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KEY INSIGHTS AND OBJECTIVES  

Why now? 

The integration of a Digital Twin (DT) for the Electric Propulsion Drive System (EPDS) is 

particularly relevant at this stage of Software‑Defined Electric Vehicles (SDEV) 

development. Propulsion represents the central value-creation mechanism in an SDEV, 

linking software functionality, performance, and sustainability targets. A well-implemented 

DT enables early validation of control strategies and power electronics while supporting 

system-level design optimization, fault diagnosis, predictive maintenance, and lifecycle 

management.  

What to build?  

The recommended architecture is a tiered, hybrid EPDS DT that combines physics-based 

models and data-driven approaches. This twin spans the entire propulsion system, from 

inverter, electrical machine, and transmission to high- and low-voltage interfaces, forming 

a comprehensive virtual representation of the propulsion system. Physics-based layers 

capture electromechanical, thermal, and energy conversion dynamics, while data-driven 

modules enhance adaptivity and capture nonlinear system behavior from operational data. 

All elements are linked through a digital thread that connects the lifecycle stages from 

initial requirements, design models, and validation tests to manufacturing configurations 

and in-service fleet data. This structure ensures traceability, model reuse, and cross-

domain feedback, enabling continuous improvement and rapid innovation cycles. 

How to run? 

The implementation strategy should include three twin operational instances, each serving 

a distinct lifecycle phase. An offline design twin supports system architecture optimization, 

control algorithm development, and HIL/SIL validation. A production twin connects to test 

benches and End-of-Line (EoL) systems, validating components and assemblies during 

manufacturing by comparing their signatures with expected values. Finally, a runtime twin 

operates within the vehicle and cloud infrastructure, using real-time telemetry for 

performance monitoring, fault detection, and predictive analytics. Continuous calibration 

loops between these twins maintain fidelity and enable adaptive updates as the physical 

system evolves throughout its lifecycle. 

Expected impact? 

Such framework integration reduces reliance on physical prototypes, accelerates 

development cycles, and facilitates continuous improvement through real-time data 

feedback and adaptive software updates, ultimately contributing to more resilient and 

energy-efficient mobility solutions. In manufacturing, it enables right-first-time assembly, 

automatic fault localization, and process optimization by comparing virtual models with 

actual test results in real time. During vehicle operation, the DT supports predictive 

maintenance, real-time diagnostics, and performance tuning while providing the 

framework for Over-the-Air (OTA) feature upgrades, which are fundamental to the SDEV 

business model. 
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REFERENCE ARCHITECTURE (TWIN‑OF‑TWINS) 

The DT architecture for the EPDS within SDEV provides a comprehensive framework for 

modeling, monitoring, and optimizing system performance across the vehicle lifecycle. 

This architecture is structured in multiple interconnected layers, each performing a distinct 

function while contributing to the overall digital thread. The layers - Physical, Virtual 

Models, Data and Services, Applications, and Communication create a cohesive ecosystem 

that links the real and virtual domains. Figure 1 visually summarizes the four layers of the 

DT architecture and their main components. At its core, this architecture establishes how 

data flows between hardware and software environments, ensuring real-time 

synchronization, accurate representation of system behavior, and continuous feedback for 

improvement. The Physical layer captures real-world measurements and testing data; the 

Virtual Models layer builds digital representations of the propulsion system; the Data and 

Services layer manages the information pipeline and infrastructure; the Application layer 

enables the use of these models for design, validation, manufacturing, and operational 

decision-making; and the Communication layer provide real-time data exschange and 

analytical services by implementing commonly used protocols. Together, they form a 

robust foundation for achieving high reliability, efficiency, and adaptability in SDEV 

propulsion systems. 

 

Figure 1 Digital Twin (DT) Architecture Layers for the Electric Propulsion Drive System 

(EPDS). 
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The physical layer represents the tangible systems, test environments, and vehicles that 

provide real-world data for the DT. This includes laboratory test rigs composed of inverters, 

Permanent Magnet Synchronous Machines (PMSM), dynamometers, and battery 

emulators. These setups allow controlled experimentation across a wide range of torque-

speed operating points. EoL testing stations in manufacturing use the same principles to 

validate every propulsion assembly against its expected behavior. In addition, in-vehicle 

telemetry streams real-time data during normal operation and testing campaigns. 

Collectively, these physical assets form the data foundation that drives model calibration, 

fault detection, and performance benchmarking in the DT ecosystem. 

The virtual model layer provides a digital representation of the propulsion system with 

multiple levels of fidelity, each serving a specific engineering purpose. The models can be 

categorized into three main types: 

• Control/behavioral models. These include simplified d–q domain representations of 

the PMSM and averaged inverter models. They are optimized for high-speed 

simulation and for the development of control algorithms, including testing Field-

Oriented Control (FOC), Direct Torque Control (DTC), and sensorless estimation 

strategies. Driveline dynamics are often included at this level to study vehicle 

responses. 

