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Abstract: The purpose of this research is to develop an innovative software framework with AI
capabilities to predict the quality of automobiles at the end of the production line. By utilizing machine
learning techniques, this framework aims to prevent defective vehicles from reaching customers,
thus enhancing production efficiency, reducing costs, and shortening the manufacturing time of
automobiles. The principal results demonstrate that the predictive quality inspection framework
significantly improves defect detection and supports personalized road tests. The major conclusions
indicate that integrating AI into quality control processes offers a sustainable, long-term solution for
continuous improvement in automotive manufacturing, ultimately increasing overall production
efficiency. The economic benefit of our solution is significant. Currently, a final test drive takes
10–30 min, depending on the car model. If 200,000–300,000 cars are produced annually and our data
prediction of quality saves 10 percent of test drives with test drivers, this represents a minimum
annual saving of 200,000 production minutes.

Keywords: automotive manufacturing; quality control; defect detection; AI framework; production
efficiency; predictive maintenance; data analytics; predictive quality inspection; machine learning

1. Introduction

In recent years, advancements in technology have significantly impacted the manufac-
turing industry, particularly in enhancing quality control (QC) and quality management
(QM). These advancements have led to the development of sophisticated predictive main-
tenance solutions aimed at improving the efficiency and reliability of industrial equipment.
Traditional QC and QM methods, such as Six Sigma and Lean Manufacturing, focus on re-
ducing variability and improving process efficiency [1,2]. However, there is a growing need
for more advanced methodologies that leverage real-time data analysis and AI capabilities
to predict quality issues in manufacturing processes [2,3].

1.1. Existing Research Methods

Traditional methodologies in QC and QM often involve manual inspections and stan-
dard statistical techniques. The Cross-Industry Standard Process for Data Mining (CRISP-
DM) [4] is a widely adopted framework for implementing predictive strategies in quality in-
spection. These methodologies include steps like business understanding, data understand-
ing, data preparation, model training, evaluation, deployment, and regular reassessment.

Despite the effectiveness of traditional methodologies, they often fall short of address-
ing the dynamic nature of modern manufacturing processes. Traditional methods may not
adequately support continuous improvement and real-time data analysis, which are crucial
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for maintaining high-quality production standards. Additionally, the lack of integration
with advanced AI techniques limits the ability to provide actionable insights promptly and
accurately [5].

1.2. Problems to Be Solved by the Proposed Methodology

The proposed project seeks to address the limitations of existing QC and QM methods
by implementing a more agile and iterative approach to predictive quality inspection [6].
By integrating AI into these processes, the framework will enable real-time analysis and
decision-making to provide accurate, quality predictions [7]. This integration ensures
continuous improvements in production processes within automotive manufacturing
plants, offering a sustainable, long-term solution for predicting automobile quality at the
end of the production line. The principal results show significant improvements in defect
detection and support personalized road tests, thus enhancing production efficiency and
reducing costs.

Another important goal of the implementation was to address the constant change
in defect types as production quality managers eliminated detected defects in subsequent
productions. This meant that while old defects were no longer occurring, new defect types
were appearing. We solved the problem by designing and implementing an automated
self-learning machine learning framework (AutoML) that runs at defined time intervals.

The AutoML framework implemented in our current project includes capabilities for
model selection, hyperparameter optimization, and continuous learning. By automating
these processes, the framework ensures that the most appropriate machine learning models
are always used, even as production conditions and defect characteristics change. This
approach not only improves the accuracy of defect detection but also significantly reduces
the time required to update and deploy new models, improving the overall efficiency of
the production line.

In addition, AutoML facilitates the integration of diverse data sources, enabling the
system to utilize a wide range of input variables from different stages of the manufacturing
process. In one of our previous automotive projects, the AutoML system was instrumental
in correlating data from multiple sensors and production stages, resulting in the early de-
tection of subtle defect patterns that would have been difficult to identify using traditional
methods. By using AutoML, we have been able to create a robust, adaptive system that
continuously improves its predictive accuracy and relevance, ensuring that the quality
inspection process is more effective.

2. The Background of the Study

Final quality inspection is a dynamic process. Based on the checkup stance capacity
and test duration, it is often not possible to perform a thorough analysis for every product
made. Such an inspection would be impossible from a time and financial point of view.
Additionally, if the production process is well established and errors occur only rarely,
it will not be necessary to conduct such an inspection on each piece produced. Random
selection is often the first choice if some of the products shall be excluded from costly
inspection. Targeting products with a higher probability of deviations, however, would
result in more precise selection, saving expenditures from inspecting flawless products and
decreasing the average production time. After passing the entire production process, the
finished car is subject to a thorough analysis and tests, during which a group of experienced
specialists determines whether the car meets rigorous quality standards. If any anomalies
are found, the defective part of the car, whether it is an individual component or a series of
them, must be reworked. The order, number, and depth of these inspections are set by each
plant differently depending on the quality assurance strategy.

(1) Use Case 1: The road test is conducted at the end of the final inspection series as
the very last test. Only a certain percentage of the vehicles produced are sent to the
road test. The cars are selected randomly, which reduces the accuracy of targeting
only the cars presumed to have defects. Combined with the fact that the testing
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process requires 20–30 min per car and personal capacities, the process is currently
ineffective, and only 1–3% of cars are faulty in the rod test. Therefore, the selection
strategy needs to be optimized. In this case, using AI is recommended as it is very
effective for detecting unknown correlations among various input parameters and, in
doing so, detects disturbance features very early. This allows action to be taken at an
early stage—before the final product is sent to the customer—and economic damage
to be limited. The aim is to increase the testing results by at least 400%, as per the
market requirement. This means that, ultimately, fewer cars with failures will reach
the final customer.

