

R&D ACTIVITIES OF THE DEPARTMENT OF PROCESS ENGINEERING

Faculty of Mechanical Engineering Czech Technical University in Prague

Assoc. Prof. Ing. Lukáš Krátký, Ph.D.Department of Process Engineering

FACULTY OF MECHANICAL ENGINEERING

STUDY PROGRAMMES:

Bachelor study programme

Mechanical Engineering

Master study programme

- Aeronautics and Astronautics
- Applied Science in Mechanical Eng.
- Automation and Instrumentation Eng.
- Energy and Process Engineering
- Environmental Engineering
- Automotive Engineering
- Manufacturing Engineering
- Robotics and Production Techniques
- Intelligent Buildings
- Nuclear Power Engineering Equipment

Ph.D. study programme

- Applied Sciences in Mechanical Engineering
- Energy and Process Engineering
- Design Engineering and Mechatronics
- Machine and Process Control
- Production and Material Engineering

FACULTY OF MECHANICAL ENGINEERING

17 DEPARTMENTS:

- Department of Technical Mathematics
- Department of Physics
- Department of Mechanics, Biomechanics and Mechatronics
- Department of Instrumentation and Control Engineering
- Department of Fluid Dynamics and Thermodynamics
- Department of Designing and Machine Components
- Department of Energy Engineering
- Department of Environmental Engineering
- Department of Process Engineering
- Department of Automotive, Combustion Engine Engineering
- Department of Aerospace Engineering
- Department of Materials Engineering
- Department of Manufacturing Technology
- Department of Machining, Process Planning and Metrology
- Department of Production Machines and Equipment
- Department of Management and Economics

Practise in ORLEN Unipetrol RPA, Litvínov 9/2022

DEPARTMENT OF PROCESS ENGINEERING

Designing equipment and technologies for chemical, food, processing, pharmaceutical industry and biorefinery since 1951.

> MULTIDISCIPLINARY TRANSFER OF CHEMICAL ENGINEERING AND TECHNOLOGY KNOWLEDGE TO MECHANICAL DESIGN OF APPARATUSSES AND PROCESSING LINES.

HYDROMECHANICAL PROCESSES

KEY ACTIVITIES

- pipeline systems and networks
- pumps and compressors
- filtration, settlers, centrifuges and cyclones
- grinding and milling
- agglomeration of particular materials
- transport and storage of particular materials

- Research and development of technology for purification and recycling of used cooking oils (2021-2024)
- Process characteristic of coalescer (2023-2024)
- Biofilter wih dielectric heating (2016-2019)

MIXING AND MIXING EQUIPMENT

KEY ACTIVITIES

- flow in agitated batch
- mixing of heterogeneous systems
- mixing of non-Newtonian fluids
- heat transfer in agitated batch
- dispergation
- static mixers

- Development of new homogenisation technology for high viscous dispersion of the non-newton type (2018 – 2020)
- Design of mixer optimised for water purification and water treatment processes (2019 – 2020)
- Development of separation technology for the processing of radioactive sludge. (2018 – 2020)
- Local turbulent energy dissipation rate in dispersion systems (2016 2018)

RHEOLOGY

KEY ACTIVITIES

- rotary and extrusion rheology
- viscous, visco-plasticelastic fluids, thixotropy
- rheological properties of industrial substances and fine grained suspensions
- polymer processing technologies

- Model of fibre segregation in dependence on rheological properties of fresh HPC (2021-2023)
- Control and optimization of selected wastewater treatment devices based on inline rheological properties of batch measurement focused on the development of innovated thickening and dewatering equipment (2019-2022)
- > Treatment of concentrated waste suspensions from energetic equipment (2015 2017)
- Physical and rheological properties of collagen matter (2014 2016)

HEAT TRANSFER PROCESSES

KEY ACTIVITIES

- evaporators
- drying and dryers
- direct and indirect ohmic heating
- industrial furnaces
- industrial cooling and cryogenic
- energy balancing of processes, optimization

- Laboratory demonstration unit to dry biologically active substances by nebulization using compressed carbon dioxide (2020-2021)
- Optimization of equipment for biological matter drying by atomization using carbon dioxide (2017-2018)
- > Experimental and theoretical study of the convective heat transfer in turbulent swirling impinging jet (2014 2016)

HEAT EXCHANGERS

KEY ACTIVITIES

design and rating calculations

design, optimization of heat transfer surfaces

experimental verification of hydraulic

characteristics and of heat transfer efficiency

- Plate heat exchangers experimental verification of hydraulic characteristics, heat transfer efficiency, optimisation of heat transfer surface
 - cooperation with TENEZ (from 2014)
- Industrial dryers (fluidised, spray,...)
 - cooperation with MEGA, Bochemie (from 2015)