• Circuit models. At a more detailed level, circuit models capture electrical (and 

thermal) interactions within the inverter and motor. They predict current 

harmonics, switching losses, and temperature profiles at the semiconductor 

junctions and windings. These models are essential for design validation and 

durability analysis. 

• Data-driven models. To complement the physics-based approaches, Artificial 

Neural Networks (ANN) and Long Short-Term Memory (LSTM) models are 

introduced. These models learn relationships between inputs and latent states, 

such as torque, speed, component temperatures, and State of Health (SoH). They 

provide accurate predictions even when system nonlinearity or parameter 

uncertainty is significant. 

The combination of these three model types forms a hybrid architecture that balances 

interpretability, computational efficiency, and accuracy. 

The data and services layer is responsible for the collection, storage, processing, and 

management of all information used by the DT. It handles time-series data ingestion from 

physical rigs, manufacturing systems, and vehicles. Each dataset is labeled, synchronized, 

and versioned to maintain traceability. Machine Learning Operations (MLOps) processes 

support automated training, validation, and deployment of data-driven models. A 

centralized twin registry ensures each digital instance is uniquely identifiable, with 

configuration metadata linking it to its physical counterpart. This layer serves as the 

backbone of the digital thread, connecting engineering, manufacturing, and operational 

data throughout the product lifecycle. 

The application layer defines how the DT adds tangible value to engineering, production, 

and service processes. It supports several use cases, including: 

• Design verification and optimization. Engineers can perform what-if analyses, 

evaluate new control algorithms, and optimize inverter or motor parameters 

without physical prototypes. 
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• Controller evaluation. The twin enables testing of FOC, DTC, and sensorless control 

methods under variable conditions before hardware deployment. 

• Manufacturing analytics. At the EoL stage, the twin compares real test data against 

expected signatures to identify deviations and predict potential faults. 

• Fault detection and prognostics. Continuous monitoring and comparison between 

predicted and measured states allow early identification of faults such as stator 

inter-turn short circuits and inverter phase imbalance. 

• OTA optimization. In operational vehicles, the twin supports OTA calibration 

updates, adaptive control tuning, and predictive maintenance strategies. 

This top layer transforms data and models into actionable insights, closing the loop from 

design to operation and back, ensuring the propulsion system remains optimized 

throughout its life cycle. 

The communication layer serves as the interface that enables continuous, reliable data 

flow between the physical components, virtual models, and data infrastructure of the DT. 

It establishes the connectivity framework that synchronizes measurements, commands, 

and model outputs across distributed environments. This layer incorporates multiple 

communication technologies tailored to the system’s requirements for bandwidth, latency, 

and security. Within test benches and production systems, real-time communication 

protocols such as CAN, Ethernet, and OPC UA ensure deterministic data exchange between 

sensors, controllers, and local servers. In manufacturing and plant networks, MQTT and 

REST APIs enable efficient data transfer to centralized data lakes and cloud-based 

analytics. For in-vehicle and cloud-edge synchronization, Data Distribution Service (DDS) 

or SOME/IP provides scalable, event-driven communication that is well-suited to the 

dynamic nature of SDEV. Security measures, encryption, authentication, and digital 

signatures, are embedded in the layer to comply with ISO 21434 cybersecurity standards. 

By managing data routing, quality of service (QoS), and timing synchronization, the 

communication layer ensures that DT operations remain accurate, up-to-date, and secure 

throughout the design, manufacturing, and runtime phases. 
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TWIN INSTANCES 

The DT ecosystem for the EPDS comprises several instances, each tailored to a specific 

phase of the vehicle lifecycle. These instances, Development DT, Production DT, and 

Maintenance/Usage DT, as shown in Figure 2, are interconnected through a continuous 

digital thread that ensures information consistency and feedback across domains. Each DT 

instance plays a unique yet complementary role. Development DT enables virtual 

prototyping and system optimization, Production DT ensures product quality and process 

efficiency, and the Maintenance/Usage DT delivers in-service monitoring and continuous 

improvement. Together, they establish a fully integrated, lifecycle-spanning framework for 

data-driven decision-making in SDEV. 

 

Figure 2 Digital Twin (DT) Instances Across the Vehicle Lifecycle. 

The Development DT operates primarily in offline environments and supports Model-in-

the-Loop (MIL), Software-in-the-Loop (SIL), and Hardware-in-the-Loop (HIL) 

configurations. It is used during the concept and development stages to explore 

architectural trade-offs, evaluate control strategies, and optimize powertrain parameters 

before physical prototypes are available. Through simulation, engineers can validate the 

performance of inverter and motor models under various operating conditions, assess the 

robustness of control algorithms such as FOC and DTC, and predict system behavior during 

transient events. The Design DT provides a low-risk environment for innovation and 

accelerates calibration by integrating real test data progressively as the system matures. 

