports Model-in-
the-Loop (MIL), Software-in-the-Loop (SIL), and Hardware-in-the-Loop (HIL)
configurations. It is used during the concept and development stages to explore
architectural trade-offs, evaluate control strategies, and optimize powertrain parameters
before physical prototypes are available. Through simulation, engineers can validate the
performance of inverter and motor models under various operating conditions, assess the
robustness of control algorithms such as FOC and DTC, and predict system behavior during
transient events. The Design DT provides a low-risk environment for innovation and
accelerates calibration by integrating real test data progressively as the system matures.

The Production DT bridges the virtual and physical domains in the production
environment. It binds detailed test plans, calibration parameters, and equipment
configurations, such as EoL testers, fixtures, and instrumentation, to individual product
variants. Each production unit is validated against a digital reference model, often called
the “golden unit,” that represents ideal electrical and thermal signatures. By comparing
live EoL data with the twin's predicted values, manufacturing engineers can detect
deviations, optimize test duration, and identify potential faults early in the process. This
instance also supports statistical process control and continuous improvement by feeding
production data back into design and process optimization loops.

The Maintenance/Usage DT functions once the vehicle enters service, executing across
both the edge (in-vehicle systems) and cloud environments. At the vehicle edge,



lightweight estimators and observers use real-time sensor data to estimate unmeasured
variables, such as torque, speed, temperature, and component degradation. In parallel,
the cloud-based twin aggregates fleet data to perform advanced analytics, enabling
predictive maintenance, fault diagnosis, and performance benchmarking across vehicle
populations. The Maintenance/Usage DT is continuously updated via field data feedback
and supports OTA updates, enabling adaptive control tuning and model recalibration
without disrupting vehicle operation. This capability transforms the propulsion system into
an intelligent, self-optimizing entity throughout its operational life.
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INTEGRATION INTO SDEV DESIGN

Integrating the DT of the EPDS into the SDEV design phase enables a seamless transition
from concept to implementation. This stage focuses on building accurate models,
developing and validating controllers, planning experiments, and ensuring data traceability
and model fidelity. DT acts as both a predictive simulation tool and a validation reference,
ensuring that design decisions are data-driven, verifiable, and reproducible across the
engineering lifecycle. Figure 3 illustrates the continuous and cyclic workflow used to
integrate the DT of the EPDS into the SDEV design process.

-

Model
strategy

Validation &
calibration

Test planning
& data development

Figure 3 Iterative Digital Twin (DT) Development Process in Electric Propulsion Drive
System (EPDS) Design. (image generated by AI)

A well-defined modeling strategy is fundamental to the success of the DT framework.
The recommended approach is hybrid modeling, combining physics-based and data-driven
methods, to capture both fundamental dynamics and system-specific nonlinearities.
Baseline physics models, such as PMSM representations in the d—q reference frame and
averaged inverter models. These models are accurate enough for most control and
performance studies while remaining computationally efficient. To enhance realism and
address system behaviors not fully described by analytical equations, learned surrogate
models based on ANNs or LSTM networks are incorporated. These data-driven components
handle complex nonlinear relationships, parameter uncertainties, and proprietary control
features that component suppliers may not disclose. To ensure scalability and efficiency,
model fidelity must be adapted to each use case. For early concept evaluations, low-fidelity
models (with millisecond-level time steps) enable fast trade-off studies and architecture
optimization. For control design, high-fidelity models (microsecond-level) capture pulse-
width modulation (PWM) switching and transient behavior. Thermal models, operating on
slower timescales (seconds to minutes), support thermal management and derating
assessments. The drivability and system-level models run at the vehicle level to evaluate
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user experience, energy efficiency, and system integration effects. This allows engineers
to balance computational load and accuracy according to the needs.