(2) Use Case 2: The road test is conducted as the third test within the final inspection
series. All vehicles produced are tested, even though the number of errors found is
relatively small. This test is thus economically and personally challenging, as the
duration of the RT lasts between 20 and 30 min, depending on the model. As proof of
concept, the main aim is to lower the number of cars undertaking the RT by at least
10% and target the cars presumed to be flawless. Since the production cycle of one
car takes 10–50 h and between 100,000 and 400,000 cars per year are produced, this
would represent about 400,000 min per year saved on production time costs.

For both use cases, it is also necessary to note that to maintain high quality, the
overall accuracy of the algorithm should reach at least 85%, as this is a specific requirement
of the market.

3. Related Work
Research Methodology

The focus of our research methodology is to develop a predictive quality inspection
framework using advanced machine learning (ML) techniques. This framework aims
to enhance quality control (QC) and quality management (QM) processes in automotive
manufacturing, offering a sustainable, long-term solution.

1. Data Collection: Data are collected from various stages of the automotive manufactur-
ing process, including production data, defect logs, and the final inspection results.
This comprehensive data collection process ensures the models are trained on diverse
scenarios and potential defect types.

2. Data Preprocessing: The collected data are cleaned and normalized through prepro-
cessing. This step involves handling missing values, normalizing numerical features,
and encoding categorical variables. Effective preprocessing is crucial for ensuring the
quality and reliability of ML models.

3. Model Training: Multiple ML algorithms are employed to train the predictive models.
The algorithms used include Decision Trees, Bayesian classifiers, K-Nearest Neighbors,
Support Vector Machines, Logistic Regression, and Ensemble Methods. Each algo-
rithm is evaluated for its performance in predicting defects, and the best-performing
models are selected for deployment.

4. Evaluation: The trained models are evaluated using metrics such as accuracy, pre-
cision, recall, and F1 score. Confusion matrices are used to assess the performance
of the models in detecting defects. The models are also tested on historical data to
ensure their robustness and reliability.

5. Deployment: The best-performing models are deployed in the production environ-
ment. This involves integrating the models with existing QC and QM systems to
provide real-time predictions and insights. The deployment process includes setting
up infrastructure for data ingestion, model inference, and result visualization.

6. Continuous Improvement: The deployed models are continuously monitored and
retrained on new data to ensure their effectiveness over time. This involves setting up
automated pipelines for data collection, preprocessing, model training, and deploy-
ment. Regular reassessments and model updates are crucial for adapting to changes
in the manufacturing process and improving predictive accuracy.
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Previous studies have explored various methodologies for enhancing QC and QM
processes. Traditional methods, such as Six Sigma and Lean Manufacturing, focus on
reducing variability and improving process efficiency [1,2]. However, these methods often
lack real-time data analysis and AI capabilities.

Several studies have investigated the application of ML and AI in QC and QM. For
example, ref. [8] discusses using artificial neural networks [9] (ANNs) for predicting
product quality in plastic molding processes. Integrating IoT and Big Data into QM has
also been shown to enhance decision-making and process efficiency [5]. However, these
studies primarily focus on specific use cases and lack a comprehensive framework for
continuous improvement.

Our research addresses these limitations by proposing a holistic and agile approach to
predictive quality inspection. By integrating advanced ML algorithms and continuously
updating the models based on new data, the proposed framework aims to provide a
sustainable and effective solution for automotive manufacturing.

4. Materials and Methods

Based on extensive research and experience in processing Big Data and delivering
predictive maintenance solutions, we amended and extended existing data mining method-
ologies into a framework for proposing and implementing a predictive strategy for qual-
ity inspection. We adapted the renowned and universally acknowledged CrossIndustry
Standard Process for Data Mining (CRISP-DM) [4] to reflect the issue of continuous im-
provement in production and to ensure a durable solution for a customer. The CRISP-DM
is a process model stemming from 1996 that was developed by the CRISP-DM consor-
tium, consisting of DaimlerChrysler (later Daimler-Benz) Stuttgart, Germany, SPSS (later
ISL) Chicago, IL, USA, NCR Systems Engineering Copenhagen, Denmark, and OHRA
Verzekeringen en Bank Groep B.V. Arnhem, The Nederlands, with the aim of providing
a universal strategy enabling the implementation of complex data mining projects. The
framework includes the following crucial steps (as depicted in Figure 1):

• A: Business Understanding;
• B: Data Understanding;
• C: Data Preparation;
• D: Model Training;
• E: Evaluation;
• F: Deployment;
• G: Regular reassessment.

Improving production based on a regularly conducted analysis is characteristic of
the manufacturing process in Industry 4.0. As there is a huge amount of data available
to company analysts, production planners learn from previous defects, and production
is constantly improving and evolving. Improvements in the manufacturing process and
evolution in defects represented major challenges when developing the proposed strategy.

Therefore, in contrast to previous implementations such as those in [5], we proposed
and implemented predictive quality inspection as a circular process, repeating the indi-
vidual steps and following the business strategy goals throughout the entire process, not
only at the beginning. An agile approach to solving the individual steps is crucial, as
the development of both digital technologies and QM strategies is immense. The mere
monitoring and maintenance of the deployed solution cannot be sustained in the long term.