The Production DT bridges the virtual and physical domains in the production 

environment. It binds detailed test plans, calibration parameters, and equipment 

configurations, such as EoL testers, fixtures, and instrumentation, to individual product 

variants. Each production unit is validated against a digital reference model, often called 

the “golden unit,” that represents ideal electrical and thermal signatures. By comparing 

live EoL data with the twin's predicted values, manufacturing engineers can detect 

deviations, optimize test duration, and identify potential faults early in the process. This 

instance also supports statistical process control and continuous improvement by feeding 

production data back into design and process optimization loops. 

The Maintenance/Usage DT functions once the vehicle enters service, executing across 

both the edge (in-vehicle systems) and cloud environments. At the vehicle edge, 

Development DT
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control strategy evaluation. 
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lightweight estimators and observers use real-time sensor data to estimate unmeasured 

variables, such as torque, speed, temperature, and component degradation. In parallel, 

the cloud-based twin aggregates fleet data to perform advanced analytics, enabling 

predictive maintenance, fault diagnosis, and performance benchmarking across vehicle 

populations. The Maintenance/Usage DT is continuously updated via field data feedback 

and supports OTA updates, enabling adaptive control tuning and model recalibration 

without disrupting vehicle operation. This capability transforms the propulsion system into 

an intelligent, self-optimizing entity throughout its operational life. 
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INTEGRATION INTO SDEV DESIGN 

Integrating the DT of the EPDS into the SDEV design phase enables a seamless transition 

from concept to implementation. This stage focuses on building accurate models, 

developing and validating controllers, planning experiments, and ensuring data traceability 

and model fidelity. DT acts as both a predictive simulation tool and a validation reference, 

ensuring that design decisions are data-driven, verifiable, and reproducible across the 

engineering lifecycle. Figure 3 illustrates the continuous and cyclic workflow used to 

integrate the DT of the EPDS into the SDEV design process. 

 

Figure 3 Iterative Digital Twin (DT) Development Process in Electric Propulsion Drive 

System (EPDS) Design. (image generated by AI) 

A well-defined modeling strategy is fundamental to the success of the DT framework. 

The recommended approach is hybrid modeling, combining physics-based and data-driven 

methods, to capture both fundamental dynamics and system-specific nonlinearities. 

Baseline physics models, such as PMSM representations in the d–q reference frame and 

averaged inverter models. These models are accurate enough for most control and 

performance studies while remaining computationally efficient. To enhance realism and 

address system behaviors not fully described by analytical equations, learned surrogate 

models based on ANNs or LSTM networks are incorporated. These data-driven components 

handle complex nonlinear relationships, parameter uncertainties, and proprietary control 

features that component suppliers may not disclose. To ensure scalability and efficiency, 

model fidelity must be adapted to each use case. For early concept evaluations, low-fidelity 

models (with millisecond-level time steps) enable fast trade-off studies and architecture 

optimization. For control design, high-fidelity models (microsecond-level) capture pulse-

width modulation (PWM) switching and transient behavior. Thermal models, operating on 

slower timescales (seconds to minutes), support thermal management and derating 

assessments. The drivability and system-level models run at the vehicle level to evaluate 
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user experience, energy efficiency, and system integration effects. This allows engineers 

to balance computational load and accuracy according to the needs. 

DT serves as a virtual testbed for controller development, enabling safe, cost-effective 

evaluation of control strategies across a wide range of operating conditions. It can simulate 

both FOC and DTC algorithms, enabling direct comparison in terms of torque ripple, 

efficiency, and dynamic response. Flux-weakening regions, torque-speed transitions, and 

system responses to voltage sags or thermal drift can all be explored in simulation long 

before hardware is available. Additionally, the DT facilitates the validation of sensorless 

observers, assessing their robustness to noise, load variations, and parameter drift. From 

this foundation, engineers can derive virtual sensors—software-based estimators for 

parameters such as torque, speed, and temperature—that complement or replace physical 

sensors. These virtual sensors enhance redundancy and resilience, reducing sensor costs 

and improving system fault tolerance. Because these estimators can be updated and 

refined using field-collected data, they also form part of the OTA deliverable feature set, 

ensuring continuous improvement and adaptability of control functions throughout the 

vehicle’s lifespan. 

Effective test planning and structured data management are essential to ensure that 

model development, calibration, and validation processes remain consistent and traceable. 