DT serves as a virtual testbed for controller development, enabling safe, cost-effective
evaluation of control strategies across a wide range of operating conditions. It can simulate
both FOC and DTC algorithms, enabling direct comparison in terms of torque ripple,
efficiency, and dynamic response. Flux-weakening regions, torque-speed transitions, and
system responses to voltage sags or thermal drift can all be explored in simulation long
before hardware is available. Additionally, the DT facilitates the validation of sensorless
observers, assessing their robustness to noise, load variations, and parameter drift. From
this foundation, engineers can derive virtual sensors—software-based estimators for
parameters such as torque, speed, and temperature—that complement or replace physical
sensors. These virtual sensors enhance redundancy and resilience, reducing sensor costs
and improving system fault tolerance. Because these estimators can be updated and
refined using field-collected data, they also form part of the OTA deliverable feature set,
ensuring continuous improvement and adaptability of control functions throughout the
vehicle’s lifespan.

Effective test planning and structured data management are essential to ensure that
model development, calibration, and validation processes remain consistent and traceable.
The DT supports this by defining comprehensive Design-of-Experiments (DoE) matrices
that specify operating points and test conditions across the torque-speed map. These
experiments are executed on dynamometer setups or battery emulators, covering
operating conditions from no-load to approximately 80% of full load. During each test, key
variables, including DC bus voltage and current, three-phase currents and voltages,
resolver signals, and thermal node temperatures, are recorded. The data must be time-
aligned and annotated with configuration metadata, including model version, software
revision, and environmental parameters. To ensure traceability, every artifact, from
requirements through test cases, models, and validation results, should be version-
controlled within Product Lifecycle Management (PLM) or Application Lifecycle
Management (ALM) systems. Each dataset and model is assigned a unique identifier,
forming a digital thread that links simulation, testing, and validation results across teams
and domains.

The validation and calibration phase closes the loop between simulation and reality.
DT’s predictions are compared with bench-test results using quantitative metrics such as
torque, speed, efficiency, and temperature error bands. Validation ensures that each
model behaves within acceptable tolerances, confirming both the accuracy and reliability
of the simulation environment. Once validated, the models undergo continuous calibration
as new bench and in-vehicle data become available. This iterative process keeps the twin
synchronized with its physical counterpart, reflecting component aging, software updates,
and evolving operating conditions. Model release gates should be governed by confidence
metrics, such as the Normalized Root Mean Square Error (NRMSE) between predicted and
measured torque, speed, and junction temperature. Only models that meet or exceed the
defined thresholds are approved for deployment within design or control workflows. This
feedback-driven calibration process establishes the DT as a living, evolving representation
of the propulsion system, one that continuously improves with every design iteration and
real-world data update.
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INTEGRATION INTO MANUFACTURING

Integrating the DT of the EPDS into the manufacturing environment ensures that every
production unit meets its design intent and quality requirements. The DT becomes an
operational tool for validating system performance, optimizing production processes, and
maintaining traceability from design to assembly. This integration is structured around
three key domains: production twin, process optimization, and data operations.

Production DT serves as the virtual counterpart of the physical testing environment in
manufacturing, particularly during the EoL verification stage. For each propulsion system
variant, a dedicated twin configuration is created, containing reference models and
expected performance characteristics. These include reference waveforms, torque-speed
signatures, inverter self-test sequences, and thermal soak profiles, all derived from
validated design and prototype data. During EoL testing, the measured signals from
sensors, such as current, voltage, torque, and temperature, are continuously compared
against predictions generated by the twin. This comparison produces residuals, which
represent the difference between actual and expected values. Real-time anomaly scoring
algorithms evaluate these residuals to identify deviations from nominal behavior. By
analyzing these deviations, the Production DT can automatically flag potential defects,
such as rotor or stator imbalances, inverter phase asymmetries, and encoder or resolver
misalignments. This capability allows rapid root-cause identification and classification of
faults, reducing the number of false fails and ensuring that only genuine issues trigger
corrective actions. Production DT therefore acts as both a quality assurance system and a
diagnostic assistant at the manufacturing stage.