Relying only on monitoring and maintenance is not sustainable, and omitting planning
and implementing post-deployment strategies often leads to project termination after the
proof-of-concept phase.

Hence, regular model recalibration and retraining are prerequisites for a sustainable
solution. Furthermore, a constant reassessment of business strategy goals and the long-term
suitability of the deployed solution is of central importance for the whole process. The
standard data analysis methodology is implemented within the framework, which we also
described in [10].
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4.1. Business Understanding

Properly determining the objectives and requirements can save time and money in
future steps. Even if the same issue is being solved, different requirements may occur based
on the customer’s expectations or available sources.

Each type of manufacturing process, with specific process attributes, should be in-
dividually assessed to determine the suitability of using individual algorithms. Among
others, the following goals will be taken into consideration:

• Increase the quality of production and the safety of the car for the end customer;
• Save production costs;
• Increase the availability and efficiency of production lines;
• Optimize the selected production parameters;
• Save production resources and materials;
• Save energy, CO2, water, etc., in production.

4.2. Data Understanding

Inspecting and obtaining relevant data is the first and most important step in the
whole data mining process. A thorough analysis of the whole process shall be conducted
within the plant in cooperation with the customer, and crucial data sources for the future
predictive model shall be proposed. Potential problems with the data will be identified.

4.3. Data Preparation

Data obtained from various data sources should then be regularly adjusted and bulked
to a data lake in agreed time slots. Data preprocessing includes data selection, cleansing,
format processing, and/or data construction.

The data lake shall be selected based on different criteria, including costs, reaction
time, and the type and amount of data. If there is a data lake already available within the
business infrastructure, it is often an advantageous choice to add other data sources.
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4.4. Model Training

In this section, we evaluate the methodological advantages of various binary classifi-
cation methods used in our predictive quality inspection framework. Each method offers
unique strengths and is suitable for different aspects of our application. By comparing these
methods, we aim to highlight their specific benefits and demonstrate their effectiveness in
predicting the quality of automobiles at the end of the production line. This comparison
provides a clear rationale for selecting appropriate models based on the characteristics of
the data and the requirements of the prediction tasks.

The methods evaluated include XGBoost, Linear Regression, Logistic Regression,
K-Nearest Neighbors (KNN), Naive Bayes, Decision Tree, Support Vector Machine (SVM),
and CatBoost. Below, we discuss each method’s advantages, supported by relevant sources.

XGBoost (Extreme Gradient Boosting)

XGBoost is a highly efficient and powerful implementation of gradient boosting. Its
speed and performance are achieved through parallel processing and hardware optimiza-
tion, making it suitable for large datasets and complex models. XGBoost has a built-in
mechanism to handle missing data effectively, saving significant preprocessing time. It
includes L1 and L2 regularization techniques, which help prevent overfitting by penalizing
complex models. Additionally, XGBoost provides a way to measure the importance of each
feature, aiding in feature selection and model interpretation. Its flexibility allows it to be
applied to various types of data and problems, not just binary classification [11].

Linear Regression

Linear Regression is known for its simplicity and ease of implementation. It works
best when the relationship between the independent and dependent variables is linear.
Linear Regression is computationally efficient and fast, particularly for smaller datasets.
This method is highly interpretable, as the coefficients directly indicate the relationship
between each feature and the outcome, making it easy to understand and communicate the
results. However, its application in binary classification is limited as it is fundamentally a
regression technique [12,13].

Logistic Regression

Logistic Regression is widely used for binary classification due to its ability to provide
probabilistic outputs for class membership. This can be particularly useful for decision-
making processes where understanding the probability of an outcome is important. The co-
efficients in Logistic Regression are easy to interpret in terms of odds ratios, which provide
insights into the influence of each feature on the outcome. Logistic Regression is computa-
tionally efficient and simple to implement. Moreover, it supports regularization techniques
like L1 and L2, which help prevent overfitting and improve generalization [14,15].

K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is an instance-based learning algorithm that is simple and
easy to implement. It makes no assumptions about the data distribution, making it versatile
for various types of data. KNN can capture complex patterns in the data through its non-
parametric nature. It is also intuitive, as the classification decision is based on the majority
class among the nearest neighbors. However, KNN can be computationally expensive for
large datasets as it requires storing and searching through all training examples [16,17].

Naive Bayes

Naive Bayes classifiers are simple, fast, and effective for many binary classification
problems. They are based on Bayes’ theorem and assume conditional independence
between features, which often works well in practice despite being a strong assumption.
Naive Bayes is particularly useful for high-dimensional datasets and performs well, even
with limited training data. It also provides probabilistic outputs, which can be useful for
decision-making processes [18,19].
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Decision Tree

Decision Trees are highly interpretable models that split the data into subsets based on
feature values. They can capture non-linear relationships and interactions between features
without requiring any assumptions about the data distribution. Decision Trees are easy to
visualize, making them useful for understanding and communicating the decision-making
process. They can also handle both numerical and categorical data [20,21].

Support Vector Machine (SVM)

Support Vector Machines are powerful classifiers that work well for both linear and
non-linear classification problems. They use kernel functions to transform the data into
a higher-dimensional space, where it is easier to separate the classes with a hyperplane.
SVMs are effective in high-dimensional spaces and are robust to overfitting, particularly in
cases where the number of dimensions exceeds the number of samples. They also provide
flexibility through the choice of different kernel functions [22,23].