The DT supports this by defining comprehensive Design-of-Experiments (DoE) matrices 

that specify operating points and test conditions across the torque–speed map. These 

experiments are executed on dynamometer setups or battery emulators, covering 

operating conditions from no-load to approximately 80% of full load. During each test, key 

variables, including DC bus voltage and current, three-phase currents and voltages, 

resolver signals, and thermal node temperatures, are recorded. The data must be time-

aligned and annotated with configuration metadata, including model version, software 

revision, and environmental parameters. To ensure traceability, every artifact, from 

requirements through test cases, models, and validation results, should be version-

controlled within Product Lifecycle Management (PLM) or Application Lifecycle 

Management (ALM) systems. Each dataset and model is assigned a unique identifier, 

forming a digital thread that links simulation, testing, and validation results across teams 

and domains. 

The validation and calibration phase closes the loop between simulation and reality. 

DT’s predictions are compared with bench-test results using quantitative metrics such as 

torque, speed, efficiency, and temperature error bands. Validation ensures that each 

model behaves within acceptable tolerances, confirming both the accuracy and reliability 

of the simulation environment. Once validated, the models undergo continuous calibration 

as new bench and in-vehicle data become available. This iterative process keeps the twin 

synchronized with its physical counterpart, reflecting component aging, software updates, 

and evolving operating conditions. Model release gates should be governed by confidence 

metrics, such as the Normalized Root Mean Square Error (NRMSE) between predicted and 

measured torque, speed, and junction temperature. Only models that meet or exceed the 

defined thresholds are approved for deployment within design or control workflows. This 

feedback-driven calibration process establishes the DT as a living, evolving representation 

of the propulsion system, one that continuously improves with every design iteration and 

real-world data update. 
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INTEGRATION INTO MANUFACTURING  

Integrating the DT of the EPDS into the manufacturing environment ensures that every 

production unit meets its design intent and quality requirements. The DT becomes an 

operational tool for validating system performance, optimizing production processes, and 

maintaining traceability from design to assembly. This integration is structured around 

three key domains: production twin, process optimization, and data operations. 

Production DT serves as the virtual counterpart of the physical testing environment in 

manufacturing, particularly during the EoL verification stage. For each propulsion system 

variant, a dedicated twin configuration is created, containing reference models and 

expected performance characteristics. These include reference waveforms, torque–speed 

signatures, inverter self-test sequences, and thermal soak profiles, all derived from 

validated design and prototype data. During EoL testing, the measured signals from 

sensors, such as current, voltage, torque, and temperature, are continuously compared 

against predictions generated by the twin. This comparison produces residuals, which 

represent the difference between actual and expected values. Real-time anomaly scoring 

algorithms evaluate these residuals to identify deviations from nominal behavior. By 

analyzing these deviations, the Production DT can automatically flag potential defects, 

such as rotor or stator imbalances, inverter phase asymmetries, and encoder or resolver 

misalignments. This capability allows rapid root-cause identification and classification of 

faults, reducing the number of false fails and ensuring that only genuine issues trigger 

corrective actions. Production DT therefore acts as both a quality assurance system and a 

diagnostic assistant at the manufacturing stage. 

Beyond product validation, the DT also contributes to process efficiency. Through 

continuous learning from production data, it can identify patterns and optimize test 

execution strategies. One key application is reducing test cycle time through adaptive test 

sequencing. Instead of running all tests sequentially, the DT can estimate an early pass/fail 

probability based on partial data and dynamically skip redundant checks when a unit 

clearly meets specifications. This approach significantly improves throughput without 

compromising test integrity. The DT also facilitates automated rework instructions. When 

anomalies are detected, the twin can trace the source of deviation, whether it originates 

from the product, test fixture, or cabling, and automatically generate step-by-step 

corrective actions. This not only accelerates troubleshooting but also ensures consistency 

in maintenance procedures across production lines. Moreover, the DT monitors station 

health by observing long-term drifts in equipment behavior. For example, changes in load 

motor drive performance, sensor calibration, or power analyzer accuracy can be detected 

through persistent deviations in twin residuals. By introducing canary parts, known 

reference units periodically tested on each station, the system can differentiate between 

product faults and equipment degradation, maintaining production reliability and test 

repeatability. 

Efficient data management is critical for sustaining the integrity of the manufacturing DT. 

All measurement signals and test outcomes must adhere to a standardized data schema 

to ensure compatibility and traceability across systems. Each record includes absolute 

timestamps, per-cycle counters, and metadata describing the product variant, 

configuration, and testing conditions. 
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Raw signals are stored alongside engineered features (such as harmonic content, RMS 

values, and temperature deltas) and labels derived from test verdicts and anomaly 

classifications. This structured data foundation enables downstream analytics, fleet 

correlation, and the training of predictive models for future designs. Moreover, each 

dataset is linked to its corresponding serial number and DT instance, ensuring complete 

traceability across the digital thread, from design simulations and prototype testing to 

production and in-service monitoring. This closed-loop data structure supports continuous 

improvement, allowing insights from manufacturing and field performance to refine design 

models, test procedures, and operational strategies. 