Beyond product validation, the DT also contributes to process efficiency. Through
continuous learning from production data, it can identify patterns and optimize test
execution strategies. One key application is reducing test cycle time through adaptive test
sequencing. Instead of running all tests sequentially, the DT can estimate an early pass/fail
probability based on partial data and dynamically skip redundant checks when a unit
clearly meets specifications. This approach significantly improves throughput without
compromising test integrity. The DT also facilitates automated rework instructions. When
anomalies are detected, the twin can trace the source of deviation, whether it originates
from the product, test fixture, or cabling, and automatically generate step-by-step
corrective actions. This not only accelerates troubleshooting but also ensures consistency
in maintenance procedures across production lines. Moreover, the DT monitors station
health by observing long-term drifts in equipment behavior. For example, changes in load
motor drive performance, sensor calibration, or power analyzer accuracy can be detected
through persistent deviations in twin residuals. By introducing canary parts, known
reference units periodically tested on each station, the system can differentiate between
product faults and equipment degradation, maintaining production reliability and test
repeatability.

Efficient data management is critical for sustaining the integrity of the manufacturing DT.
All measurement signals and test outcomes must adhere to a standardized data schema
to ensure compatibility and traceability across systems. Each record includes absolute
timestamps, per-cycle counters, and metadata describing the product variant,
configuration, and testing conditions.
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Raw signals are stored alongside engineered features (such as harmonic content, RMS
values, and temperature deltas) and labels derived from test verdicts and anomaly
classifications. This structured data foundation enables downstream analytics, fleet
correlation, and the training of predictive models for future designs. Moreover, each
dataset is linked to its corresponding serial number and DT instance, ensuring complete
traceability across the digital thread, from design simulations and prototype testing to
production and in-service monitoring. This closed-loop data structure supports continuous
improvement, allowing insights from manufacturing and field performance to refine design
models, test procedures, and operational strategies.

By deploying the Production DT within manufacturing, the organization gains a powerful
mechanism for quality assurance, process efficiency, and data-driven feedback. The
combination of real-time anomaly detection, adaptive testing, and standardized data
management establishes a seamless connection between the physical factory floor and the
virtual engineering environment. As a result, manufacturing operations become more
predictive, efficient, and resilient, core characteristics of the SDEV production paradigm.
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INTEGRATION INTO MAINTENANCE & OPERATIONS

The integration of the DT into the maintenance and operational phases of the SDEV
lifecycle transforms vehicle support from reactive servicing to a predictive and data-driven
process. The DT operates in real time, processing both on-board sensor data and fleet-
level analytics to monitor component health, detect anomalies, and guide service actions.
This integration is realized through three key components: the edge/runtime twin,
prognostics, and after-sales workflows.

The edge or runtime DT is the in-service counterpart of the vehicle’s propulsion system.
It functions directly on the vehicle’s embedded hardware or at the edge computing layer,
providing real-time monitoring, fault detection, and performance estimation. This twin
deploys lightweight observer models, often implemented as ANNs or LSTM estimators,
which run efficiently on vehicle control units or connected edge devices. These observers
act as virtual sensors, estimating parameters that are difficult or costly to measure
directly, such as torque, rotor speed, and component temperatures. By continuously
comparing model predictions to real sensor readings, the twin identifies discrepancies,
known as residuals, that signal potential degradation or faults. Runtime DT also detects
specific fault modes, including stator inter-turn short circuits, phase current imbalances,
and resolver or encoder misalignments, which might not be easily visible in traditional
diagnostic systems. When anomalies are identified, the system evaluates their severity
and trend over time, enabling condition-based maintenance (CBM) rather than scheduled
or reactive servicing. If residuals exceed defined thresholds or follow concerning trends,
DT automatically triggers OTA diagnostics or sends service bulletins to fleet management
systems. This allows maintenance actions to be planned before failures occur, minimizing
downtime and optimizing service scheduling across the fleet. Over time, continuous
synchronization between edge devices and cloud twins ensures that models remain
accurate and adaptive to changing vehicle behavior, component aging, and environmental
conditions.