CatBoost

CatBoost is a gradient-boosting algorithm specifically designed to handle categorical
features without extensive preprocessing. It automates the handling of categorical variables,
reducing the need for manual feature engineering. CatBoost also includes techniques to
combat overfitting, such as ordered boosting, which ensures that the model’s predictions
are less biased. It is efficient and scalable, making it suitable for large datasets and complex
models [24].

After the data are analyzed and prepared in the data lake, model training can be
conducted. Based on the data analysis, predicting the final car quality was assessed as a
binary classification problem (OK/NOK state). A binary classification solution typically
includes applying Logistic Regression, K-Nearest Neighbors, Decision Trees, Support
Vector Machines, or Naive Bayes algorithms. If a larger number of features are included,
boosting algorithms [25] with masking might also bring competitive results.

Below, we present examples of the use of algorithms for binary classification.
The issue of error detection in industrial production is addressed in [26]. The paper

compares the use of Linear Regression and the XGBoost algorithm. The XGBoost algorithm
turned out to be superior, achieving a better score. According to the author, Linear Re-
gression, on the other hand, can reveal the impact of factors on the detection of faults in
production parts.

In another paper, the authors focus on the use of Logistic Regression in the field of
“Credit Card Fraud Detection” [27]. They achieved a very high accuracy value of 0.99. The
administrator can detect fraud within the dataset of bank transactions through the software
application. A weakness, as admitted by the authors themselves, is in the detection of
online fraud. This will be the subject of further research.

Sometimes, a combination of algorithms helps in failure detection, as is the case in [28].
This involves the detection of motor bearing failures using feature extraction based on
Spectral Kurtosis coupled with K-Nearest Neighbor Distance Analysis.

In [29], the authors concentrate on the task of detecting epileptic seizures through
the analysis of EEG signals both in healthy subjects and those diagnosed with epilepsy.
The detection methodology is predicated on the discrete wavelet transform (DWT) of EEG
signals, employing both linear and non-linear classifiers. Specifically, the detection was
executed by applying the Naive Bayes (NB) and K-Nearest Neighbor (K-NN) classifiers to
statistical features derived from DWT. The findings reveal that the NB classifier demon-
strated superior accuracy and efficiency in computational time in nine distinct datasets. In
contrast, in four datasets, the K-NN classifier yielded enhanced precision but necessitated
increased computational time.

In the current scientific landscape, an interesting use case is outlined in [30], in which a
classification approach to predicting beef knuckle quality was researched using the Decision
Tree and Naive Bayes methods. In this study, the authors describe the prediction of quality
based on attributes such as the cooking water temperature, order time, second immersion,
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water volume, third immersion water volume, and amount of salt used. An important
attribute included in the algorithm is not only the cooking process but also the subsequent
drying process, i.e., the sequence and duration of each step. In addition, the weights of
the animals, imperfections in the meat, qualitative parameters for meat evaluation, quality
of transport services, etc., are taken into account. For the prediction, the classification
algorithms C5.0 for Decision Tree and Naive Bayes were compared within the application
system RapidMiner version 9.1. The Decision Tree showed an accuracy of 70%, while Naive
Bayes showed an accuracy of 82%. This work underlines the importance of comparing
different types of algorithms.

Another notable instance of binary classification is the statistical technique Support
Vector Machine (SVM). References [31,32] present research on a Support Vector Machine-
based assessment system on shift quality for vehicles. The study focuses on forecasting the
standard of an automobile’s automatic transmission when it undergoes its final test drive
toward the end of production.

The authors utilized an objective analysis, comparing sound signals by drivers with
evaluations from sound sensors. The input data included sounds produced during au-
tomatic gear shifting, fuel consumption, and comfort ride evaluation. The model was
trained on one type of car but has the ability to be applied to other types, thus predicting
the quality of gear shifts. They utilized generalization in the SVM to achieve the results.
The authors addressed a similar issue of predictive quality as the one we describe in this
paper with the XGBoost algorithm in [33]. Multistage Quality Control is to be improved by
applying machine learning to the automotive industry. Within the manufacturing process,
the qualitative and safety indicators of the product (car) are monitored throughout pro-
duction, if possible, but primarily at its conclusion. Sometimes, it is no longer feasible to
repair the product, leading to its disposal. Alternatively, repair becomes time-consuming
and financially burdensome. Although quality indicators within individual production
steps show no defects and are evaluated as OK, at the end of the production cycle, they are
evaluated as NOK. As mentioned by the authors in the cited work, during the assembly of
car body parts into a complete three-dimensional shape, the perceptron evaluated geomet-
ric indicators such as NOK. Through a correlation analysis of the process and subsequent
identification of an appropriate algorithm, they were able to predict error states. Similarly,
in our research project described in this article, the Boost algorithms showed the best
attribute values for accuracy and precision in the confusion matrix. We have had similar
examples with our automotive production clients, such as compressors in the paint shop,
where the interrelation of process attributes like pressure, revolutions, and current affects
the final quality of the paint. Another example is the influence of torque sequences when
tightening crucial structural bolts in cars. Neither humans nor devices (Perceptron for
chassis alignment, Quality Eye Dog for paint quality identification, among others) can
assess the influence a complex set of process attributes will have on the final quality and
safety of a product. They can only judge from the perspective of localized measurement.
However, with the mentioned algorithms, it becomes possible to automate this evaluation.