By deploying the Production DT within manufacturing, the organization gains a powerful 

mechanism for quality assurance, process efficiency, and data-driven feedback. The 

combination of real-time anomaly detection, adaptive testing, and standardized data 

management establishes a seamless connection between the physical factory floor and the 

virtual engineering environment. As a result, manufacturing operations become more 

predictive, efficient, and resilient, core characteristics of the SDEV production paradigm. 
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INTEGRATION INTO MAINTENANCE & OPERATIONS 

The integration of the DT into the maintenance and operational phases of the SDEV 

lifecycle transforms vehicle support from reactive servicing to a predictive and data-driven 

process. The DT operates in real time, processing both on-board sensor data and fleet-

level analytics to monitor component health, detect anomalies, and guide service actions. 

This integration is realized through three key components: the edge/runtime twin, 

prognostics, and after-sales workflows. 

The edge or runtime DT is the in-service counterpart of the vehicle’s propulsion system. 

It functions directly on the vehicle’s embedded hardware or at the edge computing layer, 

providing real-time monitoring, fault detection, and performance estimation. This twin 

deploys lightweight observer models, often implemented as ANNs or LSTM estimators, 

which run efficiently on vehicle control units or connected edge devices. These observers 

act as virtual sensors, estimating parameters that are difficult or costly to measure 

directly, such as torque, rotor speed, and component temperatures. By continuously 

comparing model predictions to real sensor readings, the twin identifies discrepancies, 

known as residuals, that signal potential degradation or faults. Runtime DT also detects 

specific fault modes, including stator inter-turn short circuits, phase current imbalances, 

and resolver or encoder misalignments, which might not be easily visible in traditional 

diagnostic systems. When anomalies are identified, the system evaluates their severity 

and trend over time, enabling condition-based maintenance (CBM) rather than scheduled 

or reactive servicing. If residuals exceed defined thresholds or follow concerning trends, 

DT automatically triggers OTA diagnostics or sends service bulletins to fleet management 

systems. This allows maintenance actions to be planned before failures occur, minimizing 

downtime and optimizing service scheduling across the fleet. Over time, continuous 

synchronization between edge devices and cloud twins ensures that models remain 

accurate and adaptive to changing vehicle behavior, component aging, and environmental 

conditions. 

The prognostics layer of the DT extends beyond fault detection to predict the Remaining 

Useful Life (RUL) of critical components within the propulsion system. Using fleet-wide 

operational data collected from runtime twins, data-driven RUL models are trained to 

forecast degradation patterns and failure probabilities. For example, power semiconductor 

components in the inverter experience stress from repetitive junction-temperature cycling, 

which can lead to wear-out over time. The DT analyzes temperature histories, switching 

patterns, and thermal gradients to estimate semiconductor lifespan. Similarly, bearings 

and insulation systems within electric machines are monitored using vibration, 

temperature, and current harmonics, which serve as indirect indicators of health. By 

combining physics-based degradation models with data-driven predictions, the DT can 

provide highly accurate RUL estimates. These predictions are integrated into maintenance 

planning systems, enabling proactive scheduling of service windows. This ensures that 

parts are replaced or refurbished before failures occur, improving vehicle uptime, reducing 

warranty costs, and enhancing customer trust. Furthermore, aggregated RUL data across 

the fleet allows manufacturers to identify systemic reliability issues, improve component 

design, and refine control strategies to extend component life in future vehicle 

generations. 
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The DT also reshapes after-sales and service operations, empowering technicians and 

service centers with advanced diagnostic tools. One of the most practical implementations 

is the Technician DT, a localized, portable instance of DT that can be used in workshops 

or field environments. Technician DT provide guided diagnostic scripts that replay recorded 

DT scenarios, simulating how the propulsion system behaves during fault conditions. This 

helps technicians reproduce issues accurately and test hypotheses before performing 

physical repairs. Each diagnostic session can automatically generate a case report, 

summarizing key residuals, fault classifications, and probable root causes. This level of 

automation streamlines troubleshooting, minimizes human error, and ensures consistent 

maintenance decisions across service locations. It also creates a feedback channel from 

service operations back to engineering, where real-world fault data and diagnostic 

outcomes are used to refine models, update prognostic thresholds, and improve future 

vehicle releases. Ultimately, integrating DT technology into after-sales workflows turns 

every service event into a learning opportunity, thereby strengthening the overall accuracy 

and resilience of the DT ecosystem. 

By combining the abovementioned workflows, DT enables a closed-loop maintenance 

system that continuously evolves with vehicle use. Real-time sensing, predictive analytics, 

and automated diagnostics replace traditional static maintenance schedules with 

intelligent, adaptive servicing strategies. The result is a propulsion system that remains 

efficient, reliable, and continuously optimized throughout the operational life of the SDEV. 
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METHODS & TOOLING RECOMMENDATIONS 

Table 1 summarizes the recommended software tools, frameworks, and standards 

required to support the lifecycle deployment of the DT for the EPDS based on prior project 

PSG453 and will be implemented in PRG2532. It highlights the integration of modeling, 

data-driven analytics, middleware, and governance mechanisms to ensure the DT remains 

accurate, secure, and maintainable from design through runtime. 