The prognostics layer of the DT extends beyond fault detection to predict the Remaining
Useful Life (RUL) of critical components within the propulsion system. Using fleet-wide
operational data collected from runtime twins, data-driven RUL models are trained to
forecast degradation patterns and failure probabilities. For example, power semiconductor
components in the inverter experience stress from repetitive junction-temperature cycling,
which can lead to wear-out over time. The DT analyzes temperature histories, switching
patterns, and thermal gradients to estimate semiconductor lifespan. Similarly, bearings
and insulation systems within electric machines are monitored using vibration,
temperature, and current harmonics, which serve as indirect indicators of health. By
combining physics-based degradation models with data-driven predictions, the DT can
provide highly accurate RUL estimates. These predictions are integrated into maintenance
planning systems, enabling proactive scheduling of service windows. This ensures that
parts are replaced or refurbished before failures occur, improving vehicle uptime, reducing
warranty costs, and enhancing customer trust. Furthermore, aggregated RUL data across
the fleet allows manufacturers to identify systemic reliability issues, improve component
design, and refine control strategies to extend component life in future vehicle
generations.
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The DT also reshapes after-sales and service operations, empowering technicians and
service centers with advanced diagnostic tools. One of the most practical implementations
is the Technician DT, a localized, portable instance of DT that can be used in workshops
or field environments. Technician DT provide guided diagnostic scripts that replay recorded
DT scenarios, simulating how the propulsion system behaves during fault conditions. This
helps technicians reproduce issues accurately and test hypotheses before performing
physical repairs. Each diagnostic session can automatically generate a case report,
summarizing key residuals, fault classifications, and probable root causes. This level of
automation streamlines troubleshooting, minimizes human error, and ensures consistent
maintenance decisions across service locations. It also creates a feedback channel from
service operations back to engineering, where real-world fault data and diagnostic
outcomes are used to refine models, update prognostic thresholds, and improve future
vehicle releases. Ultimately, integrating DT technology into after-sales workflows turns
every service event into a learning opportunity, thereby strengthening the overall accuracy
and resilience of the DT ecosystem.

By combining the abovementioned workflows, DT enables a closed-loop maintenance
system that continuously evolves with vehicle use. Real-time sensing, predictive analytics,
and automated diagnostics replace traditional static maintenance schedules with
intelligent, adaptive servicing strategies. The result is a propulsion system that remains
efficient, reliable, and continuously optimized throughout the operational life of the SDEV.
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METHODS & TOOLING RECOMMENDATIONS

Table 1 summarizes the recommended software tools, frameworks, and standards
required to support the lifecycle deployment of the DT for the EPDS based on prior project
PSG453 and will be implemented in PRG2532. It highlights the integration of modeling,
data-driven analytics, middleware, and governance mechanisms to ensure the DT remains
accurate, secure, and maintainable from design through runtime.

Table 1 Methods and Tooling Recommendations for Digital Twin (DT) Implementation into
Electrical Propulsion Drive System (EPDS) of Electric Vehicle (EV)

Category Recommended Tools and Purpose and Application in the

Frameworks EPDS DT

Modeling MATLAB/Simulink for control Enables creation of multi-fidelity
algorithm development and d-qg models for control, electrical, and
domain machine modeling; mechanical domains. These tools

form the foundation for model-based
design, control validation, and
system-level integration of the EPDS.

Data-Driven Python environment with ANN and Facilitates the development of

Methods LSTM frameworks; supported by surrogate models and estimators for
MLOps pipelines with model registry torque, speed, temperature, and
and continuous integration (CI). degradation prediction. MLOps

ensures consistent version control,
retraining, and deployment of data-
driven models across edge and cloud
environments.