DIFFUSION SEPARATION PROCESSES

KEY ACTIVITIES

- distillation, rectification
- absorption, adsorption
- crystallisation, dissolution, extraction
- membrane gas cleaning processes
- design of reactors and bioreactors
- technology design, balancing and optimization

- ➤ The innovative system for coke oven wastewater treatment and water recovery with use of clean technologies. (2016-2019)
- Research and Technology Development in Nitric
 Acid Production (2011 2013)
- ➤ Innovation and Optimization of the Technologies for Natural Gas Drying (2009 – 2012)

BIOREFINERY

KEY ACTIVITIES

- waste water treatment and gaseous pollution control technologies
- waste processing in biorefinery concept,
 biofuels 2+, CCU technologies
- analysis and intensification of transport phenomena in equipment
- pretreatment of wastes
- design of equipment, scale-up/down rules
- biorefinery design, optimization, TEA studies

- CCUV4 Green Deal strategies for V4 countries: The needs and challenges to reach low-carbon industry (2022-2023)
- Research centre for low-carbon energy technologies (2018-2023)

NUMERIC ANALYSIS OF PROCESSES

KEY ACTIVITIES

- mathematical modelling and control of processes and equipment
 - use of software Ansys, Femina, Matlab, Fluent
- numerical simulations of mass, momentum and heat transfer
- regression analysis of models

EXAMPLES OF CURRENT PROJECTS:

 Cooperation at the projects being simultaneously solved at R & D activities.

3.56 2.41 1.63 1.10

0.74 0.50 0.34 0.23 0.16

0.10 0.07 0.05

0.03 0.02 0.01 0.01

DEPARTMENT OF PROCESS ENGINEERING

RECENT RESEARCH CHALLENGES

- Reactors and bioreactors.
- Heat transfer apparatuses.
- Special treatment of biomass and flue gas for biorefinery.
- Biopolymers, bioplastics and biocomposites.
- Virtual model technologies, digital twins.

REACTORS AND BIOREACTORS

artic conditions

Process-intensified reactors, photo- and photobio-reactors for multiphase flows.

Modern, process and energy-effective mixing systems.

Innovative multiphase contactors.

Experimental and numeric analysis of simultaneous transfer phenomena.

Dynamic process modelling.

HEAT TRANSFER APPARATUSES - HEAT EXCHANGERS, DRYERS, EVAPORATORS

- Experimental identification and numeric modelling of transfer phenomena.
- Design and rating calculations, mass and energy balancing, and heat recovery.
- Development of heat exchangers for special applications.

 extreme conditions -50°C for turbopropeller aircraft engines
- Design and optimization of heat transfer surface shapes, experimental and numeric analysis.

SPECIAL TREATMENT OF BIOMASS AND FLUE GASES FOR BIOREFINERY

- > Grinding and milling of brittle and fibrous materials experimental particle size analysis, modelling specific energy requirements and particle characteristics.
- > Reactors for hydrothermal pre-treatment experimental studies concerning product quality, effect of cooling/rapid batch decompression, numeric and dynamic process modelling.
- > Experimental analysis and designing simulation models of hybrid technologies for CO₂ capture in concept membrane-X for industrial flue gases.

BIOPOLYMERS, BIOPLASTICS AND BIOCOMPOSITES

- > Forming and mixing of substances.
- > Mechanical, thermo-physical and rheological properties of formed substances.
- > Experimental analysis, numerical modelling and simulation of process characteristics for its production by extrusion, injection moulding, and stamping.
- Design, optimisation and scale-up of equipment.
- > Sustainable design of processing lines, energy recovery.

VIRTUAL MODEL TECHNOLOGIES – DIGITAL TWINS

- Design of model technologies, e.g. CO₂-to X, Power-2-X strategies, energy optimization
 of technological sets or production lines. The impact on safety, energy recovery by PINCH analysis, use of
 renewable energy systems, and a lifetime of the technology.
- Virtual digital twins or model technologies in the form of parametric models concerning P&D standards.
- Techno-economic studies and sensitivity analysis on process parameters.

CONTACT PERSONS

Prof. Ing. Tomáš Jirout, Ph.D.
Vice-dean for Academic and Research Affairs
the Head of the Department

Department of Process Engineering Tomas.Jirout@fs.cvut.cz +420-224-352-681

Assoc. Prof. Ing. Lukáš Krátký, Ph.D. The biorefinery group of the Department.

Department of Process Engineering Lukas.Kratky@fs.cvut.cz +420-224-352-550