Table 1 Methods and Tooling Recommendations for Digital Twin (DT) Implementation into 

Electrical Propulsion Drive System (EPDS) of Electric Vehicle (EV) 

Category Recommended Tools and 

Frameworks 

Purpose and Application in the 

EPDS DT 

Modeling MATLAB/Simulink for control 

algorithm development and d–q 

domain machine modeling;  

Enables creation of multi-fidelity 

models for control, electrical, and 

mechanical domains. These tools 

form the foundation for model-based 

design, control validation, and 

system-level integration of the EPDS. 

Data-Driven 

Methods 

Python environment with ANN and 

LSTM frameworks; supported by 

MLOps pipelines with model registry 

and continuous integration (CI). 

Facilitates the development of 

surrogate models and estimators for 

torque, speed, temperature, and 

degradation prediction. MLOps 

ensures consistent version control, 

retraining, and deployment of data-

driven models across edge and cloud 

environments. 

Platforms Cloud/edge-based DT platforms 

capable of managing twin graphs, 

time-series data, and OTA updates. 

Simulation-based tools such as Ansys 

Twin Builder are recommended for 

physical and hybrid twin integration. 

Provides the computational and data 

infrastructure to host, synchronize, 

and scale DT instances across design, 

manufacturing, and runtime stages. 

Middleware ROS2, UDP, and CAN for test rig 

streaming; OPC UA and MQTT for 

plant-level communication; in-

vehicle protocols such as SOME/IP or 

DDS for runtime data exchange. 

Ensures reliable, real-time 

communication between the physical 

system, virtual models, and cloud 

services. These middleware solutions 

standardize data flow, enabling 

synchronization across 

heterogeneous systems. 

Governance 

and 

Standards 

ISO 26262 for functional safety (ASIL 

assignment for estimator functions), 

ISO 21434 for cybersecurity, data 

privacy policy adherence, and 

Establishes compliance, safety, and 

traceability across the DT lifecycle, 

ensuring that models, data, and 
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Category Recommended Tools and 

Frameworks 

Purpose and Application in the 

EPDS DT 

calibration/versioning management 

rules. 

software updates meet industry and 

regulatory standards. 
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KPIS AND ACCEPTANCE CRITERIA 

Establishing clear, measurable Key Performance Indicators (KPIs) and acceptance criteria 

is essential for evaluating the effectiveness of DT integration throughout the SDEV 

lifecycle, as shown in Figure 4. These metrics ensure that the DT delivers tangible 

improvements in design validation, manufacturing efficiency, and operational 

performance. KPIs should be continuously tracked and reviewed as part of the digital 

thread governance framework to maintain system reliability, quality, and value creation. 

 

Figure 4 Key Performance Indicators (KPIs) Across the Digital Twin (DT) Lifecycle. 

During the design and development phase, KPIs focus on model accuracy, controller 

performance, and system stability. 

• Torque and Speed NRMSE vs. Bench Measurements. The NRMSE between 

simulation outputs and physical test bench data serves as a quantitative measure 

of model fidelity. Low NRMSE values indicate that the DT accurately reproduces 

physical system behavior, thereby increasing confidence in virtual validation and 

reducing reliance on extensive prototyping. 

• Controller Efficiency Map Delta. This metric compares the efficiency maps derived 

from DT simulations to those measured on physical test rigs. The smaller the 

deviation (delta), the more reliable the DT becomes as a tool for optimizing control 

strategies such as FOC or DTC. 

• Observer Stability Margins. For virtual sensors and estimators used in control, 

stability margins, such as phase and gain margins, ensure robustness under 

varying conditions. Acceptance criteria should verify that observers maintain stable 

performance across temperature ranges, speed transitions, and component 

tolerances. 

Design and 
Development

•Torque & speed NRMSE vs bench; 

•Controller efficiency map delta; 

•Observer stability margins.

Manufacturing

•EoL first-pass yield; 

•Average test duration; 

•False-fail/false-pass rates; rework cycle time.

Maintenance
and in-service

•MTTD faults; 

•Prediction horizon for RUL; 

•NTF rate reduction; uptime.
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Together, these KPIs validate the DT as a credible simulation and design-optimization 

environment capable of accelerating innovation while maintaining engineering rigor. 

In the manufacturing phase, KPIs measure production quality, testing efficiency, and 

diagnostic accuracy. 