Platforms Cloud/edge-based DT platforms Provides the computational and data
capable of managing twin graphs, infrastructure to host, synchronize,
time-series data, and OTA updates. and scale DT instances across design,
Simulation-based tools such as Ansys manufacturing, and runtime stages.
Twin Builder are recommended for
physical and hybrid twin integration.

Middleware R0OS2, UDP, and CAN for test rig Ensures reliable, real-time
streaming; OPC UA and MQTT for communication between the physical
plant-level communication; in- system, virtual models, and cloud
vehicle protocols such as SOME/IP or services. These middleware solutions
DDS for runtime data exchange. standardize data flow, enabling

synchronization across
heterogeneous systems.

Governance ISO 26262 for functional safety (ASIL Establishes compliance, safety, and

and assignment for estimator functions), traceability across the DT lifecycle,

Standards ISO 21434 for cybersecurity, data ensuring that models, data, and
privacy policy adherence, and
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Category Recommended Tools and Purpose and Application in the

Frameworks EPDS DT
calibration/versioning management software updates meet industry and
rules. regulatory standards.
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KPIS AND ACCEPTANCE CRITERIA

Establishing clear, measurable Key Performance Indicators (KPIs) and acceptance criteria
is essential for evaluating the effectiveness of DT integration throughout the SDEV
lifecycle, as shown in Figure 4. These metrics ensure that the DT delivers tangible
improvements in design validation, manufacturing efficiency, and operational
performance. KPIs should be continuously tracked and reviewed as part of the digital
thread governance framework to maintain system reliability, quality, and value creation.

eTorque & speed NRMSE vs bench;
eController efficiency map delta;

DEUEGELULEN o Observer stability margins.
Development

\
oEoL first-pass yield;
eAverage test duration;
Manufacturing eFalse-fail/false-pass rates; rework cycle time.
oMTTD faults;
ePrediction horizon for RUL;
VIEINIEGELES oNTF rate reduction; uptime.
and in-service Y,

Figure 4 Key Performance Indicators (KPIs) Across the Digital Twin (DT) Lifecycle.

During the design and development phase, KPIs focus on model accuracy, controller
performance, and system stability.

e Torque and Speed NRMSE vs. Bench Measurements. The NRMSE between
simulation outputs and physical test bench data serves as a quantitative measure
of model fidelity. Low NRMSE values indicate that the DT accurately reproduces
physical system behavior, thereby increasing confidence in virtual validation and
reducing reliance on extensive prototyping.

e Controller Efficiency Map Delta. This metric compares the efficiency maps derived
from DT simulations to those measured on physical test rigs. The smaller the
deviation (delta), the more reliable the DT becomes as a tool for optimizing control
strategies such as FOC or DTC.

e Observer Stability Margins. For virtual sensors and estimators used in control,
stability margins, such as phase and gain margins, ensure robustness under
varying conditions. Acceptance criteria should verify that observers maintain stable
performance across temperature ranges, speed transitions, and component
tolerances.
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Together, these KPIs validate the DT as a credible simulation and design-optimization
environment capable of accelerating innovation while maintaining engineering rigor.

In the manufacturing phase, KPIs measure production quality, testing efficiency, and
diagnostic accuracy.

EoL First-Pass Yield. This metric reflects the percentage of propulsion systems that
pass EoL testing on their first attempt. A high first-pass yield indicates effective
calibration of the DT models and accurate fault detection thresholds, leading to
reduced rework and improved throughput.

Average Test Duration. DT enables optimization of test procedures through
adaptive sequencing. A measurable reduction in average test duration
demonstrates that the DT is successfully reducing cycle time without compromising
quality or coverage.

False-Fail and False-Pass Rates. These rates quantify the accuracy of the DT-driven
anomaly detection system. Low false-fail rates prevent unnecessary rework, while
low false-pass rates ensure that defective units are not mistakenly released.

Rework Cycle Time. When rework is required, this metric measures the time from
defect detection to resolution. A shorter rework cycle time indicates effective fault
localization and improved technician guidance, often supported by insights from
the production twin.

