Light of Life: Product Innovation Al x XR Ed-Tech

Empowering Urban Ecosystem | Sustainability

Patents issued

E:| bus.dev@prozparity.com

https://prozparity.com

Intro - Cultivating Smarter Cities

源 課 邦 PROZPARITY

Where AI, Education & Sustainability Converge

Core Business

"We transform urban spaces into Alpowered, carbon-negative ecosystems using solar greenhouses with embedded XR education – turning buildings into living classrooms and sustainability engines."

Mission

Mission

Democratize sustainable innovation through gamified learning and self-powered urban farming.

Vision

Cities where every building grows food, educates communities, and fights climate change.

Vision

UVP

User Value Proposition

- 1. Al x XR Ed-Tech: 5G-enabled AR "Virtual Farms" turn schools into climate labs.
- 2. Urban Ecosystem: Wireless retrofit kits activate rooftops as community farms.
- 3. Circular Sustainability:
 Blockchain-verified carbon credits + 40% energy savings.

Problem Statement

From Classrooms to Balconies, Tech Gaps Persist

2

Disconnected Ecosystems

Siloed Systems: Hardware, software, and community lack integration.

Industry Gap: No unified solutions for STEM education, smart gardening, and ESG verification.

Complex & Costly Tools:

B2C: 65% abandon smart gardens due to poor

Al guidance (Statista 2023).

Ed-Tech: Schools rely on theoretical apps,

missing hands-on learning.

Ed-Tech Scenario:

Zero hands-on energy/agriculture experience in schooling in schooling.

Scalability Limits

Regional Constraints: 70% of Greenhouses only work in certain regions

or circumstances (AgTech Review 2024)

Impact Issues: Schools doubt green projects; urban farmers lack crop monitoring.

Inaccessible Climate Tech

3

Solution Overview

Login Interface

Software integration

Technological Application

AI- Climate Intelligence

Optimizing Resources, Maximizing Yield Adaptive AI algorithms harmonize HVAC, lighting & irrigation in real-time, cutting energy use by 40% while boosting crop yields 30%.

Modular IoT Ecosystem

Wireless Retrofitting for Zero-Disruption Upgrades

Plug-and-play sensors monitor soil, air, and energy flows, enabling non-invasive building conversions into smart greenhouses.

5G-Enabled Robotics

Precision Automation for Urban Farms

Low-latency 5G controls pollination drones and harvesters (<0.5s response), slashing labor costs 50% in signal-challenged areas.

Cyber-Physical Security

Zero-Trust Protection for Critical Infrastructure

Encrypted device-to-cloud pipelines with intrusion detection safeguard robotic controls and sensitive crop data.

Blockchain-Verified ESG

Transparent Carbon & Resource Tracking

Tamper-proof ledgers quantify solar generation and CO₂ sequestration, generating certified carbon credits for buildings.

Edge Computing Micro- Servers

On-Site Data Processing for Resilience

Solar-powered edge nodes process crop analytics locally, reducing cloud dependency and ensuring 99.9% uptime for critical operations.