The introduction to CatBoost presented in [24] revealed the advantages of CatBoost as
the implementation of ordered boosting, a permutation-driven alternative to the classic
algorithm, and an innovative algorithm for processing categorical features, effectively
solving the issue while reaching excellent empirical results. Recent publications reveal
its effectiveness both in classification as well as regression tasks in the fields of economy
and finance, meteorology, public health and medicine, psychology, marketing, geology,
and other fields. The authors of [34] used CatBoost to predict loan defaults in peer-to-peer
lending. The authors of [35] utilized it for recognizing daily life activities to promote
healthier lifestyles and well-being. The authors of [36] aimed at predicting reference
evapotranspiration in humid regions, while [37] used it to screen anxiety and depression
among seafarers, and [38] used it for predicting online shopping behavior from click-
stream data. The authors of [39] combined the CatBoost algorithm [40] with sequential
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model-based optimization for a real-time hard-rock tunnel prediction model for rock mass
classification in geology.

In the context of this study, machine learning (ML) methods have been utilized to
address various challenges in quality inspection and binary classification. To provide
a clearer understanding of the existing literature and its relevance to our research, the
references have been categorized into two distinct groups. The first group comprises
studies that specifically focus on applying ML techniques within the domain of quality
inspection, demonstrating the efficacy of these methods in detecting defects and improving
production processes. The second group includes references that, while not directly related
to quality inspection, explore the application of ML algorithms in other fields, particularly
those involving binary classification problems. This distinction allows us to highlight
the broader applicability of these methods as well as their specific impact on quality
control in manufacturing.

Group 1—Using ML Methods in Quality Inspection:

1. Reference [26]: Discusses error detection in industrial production using Linear Regres-
sion and XGBoost algorithms, with XGBoost achieving superior results.

2. Reference [28]: Addresses motor bearing failure detection using feature extraction
based on Spectral Kurtosis combined with K-Nearest Neighbor Distance Analysis.

3. Reference [33]: Describes the improvement of multistage quality control in the auto-
motive industry through machine learning.

4. References [31,32]: Research based on Support Vector Machines (SVMs) for assessing
shift quality in vehicles.

5. Reference [30]: A case study on predicting beef knuckle quality using Decision Tree
and Naive Bayes methods.

Group 2—Using ML Methods for Other Purposes Regarding Binary Classification:

1. Reference [25]: Discusses the use of boosting algorithms with masking, which
can yield competitive results when a large number of features are included in
binary classification.

2. Reference [29]: Focuses on detecting epileptic seizures through EEG signal analysis
using Naive Bayes and K-Nearest Neighbor classifiers.

3. Reference [24]: Introduces the advantages of the CatBoost algorithm, including its
effectiveness in both classification and regression tasks.

4. References [34–39]: Describe the application of CatBoost across various fields, includ-
ing predicting loan defaults, recognizing daily life activities, forecasting evapotranspi-
ration, screening anxiety and depression, predicting online shopping behavior, and
forecasting geological properties.

5. Reference [27]: Explores the use of Logistic Regression in the field of credit card
fraud detection.

4.5. Evaluation

Trained models should always be double-checked against the current business strategy
objectives. Obviously, before the model is to be deployed, overfitted models shall be
excluded from the final decision-making step. It is proposed that the behavior of the model
should be studied to understand how the prediction will change. If we apply a regression
model and plot the predictions as a graph, as shown in Figure 2, then the peaks of this
graph will be the predictions made by the model. The graph shows how each prediction
is positioned relative to zero and one. In other words, it shows how confident the model
is that the prediction belongs to one group or another. If the prediction is 1, then, from
the point of view of the model, we can interpret this as close to a 100% probability that it
is really 1. The same goes for predictions, the peaks of which are equal to 0 on the graph.
From the model’s point of view, everything else has a probability between 0 and 1. Here,
it becomes possible to independently regulate the level of probability, for which it can be
assumed that the prediction is 0 or 1, thus regulating precision and recall.
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4.6. Deployment

The model best fitting the set business strategy goals shall be implemented into the
application programmed to fulfill the users’ needs. It does not include the machine learning
model deployment alone. Instead, the development and deployment of the whole solution
must be planned and conducted, including the following:

• Automatically obtaining and storing data, which become important for gradual learn-
ing and online result presentation;

• Implementing the prediction model and connecting it to the presentation layer;
• Developing the presentation layer of the final application so that it fulfills the require-

ment specification and, in addition to the AI model, the strict rules defined by the
experienced quality inspectors might be amended;

• Deploying the ML layer;
• Deploying the presentation layer;
• Planning, developing, and deploying monitoring and maintenance in the form of a

regular report or analytical evaluation dashboard;
• Planning and deploying a strategy for regular algorithm retraining and reassessment.

4.7. Regular Reassessment

Constant production improvement can present further challenges when introducing
predictive approaches to maintenance or quality processes, as the problems faced last
summer might not be present this year. The standard 12-month data training set and
the application of the Champion model do not apply in this case. Regular algorithm
reassessment and recalibration are musts to constantly improve the manufacturing process.
Moreover, regularly updating the business strategy and defining new goals are often
necessary in the rapidly evolving business and production environment of a factory. Hence,
the self-learning capability of the algorithm needs to be assured since the whole production
process is fine-tuned and avoids repeating old errors. At the same time, new errors and
problems are created, sometimes by changes at the production line or by changes in
individual vehicle parts because of issues at the supplier side.