Collectively, these metrics confirm DT’s role in enhancing manufacturing precision, process
efficiency, and product reliability.

For maintenance and in-service operations, KPIs evaluate fault-detection capability,
predictive accuracy, and fleet performance.

Mean Time to Detect (MTTD) Faults. This measures how quickly the DT identifies
emerging faults compared to traditional diagnostics. A reduced MTTD indicates
earlier fault detection and prevention of secondary failures.

Prediction Horizon for RUL. The DT's predictive models estimate how far in advance
it can forecast a component’s degradation or end-of-life event. Longer and more
accurate prediction horizons improve maintenance scheduling and resource
allocation.

No-Trouble-Found (NTF) Rate Reduction. NTF cases—when a reported fault cannot
be replicated during service—are costly and time-consuming. The DT reduces NTF
rates by improving fault traceability and providing data-driven root cause insights.

System Uptime. Uptime reflects the overall availability of the vehicle or fleet. A
higher uptime percentage demonstrates DT’'s effectiveness in maintaining
operational reliability through proactive diagnostics and predictive maintenance.

These metrics collectively validate the Runtime as a cornerstone of CBM and lifecycle
optimization.
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By monitoring KPIs across design, manufacturing, and maintenance, organizations can
quantitatively assess the maturity and effectiveness of their DT implementation. Success
is measured not only by model accuracy or process efficiency but also by tangible business
outcomes, faster development cycles, reduced operational costs, and improved vehicle
reliability. These acceptance criteria ensure that the DT continues to deliver measurable
value throughout the full lifecycle of the SDEV.
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POSSIBLE IMPLEMENTATION ROADMAP (PHASED)

Figure 5 outlines the sequential phases for implementing the DT of the EPDS within the
SDEV lifecycle. Each phase builds progressively on the previous one, ensuring a structured
deployment of modeling, data, and analytics capabilities.

e Phase 0 - Foundations. Establish core infrastructure, including data pipelines,
standardized metadata schemas for test benches, and a version-controlled model
repository. Select the DT platform and edge runtime environment.

e Phase 1 - Design Twin. Develop machine and inverter models, collect Design of
Experiments (DoE) datasets, and train torque and speed estimators. Validate
results against bench data and introduce controller performance comparisons.

e Phase 2 - Production Twin. Integrate EoL testers with the twin, create golden
reference signatures, and implement residual-based anomaly detection. Optimize
test sequences through adaptive logic to improve efficiency.

e Phase 3 - Runtime Twin. Deploy virtual sensors and fault monitoring algorithms in
vehicles, initiate fleet learning programs, and enable OTA model calibration
updates.

e Phase 4 - Prognostics & Optimization. Incorporate RUL models for power
electronics and electric machines. Close the feedback loop by translating field
issues into new design requirements and refining manufacturing test procedures.

Phase 0 Phase 1 Phase 2 Phase 3 Phase 4

Foundations Design Twin Production Twin Runtime Twin Prognostics &

(0-3 mo) (3-6 mo) (6-9 mo) (9-15 mo) Optimization
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Figure 5 Phased Implementation Roadmap for the Electric Propulsion Drive System
(EPDS) Digital Twin (DT).

This phased roadmap provides a clear timeline and structure for DT integration, from
infrastructure setup and design modeling to production validation, fleet analytics, and
lifecycle optimization. It ensures that each stage contributes measurable value while
maintaining alignment between physical systems and their digital counterparts.
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SAFETY, CYBERSECURITY, AND COMPLIANCE

Incorporating functional safety and cybersecurity into the DT framework is not optional,
but it is a prerequisite for trust and adoption in production-grade SDEV. By aligning with
ISO 26262, ISO/SAE 21434, and the lifecycle governance principles. DT interacts closely
with the control systems of the EPDS, it must be treated as a safety-relevant software
element and governed under the same functional safety and cybersecurity frameworks
that apply to embedded automotive systems. Compliance must extend across the full
lifecycle, from model design and validation to deployment, operation, and OTA updates.