• EoL First-Pass Yield. This metric reflects the percentage of propulsion systems that 

pass EoL testing on their first attempt. A high first-pass yield indicates effective 

calibration of the DT models and accurate fault detection thresholds, leading to 

reduced rework and improved throughput. 

• Average Test Duration. DT enables optimization of test procedures through 

adaptive sequencing. A measurable reduction in average test duration 

demonstrates that the DT is successfully reducing cycle time without compromising 

quality or coverage. 

• False-Fail and False-Pass Rates. These rates quantify the accuracy of the DT-driven 

anomaly detection system. Low false-fail rates prevent unnecessary rework, while 

low false-pass rates ensure that defective units are not mistakenly released. 

• Rework Cycle Time. When rework is required, this metric measures the time from 

defect detection to resolution. A shorter rework cycle time indicates effective fault 

localization and improved technician guidance, often supported by insights from 

the production twin. 

Collectively, these metrics confirm DT’s role in enhancing manufacturing precision, process 

efficiency, and product reliability. 

For maintenance and in-service operations, KPIs evaluate fault-detection capability, 

predictive accuracy, and fleet performance. 

• Mean Time to Detect (MTTD) Faults. This measures how quickly the DT identifies 

emerging faults compared to traditional diagnostics. A reduced MTTD indicates 

earlier fault detection and prevention of secondary failures. 

• Prediction Horizon for RUL. The DT’s predictive models estimate how far in advance 

it can forecast a component’s degradation or end-of-life event. Longer and more 

accurate prediction horizons improve maintenance scheduling and resource 

allocation.  

• No-Trouble-Found (NTF) Rate Reduction. NTF cases—when a reported fault cannot 

be replicated during service—are costly and time-consuming. The DT reduces NTF 

rates by improving fault traceability and providing data-driven root cause insights. 

• System Uptime. Uptime reflects the overall availability of the vehicle or fleet. A 

higher uptime percentage demonstrates DT’s effectiveness in maintaining 

operational reliability through proactive diagnostics and predictive maintenance. 

These metrics collectively validate the Runtime as a cornerstone of CBM and lifecycle 

optimization. 
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By monitoring KPIs across design, manufacturing, and maintenance, organizations can 

quantitatively assess the maturity and effectiveness of their DT implementation. Success 

is measured not only by model accuracy or process efficiency but also by tangible business 

outcomes, faster development cycles, reduced operational costs, and improved vehicle 

reliability. These acceptance criteria ensure that the DT continues to deliver measurable 

value throughout the full lifecycle of the SDEV. 
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POSSIBLE IMPLEMENTATION ROADMAP (PHASED) 

Figure 5 outlines the sequential phases for implementing the DT of the EPDS within the 

SDEV lifecycle. Each phase builds progressively on the previous one, ensuring a structured 

deployment of modeling, data, and analytics capabilities. 

• Phase 0 – Foundations. Establish core infrastructure, including data pipelines, 

standardized metadata schemas for test benches, and a version-controlled model 

repository. Select the DT platform and edge runtime environment. 

• Phase 1 – Design Twin. Develop machine and inverter models, collect Design of 

Experiments (DoE) datasets, and train torque and speed estimators. Validate 

results against bench data and introduce controller performance comparisons. 

• Phase 2 – Production Twin. Integrate EoL testers with the twin, create golden 

reference signatures, and implement residual-based anomaly detection. Optimize 

test sequences through adaptive logic to improve efficiency. 

• Phase 3 – Runtime Twin. Deploy virtual sensors and fault monitoring algorithms in 

vehicles, initiate fleet learning programs, and enable OTA model calibration 

updates. 

• Phase 4 – Prognostics & Optimization. Incorporate RUL models for power 

electronics and electric machines. Close the feedback loop by translating field 

issues into new design requirements and refining manufacturing test procedures. 

 

Figure 5 Phased Implementation Roadmap for the Electric Propulsion Drive System 

(EPDS) Digital Twin (DT). 

This phased roadmap provides a clear timeline and structure for DT integration, from 

infrastructure setup and design modeling to production validation, fleet analytics, and 

lifecycle optimization. It ensures that each stage contributes measurable value while 

maintaining alignment between physical systems and their digital counterparts. 

  

Stand up data 
pipelines, test 
bench metadata 
schema, 
versioned model 
repository; 

Select DT 
platform and 
edge runtime.

Phase 0 
Foundations 
(0–3 mo)

Build motor and  
inverter;

Collect DoE 
datasets; 

Train 
torque/speed 
estimators; 

Validate vs 
bench;

Introduce 
controller 
comparison.

Phase 1 
Design Twin 
(3–6 mo)

Bind EoL testers 
to twin;

Create golden 
signatures;

Deploy 
residual-based 
anomaly 
detection;

Shorten test 
sequences with 
adaptive logic.

Phase 2 
Production Twin 
(6–9 mo)

Deploy virtual 
sensors and fault 
monitors on 
vehicles; 

Start fleet 
learning; 

Enable OTA 
calibration 
updates.