5. Results

We implemented the presented framework into predictive quality inspection during
the road test at two different automotive plants. Although there are different processes
in car manufacturing and different goals were set for their implementation, the proposed
framework could have been utilized in both factories, bringing automation to quality
inspection by predicting car defects during road tests.



Sensors 2024, 24, 5644 11 of 19

Business understanding

• UC1: A road test represents the very last test within the quality inspection. It is
oriented toward checking undesirable sounds in a car. The road test was appended.
The aim was to determine the final quality of the car at the road test as either OK or
NOK with the highest possible accuracy. The cars predicted to be NOK should have
been recommended for the road test. The number of tested cars was expected to reach
approximately 10% of the total production.

• UC2: Reducing the number of cars sent to the road test was identified as the main goal
for the second use case, starting with diminishing the total count of tested cars by 10%.
The selection process was supposed to be conducted in a way that preferred omitting
cars with the highest probability of being OK in the road test. The number of tested
cars will be approximately 90% of the total production.

Understanding and preprocessing the data

To facilitate the selection of an optimal data mining strategy, a comprehensive un-
derstanding of the data is paramount. The following data sources were used for the
primary analysis:

• Audit data from the body shop, paint shop, and assembly process;
• Selected process data from production;
• Defects were identified at road tests.

The foundation of our analysis rests on a dataset encompassing the historical quality
of cars.

By thoroughly examining the offline data acquired over a period of 12 months, we
embarked on a preliminary analysis to determine the pertinent information for data mining
purposes. We meticulously scrutinized the format, quantity, and occurrence of the data,
unraveling the intricate relationships among its various attributes while evaluating its
quality and cleanliness.

• UC1: In this case, the data were presented in tabular form with 165,988 rows and
19 columns. An analysis of the data revealed a number of problems/shortcomings that
were eliminated before they were transferred to the model. One of these shortcomings
was the classic duplication of some strings (this error most likely occurred when
writing the database). Furthermore, although each column was unique, some of
them had duplicate information. The only difference was in the form in which this
information was recorded. Thus, these columns were only redundant. Some of the
columns by themselves did not carry any useful information to solve the problem;
these were also eliminated from the data.

• UC2: The dataset was organized in tabular form, comprising a frame size of 399,133 rows
and 19 columns. Upon conducting our analysis, we unearthed several inconsistencies
within the dataset. These discrepancies included the presence of multiple car models,
despite the originally agreed intention to focus solely on a single model. We also
discovered quality events that were captured after the road test, rendering their
inclusion in the prediction process inappropriate. Additionally, certain event types
featured duplicate information with disparate identifiers, and some cars exhibited
multiple results from the road test. Furthermore, we encountered instances of missing
values for one of the attributes, further complicating the integrity of the data.

The dataset preprocessing phase encompassed a series of sophisticated steps, en-
suring its suitability for subsequent analysis. These steps encompassed data conversion,
parsing when necessary, eliminating both quantitative and logical duplicates, and eval-
uating the target variable, necessitating its transformation into a format amenable to the
model’s requirements.

The data underwent a meticulous cleansing process involving the removal of redun-
dant features from the original set. Attributes were identical across all cars, and those
directly identifying a car were removed. Furthermore, pseudo-errors of the “no fault found”
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type were eliminated from the training process as they did not meaningfully contribute
to the analysis. Following this, a type conversion from Integer to Categorical Input was
performed for several attributes, aligning the feature representations with the nature of
the information they conveyed. To appropriately handle the nominative error variable, we
applied the OneHotEncoder approach. To augment the initially acquired datasets, we intro-
duced additional attributes derived from a combination of existing features, the occurrence
numbers of specific characteristics, and temporal units such as months or calendar weeks.

Data integration

Data utilized for the present predictive quality inspection were collected from original
relational databases and transformed and bulked into a data lake, which was subsequently
used as the data source for both model training and online predictions. Based on the
previously conducted offline analysis, we identified meaningful data sources. Most of
the data were obtained utilizing a pipeline system. Conducting data preprocessing while
obtaining data enables us to fill the data lake with data already being processed and
ready to be analyzed. To avoid overloading the source database, all pipelines work with
incremental data only. Data that are not available from source databases in real-time were
sent to the data lake directly via TCP/IP and MQTT protocols from the production systems,
as presented in the actual data flow depicted in Figure 3.
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Model training and evaluation

Prior to training individual models, we established a comprehensive test design to
ensure the accurate evaluation of the models. Our objective was not only to assess the
performance of the data during the training and testing periods but also to obtain reliable
models through rigorous validation and cross-validation procedures. To achieve this, we
partitioned the data into distinct sets for training, testing, and validation. Specifically, we
adopted the following test design:

• Training set: 70% of the data;
• Test set: 30% of the data;
• Validation set: Data from a time period not covered by the previous sets, ideally

encompassing the last 2–3 months of the most recent 30%.
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As an initial and intuitive approach for binary classification, we opted to train com-
monly used models, including a Decision Tree classifier, Random Forest classifier, Support
Vector Classifier (SVC), Logistic Regression, K-Nearest Neighbors classifier, XGBoost, and
Catboost. Both ensemble algorithms and regressors present viable solutions for failure
prediction. However, the appropriate configuration, preprocessing of input data, and
validation of results across different time periods are crucial for obtaining reliable models.