Functional Safety and Software Integrity. The DT outputs that influence or support
control decisions, such as torque estimations, temperature predictions, or fault detection,
should be classified as Software Safety Elements under ISO 26262. This requires
performing an Automotive Safety Integrity Level (ASIL) assessment and decomposition to
determine the safety level each DT function must achieve based on its potential impact on
vehicle operation and occupant safety. A structured Failure Modes, Effects, and Diagnostic
Analysis (FMEDA) should be conducted to identify and quantify the risks associated with
DT estimators, observers, or virtual sensors. Each potential failure mode—such as an
incorrect torque estimate, delayed thermal response, or corrupted model output—must be
analyzed for severity, occurrence, and detectability. The DT architecture should include
safety mechanisms such as range monitoring, plausibility checks, and model confidence
metrics to detect and isolate unsafe outputs.

Redundancy and fault containment should be designed into the DT environment. For
example:

e Independent physical sensor readings should periodically cross-validate virtual
sensor outputs.

e Fallback strategies should be in place to revert to conservative control modes if the
DT detects inconsistency or model degradation.

e Safety-critical estimations (e.g., torque or speed) should be separated from non-
critical analytics functions using ASIL partitioning or software sandboxing.

This layered safety approach ensures that DT-assisted control operations do not
compromise vehicle integrity, even in the presence of degraded data or model faults.

Cybersecurity and Data Protection. From a cybersecurity perspective, DT is part of a
connected data ecosystem spanning the vehicle, edge, and cloud. Consequently, it must
comply with ISO/SAE 21434 for automotive cybersecurity management. All data flows,
from real-time vehicle telemetry to cloud analytics, should be secured end-to-end using
encryption, mutual authentication, and integrity verification. The communication layer
between the DT instances (vehicle, plant, and cloud) should implement secure transport
protocols (e.g., TLS over MQTT or DDS Secure) to protect against eavesdropping and
tampering. Each DT instance, whether local or cloud-based, should possess a unique digital
identity and operate within a zero-trust architecture that verifies access before every
interaction. To protect model integrity, all DT models and configuration files must be
cryptographically signed before deployment. This prevents unauthorized or corrupted
models from being loaded into runtime environments. For OTA updates, rollback
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mechanisms must be implemented to restore previous stable versions of the twin or its
models in case of unexpected behavior after an update. Continuous monitoring of software
and firmware integrity should be conducted via secure boot mechanisms and runtime
attestation. Data collected from vehicles, test benches, and production systems should be
anonymized or pseudonymized before external storage or analysis to comply with data
privacy regulations such as the General Data Protection Regulation (GDPR). Access control
policies must ensure that sensitive data, including operational parameters, fleet identifiers,
and proprietary model structures, are available only to authorized personnel and systems.

Compliance and Lifecycle Governance. Compliance throughout the DT lifecycle
requires an integrated governance framework that covers functional safety, cybersecurity,
and data management. It is important to emphasize the importance of traceability,
ensuring that every software element, model version, and dataset can be linked to its
verification evidence, configuration history, and release approval. Key practices include:

e Maintaining a DT Safety Case, documenting the rationale, validation results, and
verification evidence supporting the safe operation of DT components.

e Applying change control procedures for model and data updates, ensuring that each
modification undergoes hazard assessment and regression testing before
deployment.

e Conducting periodic audits and penetration tests on cloud and OTA infrastructures
to identify vulnerabilities.

e Integrating safety and cybersecurity assessments into the Continuous
Integration/Continuous Deployment (CI/CD) pipeline used for DT model delivery.

Moreover, it is important to establish cross-functional safety and cybersecurity boards that
oversee risk analysis, incident response, and regulatory compliance. These boards should
clearly define ownership of DT safety and security across engineering, IT, and operations
teams.
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