Phase 3 
Runtime Twin 
(9–15 mo)

Add RUL models 
for power 
electronics & 
electrical 
machine; 

Close the loop to 
design (field 
issues → new 
requirements), 
and to 
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updates).
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SAFETY, CYBERSECURITY, AND COMPLIANCE 

Incorporating functional safety and cybersecurity into the DT framework is not optional, 

but it is a prerequisite for trust and adoption in production-grade SDEV. By aligning with 

ISO 26262, ISO/SAE 21434, and the lifecycle governance principles. DT interacts closely 

with the control systems of the EPDS, it must be treated as a safety-relevant software 

element and governed under the same functional safety and cybersecurity frameworks 

that apply to embedded automotive systems. Compliance must extend across the full 

lifecycle, from model design and validation to deployment, operation, and OTA updates. 

Functional Safety and Software Integrity. The DT outputs that influence or support 

control decisions, such as torque estimations, temperature predictions, or fault detection, 

should be classified as Software Safety Elements under ISO 26262. This requires 

performing an Automotive Safety Integrity Level (ASIL) assessment and decomposition to 

determine the safety level each DT function must achieve based on its potential impact on 

vehicle operation and occupant safety. A structured Failure Modes, Effects, and Diagnostic 

Analysis (FMEDA) should be conducted to identify and quantify the risks associated with 

DT estimators, observers, or virtual sensors. Each potential failure mode—such as an 

incorrect torque estimate, delayed thermal response, or corrupted model output—must be 

analyzed for severity, occurrence, and detectability. The DT architecture should include 

safety mechanisms such as range monitoring, plausibility checks, and model confidence 

metrics to detect and isolate unsafe outputs. 

Redundancy and fault containment should be designed into the DT environment. For 

example: 

• Independent physical sensor readings should periodically cross-validate virtual 

sensor outputs. 

• Fallback strategies should be in place to revert to conservative control modes if the 

DT detects inconsistency or model degradation. 

• Safety-critical estimations (e.g., torque or speed) should be separated from non-

critical analytics functions using ASIL partitioning or software sandboxing. 

This layered safety approach ensures that DT-assisted control operations do not 

compromise vehicle integrity, even in the presence of degraded data or model faults. 

Cybersecurity and Data Protection. From a cybersecurity perspective, DT is part of a 

connected data ecosystem spanning the vehicle, edge, and cloud. Consequently, it must 

comply with ISO/SAE 21434 for automotive cybersecurity management. All data flows, 

from real-time vehicle telemetry to cloud analytics, should be secured end-to-end using 

encryption, mutual authentication, and integrity verification. The communication layer 

between the DT instances (vehicle, plant, and cloud) should implement secure transport 

protocols (e.g., TLS over MQTT or DDS Secure) to protect against eavesdropping and 

tampering. Each DT instance, whether local or cloud-based, should possess a unique digital 

identity and operate within a zero-trust architecture that verifies access before every 

interaction. To protect model integrity, all DT models and configuration files must be 

cryptographically signed before deployment. This prevents unauthorized or corrupted 

models from being loaded into runtime environments. For OTA updates, rollback 
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mechanisms must be implemented to restore previous stable versions of the twin or its 

models in case of unexpected behavior after an update. Continuous monitoring of software 

and firmware integrity should be conducted via secure boot mechanisms and runtime 

attestation. Data collected from vehicles, test benches, and production systems should be 

anonymized or pseudonymized before external storage or analysis to comply with data 

privacy regulations such as the General Data Protection Regulation (GDPR). Access control 

policies must ensure that sensitive data, including operational parameters, fleet identifiers, 

and proprietary model structures, are available only to authorized personnel and systems. 

Compliance and Lifecycle Governance. Compliance throughout the DT lifecycle 

requires an integrated governance framework that covers functional safety, cybersecurity, 

and data management. It is important to emphasize the importance of traceability, 

ensuring that every software element, model version, and dataset can be linked to its 

verification evidence, configuration history, and release approval. Key practices include: 

• Maintaining a DT Safety Case, documenting the rationale, validation results, and 

verification evidence supporting the safe operation of DT components. 

• Applying change control procedures for model and data updates, ensuring that each 

modification undergoes hazard assessment and regression testing before 

deployment. 

• Conducting periodic audits and penetration tests on cloud and OTA infrastructures 

to identify vulnerabilities. 

• Integrating safety and cybersecurity assessments into the Continuous 

Integration/Continuous Deployment (CI/CD) pipeline used for DT model delivery. 

Moreover, it is important to establish cross-functional safety and cybersecurity boards that 

oversee risk analysis, incident response, and regulatory compliance. These boards should 

clearly define ownership of DT safety and security across engineering, IT, and operations 

teams. 
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