UC1: Several different vehicle types with the same platform were part of this use
case. Approximately 10% of the produced cars are to undergo the road test. The aim of the
project was to target faulty cars and test them. Table 1 presents the results of predicting
different models on raw data. The data underwent only primary processing, such as that
described above. No feature engineering was applied. Classification algorithms were also
not configured but used with default settings. In Table 2, the results of the algorithms with
default settings are presented but with modified data. The usual OneHotEncoding was
used for several key features.

Table 1. UC1: Results of predicting different models on raw data.

Classifier Accuracy Precision Recall

Decision Tree Classifier 0.79 0.23 0.23

Random Forest Classifier 0.86 0.28 0.03

SVC 0.87 0.11 0.00

Logistic Regression 0.87 0.00 0.00

KNeighbors Classifier 0.85 0.16 0.03

XGBoost 0.85 0.24 0.06

CatBoost 0.86 0.30 0.02

Table 2. UC1: Results of predicting different models on modified data.

Classifier Accuracy Precision Recall

Decision Tree Classifier 0.92 0.71 0.62

Random Forest Classifier 0.91 0.90 0.32

SVC 0.87 0.00 0.00

Logistic Regression 0.87 0.00 0.00

KNeighbors Classifier 0.85 0.16 0.03

XGBoost 0.94 0.88 0.59

CatBoost 0.94 0.91 0.59

CatBoost provided the best results in the training/testing sets, reaching the following
metrics: accuracy, 0.9379; precision, 0.9083; and recall, 0.589. Validation was carried out on
new data that the algorithms had not yet processed. According to the validation results,
the algorithm allowed for the number of checked cars to be reduced from 1530 to 202, and
99.09% of the cars were predicted to be OK as they had not demonstrated any errors. The
selected CatBoost strategy promised 59% of correctly predicted NOK cars. The proposed
solution was accepted by the customer and deployed. The validation results are displayed
in Table 3. After deployment, the Champion model reached approximately 30% NOK
cars, which still represents a major increase compared to the ca. 5% standard NOK rate
previously reached with random selection.
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Table 3. UC1: Validation results for the time-independent dataset.

Classifier OK NOK Value Relations, Percent

Pred OK (CatBoost) 1316 12 99.09%
Pred NOK 83 119 58.91%

Value relations, percent 94.07% 90.83%

Pred OK (Tree) 1277 51 96.16%
Pred NOK 77 125 61.88%

Value relations, percent 94.31% 71.02%

Pred OK (RandomF) 1321 7 99.47%
Pred NOK 138 64 31.68%

Percent 97.2% 90.14%

Pred OK (KNeigh) 1296 32 97.59%
Pred NOK 196 6 2.97%

Value relations, percent 86.86% 15.78%

Pred OK (XGBoost) 1312 16 98.79%
Pred NOK 83 119 58.91%

Value relations, percent 94.05% 88.15%

UC2: The aim was to reduce the number of cars undergoing the quality test while
detecting as many NOK cars as possible. Two different car models were to be predicted:
an established model and a newly introduced model. We trained different models on raw
data, i.e., without OneHotEncoder. The overall results of the work of various algorithms for
pure, unmodified data are displayed in Table 4. In this case, the models are not fine-tuned;
they are used “out of the box.”

Table 4. UC2: Results of predicting different models on raw data.

Classifier Accuracy Precision Recall

Decision Tree Classifier 0.77 0.21 0.21

Random Forest Classifier 0.85 0.31 0.03

SVC 0.85 0.00 0.00

Logistic Regression 0.84 0.00 0.00

KNeighbors Classifier 0.84 0.19 0.03

XGBoost 0.85 0.41 0.06

CatBoost 0.86 0.56 0.02

To generate additional features, we suggested using OneHotEncoder for the nomina-
tive features of the most important categorical attributes. Ensemble algorithms work best
in this situation. The results are visualized in Table 5. Vehicle Type 1 is an established car
model, with production already tuned up. According to the training/testing sets, using the
Champion model would enable us to reduce the number of cars undergoing the quality
test from 3325 to 419 while aiming for 91.5% of NOK cars. To validate the results, data from
an independent time period were used. The validation results indicate that targeting NOK
cars was reduced to 84.62%.

Vehicle 2 was a new vehicle with a ramp-up phase, a high error rate, and no previous
experience with the car. The decision was easier as the ratio of NOK cars was relatively
high. Validation after several algorithm adjustments and after the start phase revealed
that the number of NOK cars is considerably lower, but the algorithm still maintains its
NOK target at 87.77%. These numbers were accepted by the customer, and the models
were deployed for production. The confusion matrices for the validation sets are depicted
in Table 6.
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Table 5. UC2: Results of predicting different models on modified data.

Classifier Accuracy Precision Recall

Decision Tree Classifier 0.93 0.75 0.76

Random Forest Classifier 0.96 0.98 0.71

SVC 0.86 0.00 0.00

Logistic Regression 0.86 0.00 0.00

KNeighbors Classifier 0.84 0.19 0.03

XGBoost 0.95 0.95 0.77

CatBoost 0.96 0.99 0.71

Table 6. UC2: Confusion matrices for the CatBoost algorithm applied to validation sets; data are
displayed per vehicle type.

Vehicle Type 1 OK NOK Value Relations, Percent

CatBoost

Pred OK 595 28 95.51%

Pred NOK 184 154 45.56%

Value relations, percent 76.38% 84.62%

Vehicle Type 2 OK NOK Percent

CatBoost

Pred OK (Tree) 5234 46 99.13%

Pred NOK 354 330 48.25%

Value relations, percent 93.66% 87.77%

Model deployment

Both use cases were deployed within the business infrastructure, fulfilling the security
requirements and providing working products. All parts of the project were implemented
into the existing intranet with no access to cloud solutions. All technology was selected
based on the provided budget and available data sources. The data lake was implemented
by utilizing Elastic Stack components. The NoSQL record-based database Elasticsearch was
utilized as data storage for both online and offline data. Data from RDBMS were obtained,
transformed, and loaded into the database using the Logstash component. Monitoring was
set and provided utilizing Metricbeat and Heartbeat.

The visual layer of the solution consists of the main dashboard depicting traffic
light colors for cars, representing the decision of the algorithm, and two QM-supporting
dashboards. For UC1, decision-supporting rules were implemented, ruling out cars for
which it was impossible to undergo the test, e.g., because of more extensive packaging.
For UC2, not only was the dashboard prepared to visualize the result of the road test,
but the prediction results were also sent to an actual traffic light installed directly in the
production hall. The decision dashboard was supported by two evaluation pages for
quality management, enabling the results of the algorithm and the road test to be reported
and analyzed as such. The data depicted in the reporting parts of the application were
selected by the QM experts. Furthermore, monitoring was set up for the whole solution.
The following notifications were sent:

• An infrastructure problem (Elasticsearch/Logstash/Beats);
• An error state in the Web Application logs;
• An error message in the predictor logs;
• An error in the relearning logs;
• A better algorithm is prepared and automatically deployed.
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Regular algorithm revision

Currently, production in the automotive industry invests a considerable amount of
resources into analyzing and resolving known issues. If there are any reoccurring defects
in the production process, the quality department strives to identify the cause and resolve
the problem in coordination with analysis centers. As a reaction to constantly evolving
and improving production, a system for automated retraining, recalibration, and algorithm
reassessment was developed and delivered with the proposed solution. The self-learning
application provides algorithms for training, comparing, and deploying new AI models
into a predictor, which uses the models to make online prediction calculations. A flow
diagram of the ready-to-use system is depicted in Figure 4.
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The evaluation is conducted based on agreed evaluation criteria derived from the
business strategy goals with the possibility of updating or changing the training process
only by delivering a new “evaluation function”.

Tree-based algorithms are generally not sensitive to data normalization; in cases where
there is a significant difference in the range of different features, the results for normalized
data may differ from those for non-normalized data. This may affect the choice of the
splitting thresholds, which is a feature observed in some of our data.

In scenarios where there is a significant difference in the range of features, normaliza-
tion can indeed affect the performance of the model, although the impact is typically small
compared to other types of algorithms, such as SVMs or neural networks.

The main reason why normalization can affect tree-based models is due to the way
the splitting thresholds are determined. If one feature has a much larger range of values
compared to others, it could disproportionately influence the decision-making process
at each split in the tree. This is because the larger range could cause the model to select
splits that are optimal for the feature with the larger range, potentially ignoring smaller but
significant variations in other features.

In addition, some empirical evidence suggests that in certain contexts, especially where
numerical precision or floating-point handling is critical, normalization could slightly alter
the structure of the tree. This could lead to different splits being chosen, thus affecting the
predictions of the model or its generalization capabilities.

This paper [41] discusses the impact of data normalization on the performance of
machine learning algorithms, in particular decision tree-based algorithms. It was experi-
mentally found that the proposed normalization method increases the accuracy of decision
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tree-based models (such as the Decision Tree and Extra Trees Classifier) by 1–6%, depending
on the classification task (binary or multi-class).

6. Discussion

The results from our study demonstrate the efficacy of the proposed predictive quality
inspection framework, which integrates AI capabilities to improve automotive manufac-
turing processes. By leveraging machine learning techniques, our framework successfully
predicts the quality of automobiles at the end of the production line, leading to enhanced de-
fect detection and personalized road tests. This approach significantly improves production
efficiency and reduces costs.

However, there are several aspects that warrant further discussion. One critical area
is the integration of additional data sources. While our current implementation shows
promising results, expanding the scope to include more diverse data from different stages
of the manufacturing process could further enhance the accuracy and reliability of the
predictions. Additionally, incorporating feedback from service centers, where customers
report technical issues during the warranty period, could provide valuable insights into
long-term vehicle performance and common defects.

Another important consideration is the role of Generative AI technologies. By classify-
ing defects from all service centers, Generative AI can help identify patterns and predict
potential issues before they become significant problems. This proactive approach not only
improves vehicle quality but also enhances customer satisfaction by reducing the likelihood
of recurring defects.

Finally, the development of universal predictive maintenance applications is crucial for
further advancing manufacturing quality and efficiency. By creating adaptable and scalable
solutions, manufacturers can apply these predictive models across various production lines
and facilities, ensuring consistent quality control and continuous improvement.

7. Conclusions

In this study, we present an innovative software framework with AI capabilities for
predicting the quality of automobiles at the end of the production line. Our framework
significantly improves defect detection and supports personalized road tests, enhancing
production efficiency and reducing costs. The implementation results demonstrate that
integrating AI into quality control processes provides a sustainable, long-term solution for
continuous improvement in automotive manufacturing. The economic benefit is substantial,
with potential savings of hundreds of thousands of production minutes annually.

Future work will focus on expanding production line process data sources. Addition-
ally, Generative AI technologies will be incorporated to assist in classifying defects from all
service centers at which customers report technical issues during the warranty period.
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